首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The mammalian brain is capable of a substantial functional reorganization, manifesting on a cortical somatotopical and on a behavioral level. Possible mechanisms are reviewed based on the work by others and ourselves on somatosensory reorganization in humans. The somatosensory system is characterized by divergent projections from the periphery to the cerebral cortex. Changes in synaptic weights allow for reorganization of sensory processing: On one side, limb amputation will result in a representational "invasion" of the differentiated cortex from neighboring regions with concomitant perceptual changes. On the other side, sensorimotor training can increase the representational cortical zone of a limb. Plastic changes can be temporary or persistent. Modulating factors like pain and certain drugs seem to induce a permissive state in the cortex resulting in enhanced reorganization. Thus, specific physical training combined with pharmacoceutical modulation holds promise to improve functional recovery after brain lesions.  相似文献   

2.
γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system of mammals, plays an important role in cortical reorganization following sensory deprivation, by regulating the level of cortical inhibition and gating changes in receptive field size and synaptic efficacy. In cats it has been shown that 2 weeks after the induction of binocular retinal lesions, GABAergic inhibition, as determined by immunocytochemistry, is decreased in the deafferented region of area 17, whereas 3 months post-lesion, normal GABAergic control is restored within the cortical scotoma. In this study we used in vivo microdialysis to investigate the extracellular GABA concentrations 1–2 months post-lesion, in the sensory-deprived and remote, non-deprived region of area 17. Data were collected at those sample times and sites for which the extracellular glutamate concentrations had been determined in a previous investigation to elucidate the role of this excitatory neurotransmitter in cortical reorganization. As for glutamate, we observed significantly increased extracellular GABA concentrations in non-deprived area 17, whereas in deafferented area 17, extracellular GABA concentrations were comparable to those observed in normal, control subjects. These data suggest that 1–2 months post-lesion the deafferented cortex behaves like normal visual cortex, in contrast to remote, non-deprived cortex. Notwithstanding the increase in extracellular GABA concentration of 134%, the parallel increase in glutamate concentration of 269% could give rise to a net increase in excitability in remote area 17. We therefore suggest that LTP-like mechanisms, and thereby cortical reorganization, might still be facilitated, while possible excessive hyperexcitability is balanced by the moderately increased GABAergic control.  相似文献   

3.
Plasticity after central lesions may result in the reorganization of cortical representations of the sensory input. Visual cortex reorganization has been extensively studied after peripheral (retinal) lesions, but focal cortical lesions have received less attention. In this study, we investigated the organization of retinotopic and orientation preference maps at different time points after a focal ischemic lesion in the primary visual cortex (V1). We induced a focal photochemical lesion in V1 of kittens and assessed, through optical imaging of intrinsic signals, the functional cortical layout immediately afterwards and at 4, 13, 33, and 40 days after lesion. We analyzed histologic sections and evaluated temporal changes of functional maps. Histological analysis showed a clear lesion at all time points, which shrank over time. Imaging results showed that the retinotopic and orientation preference maps reorganize to some extent after the lesion. Near the lesion, the cortical retinotopic representation of one degree of visual space expands over time, while at the same time the area of some orientation domains also increases. These results show that different cortical representations can reorganize after a lesion process and suggest a mechanism through which filling-in of a cortical scotoma can occur in cortically damaged patients.  相似文献   

4.
Experience-dependent modifications of cortical representational maps are accompanied by changes in several components of GABAergic inhibitory neurotransmission system. We examined with in situ hybridization to 35S-labeled oligoprobe changes of expression of GABA(A) receptor alpha1 subunit mRNA in the barrel cortex of mice after sensory conditioning training. One day and 5 days after the end of short lasting (3 daily sessions) training an increased expression of GABA(A) alpha1 mRNA was observed at the cortical site where the plastic changes were previously found. Learning associated activation of the cerebral cortex increases expression of GABA(A) receptor mRNA after a short post-training delays.  相似文献   

5.
Cocaine abuse during pregnancy produces harmful effects not only on the mother but also on the unborn child. The neurotransmitters dopamine and serotonin are known as the principal targets of the action of cocaine in the fetal and postnatal brain. However, recent evidence suggests that cocaine can impair cerebral cortical GABA neuron development and function. We sought to analyze the effects of prenatal cocaine exposure on the number and distribution of GABA and projection neurons (inhibitory interneurons and excitatory output neurons, respectively) in the mouse cerebral cortex. We found that the prenatal cocaine exposure decreased GABA neuron numbers and GABA-to-projection neuron ratio in the medial prefrontal cortex of 60-day-old mice. The neighboring prefrontal cortex did not show significant changes in either of these measures. However, there was a significant increase in projection neuron numbers in the prefrontal cortex but not in the medial prefrontal cortex. Thus, the effects of cocaine on GABA and projection neurons appear to be cortical region specific. The population of parvalbumin-immunoreactive GABA neurons was decreased in the medial prefrontal cortex following the prenatal cocaine exposure. The cocaine exposure also delayed the developmental decline in the volume of the medial prefrontal cortex. Thus, prenatal cocaine exposure produced persisting and region-specific effects on cortical cytoarchitecture and impaired the physiological balance between excitatory and inhibitory neurotransmission. These structural changes may underlie the electrophysiological and behavioral effects of prenatal cocaine exposure observed in animal models and human subjects.  相似文献   

6.
The goal of this study was to describe the development of gamma-aminobutyric acid (GABA)-containing neurons in visual and auditory cortex of ferrets. The laminar and tangential distribution of neurons containing excitatory, inhibitory, and neuromodulatory substances constrain the potential circuits which can form during development. Ferrets are born at an early stage of brain development, allowing examination of inhibitory circuit formation in cerebral cortex prior to thalamocortical ingrowth and cortical plate differentiation. Immunocytochemically labelled nonpyramidal GABA neurons were present from postnatal day 1 throughout development, in all cortical layers, and generally followed the inside-out pattern of neuronal migration into the cortical plate. Prior to postnatal day 14, pyramidal neurons with transient GABA immunoreactivity were also observed. The density of Nissl-stained and GABA-immunoreactive neurons was high early in development, declined markedly by postnatal day 20, then remained relatively constant until adulthood. However, examination of the proportion of GABA neurons revealed an unexpected late peak at postnatal day 60, then a decrease in adulthood. Visual and auditory cortex were similar in most respects, but the peak at postnatal day 60 and the final proportion of GABA neurons was higher in auditory cortex. The late peak suggests that inhibitory circuitry is stabilized relatively late in sensory cortical development, and thus that GABA neurons could provide an important substrate for experience-dependent plasticity at late stages of development.  相似文献   

7.
OBJECTIVES: Damage to and destruction of neural afferents result in a disruption of sensory input, which causes reduced activity in the corresponding cortical areas. Conversely, there is also evidence that lesions in the sensory pathway induce changes in the intracortical connectivity resulting in augmented cortical activity due to disinhibition. As disinhibition is assumed to be involved in the reconfiguration of neural networks, its appearance after brain lesions might be relevant for the restitution of impaired brain functions. METHODS: The effects of lesions in the visual pathway on the activity in visual cortex were studied using magnetoencephalography. In order to compare the neural activity affected by the lesion with the activity associated with intact visual processing, only patients with unilateral, post-chiasmatic lesions resulting in homonymous hemianopia were examined. RESULTS: Stimulation within the scotoma resulted in reduced magnetic activity compared to the stimulation of the intact hemifield. Increased activity was observed when the border region of the scotoma was stimulated. CONCLUSIONS: It is concluded that the magnetic hyperactivity reflects cortical disinhibition induced by lesions in the visual system. Furthermore, the possible role of cortical disinhibition as a basis for cortical reorganization and as a precondition for the recovery of impaired visual functions is discussed.  相似文献   

8.
Different intracortical mechanisms have been reported to contribute to the substantial topographic reorganization of the mammalian primary visual cortex in response to matching lesions in the two retinas: an immediate expansion of receptive fields followed by a gradual shift of excitability into the deprived area and finally axonal sprouting of laterally projecting neurons months after the lesion. To gain insight into the molecular mechanisms of this adult plasticity, we used immunocytochemical and bioanalytical methods to measure the glutamate and GABA neurotransmitter levels in the visual cortex of adult cats with binocular central retinal lesions. Two to four weeks after the lesions, glutamate immunoreactivity was decreased in sensory-deprived cortex as confirmed by HPLC analysis of the glutamate concentration. Within three months normal glutamate immunoreactivity was restored. In addition, the edge of the unresponsive cortex was characterized by markedly increased glutamate immunoreactivity 2-12 weeks postlesion. This glutamate immunoreactivity peak moved into the deprived area over time. These glutamate changes corresponded to decreased spontaneous and visually driven activity in unresponsive cortex and to strikingly increased neuronal activity at the border of this cortical zone. Furthermore, the previously reported decrease in glutamic acid decarboxylase immunoreactivity was found to reflect decreased GABA levels in sensory-deprived cortex. Increased glutamate concentrations and neuronal activity, and decreased GABA concentrations, may be related to changes in synaptic efficiency and could represent a mechanism underlying the retinotopic reorganization that occurs well after the immediate receptive field expansion but long before the late axonal sprouting.  相似文献   

9.
We investigated the link between direct activation of inhibitory neurons, local neuronal activity, and hemodynamics. Direct optogenetic cortical stimulation in the sensorimotor cortex of transgenic mice expressing Channelrhodopsin-2 in GABAergic neurons (VGAT-ChR2) greatly attenuated spontaneous cortical spikes, but was sufficient to increase blood flow as measured with laser speckle contrast imaging. To determine whether the observed optogenetically evoked gamma aminobutyric acid (GABA)-neuron hemodynamic responses were dependent on ionotropic glutamatergic or GABAergic synaptic mechanisms, we paired optogenetic stimulation with application of antagonists to the cortex. Incubation of glutamatergic antagonists directly on the cortex (NBQX and MK-801) blocked cortical sensory evoked responses (as measured with electroencephalography and intrinsic optical signal imaging), but did not significantly attenuate optogenetically evoked hemodynamic responses. Significant light-evoked hemodynamic responses were still present after the addition of picrotoxin (GABA-A receptor antagonist) in the presence of the glutamatergic synaptic blockade. This activation of cortical inhibitory interneurons can mediate large changes in blood flow in a manner that is by and large not dependent on ionotropic glutamatergic or GABAergic synaptic transmission. This supports the hypothesis that activation of inhibitory neurons can increase local cerebral blood flow in a manner that is not entirely dependent on levels of net ongoing neuronal activity.  相似文献   

10.
Peripheral deafferentation alters cortical function and such alterations have been shown to affect the cortical expression of the calcium-binding proteins calbindin and parvalbumin and of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). To determine whether cortical deafferentation produces similar effects, we examined the long-term consequences of cortical lesions on the neurochemistry of interconnected cortical areas. We studied the reciprocal effects of localized damage to either visual cortical areas 17 and 18, or posteromedial lateral suprasylvian (PMLS) cortex in the adult cat. These areas are strongly interconnected and play an important role in the processing of visual information. Combined lesions of areas 17 and 18 caused a marked, topographically specific decrease in the proportion of neurons expressing calbindin in supragranular layers of PMLS cortex. Similarly, lesions of PMLS cortex caused topographically restricted decreases in calbindin expression within supragranular layers of areas 17 and 18, but not in other cortical areas with which PMLS is interconnected. To categorize the calbindin-positive neurons affected by such lesions, we carried out double-labeling experiments for the inhibitory neurotransmitter GABA. This investigation showed lesions of areas 17 and 18 to affect calbindin-positive excitatory and inhibitory neurons equally, but PMLS lesions had stronger effects on inhibitory, calbindin-positive neurons. This finding may represent differential damage to feed-forward vs. feed-back projections in the two types of lesions. Finally, the expression of parvalbumin and GABA was unchanged, even in zones of decreased calbindin immunoreactivity. Our results suggest that damage to adult visual cortical areas, whether striate or extrastriate, induces neurochemical changes in the supragranular corticocortical network to which these areas belong. That changes were restricted to calbindin expression suggests cell-specific and/or biochemical pathway-specific alterations in calcium homeostasis.  相似文献   

11.
Tetanus Toxin is widely used as a model of chronic focal epilepsy and is assumed to act by blocking neurotransmitter release with high selectivity for inhibitory synapses. However, the exact mechanisms are not fully understood, since, e.g., GABA release is only temporarily decreased although epileptiform activity persists pointing towards a change in the interplay of excitation and inhibition. Furthermore there have been reports about different effects of tetanus toxin after injection in separate brain areas. Therefore, we investigated the functional inhibition after injecting tetanus toxin either in the motor or sensory cortex of adult rats by using a paired-pulse paradigm as a measure of excitatory and inhibitory drive. Tetanus toxin injection into the motor cortex (n=10) induced a marked, long-lasting reduction in inhibition which was highly significant in most parts of the injected cortical area. Injections into the sensory cortex, however, showed less marked changes in inhibition which were more widespread and significant only in 3 of 14 animals injected. These results give further evidence for a prominent effect of tetanus toxin on functional inhibition and strengthen the idea of a differential effect in separate cortical areas. They may be accounted for by the different cytoarchitecture of cortical areas with variable inhibitory and excitatory intracortical connections.  相似文献   

12.
Brain injuries cause hemodynamic changes in several distant, spared areas from the lesion. Our objective was to better understand the neuronal correlates of this reorganization in awake, behaving female monkeys. We used reversible inactivation techniques to “injure” the primary motor cortex, while continuously recording neuronal activity of the ventral premotor cortex in the two hemispheres, before and after the onset of behavioral impairments. Inactivation rapidly induced profound alterations of neuronal discharges that were heterogeneous within each and across the two hemispheres, occurred during movements of either the affected or nonaffected arm, and varied during different phases of grasping. Our results support that extensive, and much more complex than expected, neuronal reorganization takes place in spared areas of the bihemispheric cortical network involved in the control of hand movements. This broad pattern of reorganization offers potential targets that should be considered for the development of neuromodulation protocols applied early after brain injury.SIGNIFICANCE STATEMENT It is well known that brain injuries cause changes in several distant, spared areas of the network, often in the premotor cortex. This reorganization is greater early after the injury and the magnitude of early changes correlates with impairments. However, studies to date have used noninvasive brain imaging approaches or have been conducted in sedated animals. Therefore, we do not know how brain injuries specifically affect the activity of neurons during the generation of movements. Our study clearly shows how a lesion rapidly impacts neurons in the premotor cortex of both hemispheres. A better understanding of these complex changes can help formulate hypotheses for the development of new treatments that specifically target neuronal reorganization induced by lesions in the brain.  相似文献   

13.
Unilateral lesions of the rat frontal cortex were made either alone or in combination with the caudate-putamen in order to examine (a) their morphological influence on the substantia nigra and (b) their neurochemical influence on GABA function in the superior colliculus. One to two months following the combined lesion, neuronal somata in the ipsilateral pars reticulata of the substantia nigra were clearly hypertrophied (+ 30%). Morphological changes in the substantia nigra were not evident contralaterally or in animals bearing only cortical lesions. One to two months following cortex-only lesions, no significant alterations in tectal GABA concentration were observed. However, the combined lesion induced elevations of GABA within both the medial and lateral sectors of the intermediate and deep layers of the superior colliculus. This effect was restricted to the ipsilateral side and was most pronounced in lateral sectors. The vast majority of GABA released from superfused control tectal slices by a depolarizing stimulus (35 mM KCl) was calcium-dependent. Such evoked GABA release from ipsilateral tectal slices was significantly reduced (- 25%) by unilateral lesions of the substantia nigra, a structure that is known to provide GABA-containing inputs to the tectum. In contrast, cortical lesions alone significantly enhanced the evoked tectal GABA release (+ 66%), although their influence was again confined to the ipsilateral side. Combined lesions of the cerebral cortex and caudate-putamen significantly enhanced the evoked GABA release from tectal slices in both hemispheres but the changes were most marked ipsilaterally (+ 147%). It is suggested that the hypertrophy of GABA-containing nigrotectal somata seen after removal of corticostriatal, corticotectal and in particular GABA-containing striatonigral fibres may reflect concomitant increases in GABA synthesis within and/or sprouting of nigrotectal terminals.  相似文献   

14.
Cerebral cortical maps in adult primates reorganize within minutes-hours after peripheral injuries, but subcortical versus intracortical contributions to this rapid reorganization remain controversial. The present results show that injury of nerves to the hands of adult monkeys triggers rapid (minutes–hours) changes in maps of the hand in the brainstem main cuneate nucleus. These findings suggest that peripheral injury causes an initial concurrent reorganization of brainstem and cortical substrates and that early sensory changes emerge from reorganization involving multiple central levels.  相似文献   

15.
Cerebral palsy (CP) is a non-progressive injury to the developing central nervous system and defines as permanent disorders of the development of movement and posture, causing activity limitation. This neurodevelopmental disorder may lead to spastic unilateral cerebral palsy after early unilateral brain lesions. Physical and rehabilitation medicine has a particular interest in the study of organization and reorganization of the sensorimotor cortex following early brain injury. From neuroscience standpoint, early brain lesions have been shown to induce substantial neural reorganization owing to the higher plasticity in the developing brain. Unilateral injuries either to the motor cortex or the corticospinal tract can lead to different patterns of reorganization of the sensorimotor cortex. Many patients develop ipsilateral corticospinal pathways to control the paretic hand with the non-lesioned hemisphere. This type of reorganization is often observed following unilateral periventricular brain lesions, which damage the corticospinal tracts in the periventricular white matter. In this group of patients, the primary motor cortex has been found to be represented in the non-lesioned precentral gyrus ipsilateral to the paretic side. Inversely, in patients with perinatal unilateral middle cerebral artery stroke, primary motor cortex remains organised in the lesioned precentral gyrus contralateral to the paretic hand. However, regardless of these inter- or intrahemispheric motor representations, the primary somatosensory cortex representation remains in the lesioned hemisphere in both groups. These two types of corticospinal reorganization could influence the efficacy of rehabilitation.  相似文献   

16.
Retinal and cortical lesions are completely different events that trigger visual cortical plasticity. We therefore compared the cortical effects of homonymous lesions of the central retina with effects of cortical lesions. All in vivo experiments were performed in anaesthetized, adult cats. Retinal lesions were made with a Xenon-light photocoagulator, and cortical lesions were induced by focal application of heat or ibotenic acid injection. Both, in cortical regions representing the retinal scotoma and at the border of small focal cortical lesions single neuron activity was initially suppressed and accompanied by a narrow area of increased activity adjacent to the region of functional loss during the first 1-2 weeks. At the same time an increased glutamatergic NMDA response and a reduction of GABA(A) and GABA(B) responses was observed around the cortical lesions in vitro. At an early stage long-term potentiation (LTP) is facilitated in those regions that were characterized by local upregulation of excitation and downregulation of inhibition after cortical lesions. Similarly, at the border of cortical scotomas in area 17 an increased glutamate level was found while inside the scotoma GAD levels were reduced. Shifts in topography of retinal representation as well as increases of receptive field size were detected as signs of lesion-induced neuronal reorganization after retinal and cortical lesions with longer survival times. A common cascade of events is triggered in the visual cortex by retinal as well as cortical lesions: reduced GABAergic inhibition and increased glutamatergic excitation, leading to increased spontaneous activity and visual excitability that is accompanied by facilitated LTP, and appears to initiate local cortical reorganization after functional disturbances in the visual system.  相似文献   

17.
Changes in sensory experience modify the function of the adult brain's neuronal circuits. This flexibility is reliant on the neurons' ability to change the strength of their connections. Most excitatory connections in the adult cerebral cortex are found on dendritic spines, protrusions from the dendrite that in vitro, and histological analyses, have been shown to be implicated in neuronal plasticity. The recent development of in vivo imaging techniques now provides the ability to explore experience-dependent structural plasticity in the adult brain; the changes in neuronal connectivity that accompany functional reorganizations of the sensory maps. Multi-photon laser scanning microscopy in transgenic mice expressing fluorescent proteins in cortical neurons shows that although the majority of spines is present throughout the imaging period of weeks a proportion of spines is transient, appearing and disappearing on a daily basis. A small fraction appears and stabilizes forming synapses, and this proportion can be affected by changes in sensory experience. This synapse formation occurs preferentially through the initial generation of a filopodial-like spine contacting an axonal bouton already present in the neuropil. The results implicate these specialized compartments of synaptic transmission as playing a central role in the functional reorganization of neuronal circuits.  相似文献   

18.
Changes in sensory experience modify the function of the adult brain's neuronal circuits. This flexibility is reliant on the neurons' ability to change the strength of their connections. Most excitatory connections in the adult cerebral cortex are found on dendritic spines, protrusions from the dendrite that in vitro, and histological analyses, have been shown to be implicated in neuronal plasticity. The recent development of in vivo imaging techniques now provides the ability to explore experience-dependent structural plasticity in the adult brain; the changes in neuronal connectivity that accompany functional reorganizations of the sensory maps. Multi-photon laser scanning microscopy in transgenic mice expressing fluorescent proteins in cortical neurons shows that although the majority of spines is present throughout the imaging period of weeks a proportion of spines is transient, appearing and disappearing on a daily basis. A small fraction appears and stabilizes forming synapses, and this proportion can be affected by changes in sensory experience. This synapse formation occurs preferentially through the initial generation of a filopodial-like spine contacting an axonal bouton already present in the neuropil. The results implicate these specialized compartments of synaptic transmission as playing a central role in the functional reorganization of neuronal circuits.  相似文献   

19.
Patients with meningeal carcinomatosis often evolve signs of impairment in higher mental function. Yet, common findings of histological observation are only a sheet of tumor cells on the cortical surface, and no intracerebral mass are noted. To elucidate mechanism of mental disturbances in meningeal carcinomatosis, local cerebral blood flow and glucose metabolism were evaluated in a model of experimental meningeal carcinomatosis. Viable cells (1 X 10(4) of Walker 256 tumor were inoculated into cisterna magna of Wistar rats. Animals were used for autoradiographic study at 1 to 12 days after tumor inoculation. Local cerebral glucose utilization (LCGU) and local cerebral blood flow (LCBF) were measured with quantitative autoradiographic technique using 14C-iodoantipyrine and 14C-deoxyglucose as a tracer, respectively. In the early stage of tumor growth (1 to 3 days after tumor inoculation), reduction of LCGU was averaged to be 31% in the cerebral cortex and 28% in the deep structures, whereas reduction of LCBF was 28% in cerebral cortex and 19% in deep structures on average. In the late stage of tumor growth (4 to 12 days after tumor inoculation), average reduction of LCGU was 57% in the cerebral cortex and 47% in the deep structures. On the other hand, reduction of LCBF was averaged to be 42% in the cerebral cortex and 38% in the deep structures in the late stage of the disease. Reduction of LCGU and LCBF was especially evident in the sensory cortices such as parietal cortex, visual cortex and auditory cortex, and in the auditory centers of the brain stem such as medial geniculate body and inferior colliculus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Huntington's disease is a progressive neurodegenerative disease in which the basal ganglia are preferentially affected. Recent evidence, however, suggests involvement of the cerebral cortex as well, with sparing of neurochemically defined subsets of gamma-aminobutyric acid (GABA)-ergic interneurons. In the present study, we examined changes in concentrations of the amino acid neurotransmitters GABA, glutamate, and aspartate in nine cortical regions from 23 patients with advanced Huntington's disease and 12 control brains. GABA concentrations were significantly increased in eight of the nine regions, consistent with a sparing of GABAergic local circuit neurons in the context of progressive cortical atrophy. Small but significant increases in glutamate were found in six of the nine regions, while aspartate levels were generally unaffected. Striate cortex (Brodmann's area 17) showed the most profound increases in GABA and glutamate. We also investigated the effects of powdering the excitotoxins N-methyl-D-aspartate (NMDA) or kainic acid onto the dura of rats. The resulting lesions were examined at 1 week and 6 months. The NMDA-induced lesions showed striking sparing of parvalbumin-positive neurons (a subset of GABAergic interneurons), and this sparing was reflected in neurochemical measurements of GABA; kainic acid lesions failed to display this selectivity. Somatostatin, cholecystokinin, and vasoactive intestinal polypeptide concentrations were spared by the NMDA-induced lesions, and substance P levels were significantly increased. These results provide evidence that NMDA excitotoxic lesions of cerebral cortex can produce a selective pattern of neuronal damage similar to that which occurs in Huntington's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号