首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a case of segmental uniparental maternal hetero- and isodisomy involving the whole of chromosome 6 (mat-hUPD6 and mat-iUPD6) and a cullin 7 (CUL7) gene mutation in a Japanese patient with 3M syndrome. 3M syndrome is a rare autosomal recessive disorder characterized by severe pre- and postnatal growth retardation that was recently reported to involve mutations in the CUL7 or obscurin-like 1 (OBSL1) genes. We encountered a patient with severe growth retardation, an inverted triangular gloomy face, an inverted triangle-shaped head, slender long bones, inguinal hernia, hydrocele testis, mild ventricular enlargement, and mild mental retardation. Sequence analysis of the CUL7 gene of the patient revealed a homozygous missense mutation, c.2975G>C. Genotype analysis using a single nucleotide polymorphism array revealed two mat-hUPD and two mat-iUPD regions involving the whole of chromosome 6 and encompassing CUL7. 3M syndrome caused by complete paternal iUPD of chromosome 6 involving a CUL7 mutation has been reported, but there have been no reports describing 3M syndrome with maternal UPD of chromosome 6. Our results represent a combination of iUPDs and hUPDs from maternal chromosome 6 involving a CUL7 mutation causing 3M syndrome.  相似文献   

2.
The limb-girdle muscular dystrophies (LGMDs) are a heterogenous group of diseases characterized by shoulder-girdle and pelvic muscle weakness and wasting. LGMD 2E is an autosomal recessively inherited form of the disease caused by mutations in the β-sarcoglycan (SGCB) gene located at 4q12. In this report, we describe a patient who demonstrates non-Mendelian inheritance of a homozygous missense mutation in SGCB resulting in disease expression. A combination of single-nucleotide polymorphism (SNP) array technology and microsatellite analysis revealed the occurrence of maternal uniparental disomy (UPD) for chromosome 4 in the patient. As a consequence of segmental isodisomy at 4q12, the patient inherited two identical SGCB alleles carrying a missense mutation predicted to result in abnormal protein function. SNP array technology proved to be an elegant means to determine the most probable mechanism of UPD formation in this case, and enabled us to determine the location of recombination events along chromosome 4. In our patient, UPD likely arose from a trisomy rescue event due to maternal meiotic non-disjunction that we speculate may have been caused by abnormal recombination at the pericentromeric region. Maternal UPD 4 is a rare finding, and to our knowledge this is the first reported case of UPD in association with LGMD.  相似文献   

3.
Morquio A syndrome (MPS IVA) is a recessive lysosomal storage disorder (LSD) caused by mutations in the GALNS gene leading to the deficiency of lysosomal enzyme N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Patients show a broad spectrum of phenotypes ranging from classical severe type to mild forms. Classical forms are characterized by severe bone dysplasia and usually normal intelligence. So far, more than 170 unique mutations have been identified in the GALNS gene of MPS IVA patients. We report on a Morquio A patient with a classical phenotype who was found to be homozygous for a missense mutation (c.236 G>A; p.Cys79Tyr) in the GALNS gene. This alteration affects the highly conserved p.Cys79 that is transformed into formylglycine, the catalytic residue of the active site. The mutation was present in the proband's mother, but not in the father, whose paternity was confirmed by microsatellite analysis. In order to test the hypothesis of maternal uniparental disomy (UPD), we investigated the segregation of sixteen microsatellite markers from chromosome 16. The results showed a condition of maternal UPD due to an error in meiosis I. Maternal isodisomy of the 16q24 region led to homozygosity for the GALNS mutant allele, causing the patient's disease. These findings allow to add for the first time the LSD Morquio A syndrome to the list of conditions that can be caused by UPD. The possibility of UPD is relevant when giving genetic counseling to couples since the recurrent risk in future pregnancies is dramatically reduced.  相似文献   

4.
We report on the first case of fumarase deficiency (FD) caused by uniparental isodisomy. An affected patient was found to be homozygous for the P131R mutation in the FH gene. In this nonconsanguineous family, the unaffected father was found to be heterozygous for the same mutation, and the mother was found to be homozygous wild-type. Analysis of chromosome 1 markers showed that the patient inherited both paternal alleles with complete absence of the maternal homolog. The two copies of the paternal chromosome 1 are heterodisomic for most of the chromosome except the distal 1q region which is isodisomic for the mutant alleles of the FH gene. The genotypes of other chromosome markers are consistent with the patient inheriting alleles from both parents. Although FD is an autosomal recessive disorder, the effects of uniparental disomy (UPD) should be considered in genetic counseling since the recurrence risk of an affected child is significantly reduced when the disorder is due to UPD.  相似文献   

5.
Uniparental disomy (UPD) for several human chromosomes is associated with clinical abnormalities. We report the case of a 2-year-old boy with severe intrauterine and post-natal growth retardation (IUGR/PNGR) and highly variable sweat chloride concentrations. The patient was identified as heterozygous for the F508del mutation of the CFTR (cystic fibrosis transmembrane conductance regulator) gene. Unexpectedly, the signal corresponding to the maternally inherited F508del allele appeared much more intense than the paternally derived wild allele. Molecular analysis including polymorphic marker studies, microsatellites and single-nucleotide polymorphisms subsequently showed that the boy was a carrier of a de novo mosaic maternal isodisomy of a chromosome 7 segment while there was a biparental inheritance of the rest of the chromosome. This is the first report of a mosaic partial UPD7. The matUPD7 segment at 7q21-qter extends for 72.7 Mb. The karyotype (550 bands) of our patient was normal, and fluorescence in situ hybridization with probes mapping around the CFTR gene allowed us to rule out a partial duplication. The detection of this chromosomal rearrangement confirms the hypothesis that the 7q31-qter segment is a candidate for the localization of human imprinted genes involved in the control of IUGR and PNGR. It also emphasizes the importance of searching for UPD7 in severe, isolated and unexplained IUGR and PNGR.  相似文献   

6.
We report on a girl with a dicentric chromosome 14 [45,XX,inv(9)(p11q13),dic(14;14)(p11.1;p11.1)] with paternal uniparental disomy (UPD) for chromosome 14. Clinical findings include severe hypotonia, thoracic dystrophy, diastasis recti, swallowing difficulties with aspiration, developmental delay, and multiple minor anomalies. UPD for chromosome 14 has been documented with paternal UPD much less commonly than with maternal UPD. There have been ten cases of paternal UPD for chromosome 14 and one case of segmental paternal isodisomy of chromosome 14. Many of the findings are nonspecific, but the radiographic rib findings (referred to as the "coat-hanger" sign) are characteristic for this condition. UPD 14 studies should be performed in children thought to have Jeune asphyxiating thoracic dystrophy or other related osteochondrodysplasias when the diagnosis is in question. Our patient and the previously reported cases support a discrete recognizable phenotype for paternal UPD for chromosome 14.  相似文献   

7.
Among rare inherited deficiencies of coagulation factors, congenital afibrinogenaemia is characterised by the lack of fibrinogen in plasma. In the last few years, several genetic defects underlying afibrinogenaemia (mostly point mutations) have been described in the fibrinogen gene cluster. In this study, the molecular basis responsible for afibrinogenaemia in a Thai proband was defined. Point mutation screening was accomplished by directly sequencing the three fibrinogen genes. The impossibility to amplify fibrinogen Aalpha-chain gene (FGA) exons 5 and 6 suggested the presence of a homozygous deletion. A specific long-range PCR assay enabled the identification of a novel 15-kb deletion, representing the largest afibrinogenaemia-causing deletion described so far. Direct sequencing of the deletion junction allowed mapping of the breakpoints in FGA intron 4 and in the intergenic region between Aalpha- and Bbeta-chain genes. Since the mutation was inherited only from the mother and nonpaternity was ruled out, a maternal uniparental disomy (UPD) was hypothesised. UPD test, carried out with markers covering the whole chromosome 4, revealed that maternal isodisomy was responsible for homozygosity of the 15-kb deletion in the proband. The apparently normal phenotype of the proband, except for afibrinogenaemia, suggests that UPD for chromosome 4 is clinically silent. This represents the first case of a documented complete isodisomy of chromosome 4 causing the phenotypic expression of a recessive disorder. In silico analyses of the regions surrounding the breakpoints suggested that the 15-kb deletion might have originated from an inappropriate repair of a double-strand break by the nonhomologous end joining mechanism.  相似文献   

8.
We report maternal uniparental disomy of chromosome 17 (mat UPD17) in a 2.5-year-old girl presenting infantile cystinosis. This patient was homozygous for the 57 kb deletion encompassing the CTNS gene, frequently found in patients from the European origin. The proband''s mother was heterozygous for the deletion and the father did not carry the deletion. We carried out haplotype analysis with polymorphic markers spanning the whole chromosome 17. Informative markers showed the presence of two maternal alleles but no paternal allele for regions spanning the 17q arm and the proximal half of 17p, and only one maternal allele on the distal 17p arm. As deletion of half of 17p is probably not viable, these results suggest mat UPD17 with heterodisomy of 17q and proximal 17p and isodisomy of distal 17p. This is the first demonstration of mat UPD17, in particular of isodisomy 17p, in cystinosis.  相似文献   

9.
《Genetics in medicine》2020,22(4):803-808
PurposeUniparental disomy (UPD) is the rare occurrence of two homologous chromosomes originating from the same parent and is typically identified by marker analysis or single-nucleotide polymorphism (SNP)-based microarrays. UPDs may lead to disease due to imprinting effects, underlying homozygous pathogenic variants, or low-level mosaic aneuploidies. In this study we detected clinically relevant UPD events in both trio and single exome sequencing (ES) data.MethodsUPD was detected by applying a method based on Mendelian inheritance errors to a cohort of 4912 ES trios (all UPD types) and by using median absolute deviation–scaled regions of homozygosity to a cohort of 29,723 single ES samples (isodisomy only).ResultsAs positive controls, we accurately identified three mixed UPD, three isodisomy, as well as two segmental UPD events that were all previously reported by SNP-based microarrays. In addition, we identified three segmental UPD and 11 isodisomy events. This resulted in a novel diagnosis based on imprinting for one patient, and adjusted genetic counseling for another patient.ConclusionUPD can easily be identified using both single and trio ES and may be clinically relevant to patients. UPD analysis should become routine in clinical ES, because it increases the diagnostic yield and could affect genetic counseling.  相似文献   

10.
Mutations in SCO2, a metallochaperone involved in mitochondrial copper delivery, are associated with early onset, fatal hypertrophic cardiomyopathy. All reported patients carry at least one copy of the common 1541G>A (E140K) mutation. Whereas patients with one copy of the E140K allele, in combination with a more deleterious mutation, follow a severe clinical course, patients homozygous for the E140K mutation have a delayed onset of disease and a more prolonged survival. Here, we have investigated a patient who appeared homozygous for the common 1541G>A mutation based on DNA sequencing and restriction enzyme analysis of a PCR product, yet presented with early onset, severe cardiomyopathy. Restriction enzyme analysis of parental DNA revealed that the mother was heterozygous for 1541G>A, while the father was homozygous wild-type. The patient showed biparental inheritance for microsatellite markers spanning the length of chromosome 22, making isodisomy unlikely. Sequencing of several single nucleotide polymorphisms within the 5'-UTR, intron and single exon of the SCO2 gene was uninformative; however, a 16 bp deletion within the intron was present in the patient and the mother, but not the father. Restriction enzyme analysis confirmed that the mother was heterozygous and that the patient was hemizygous for the deletion. Southern blot, Northern blot, and FISH analyses were consistent with the de novo deletion of one allele of SCO2 in the patient. This is the first report of hemizygosity in a SCO2 patient. The patient phenotype underscores the strikingly similar clinical course in all patients with one copy of the E140K allele. Examination of both patient and parental genotypes by thorough molecular analyses can reveal information with important implications for genetic counseling.  相似文献   

11.
Mitochondrial DNA (mtDNA) depletion syndrome encompasses a heterogeneous group of disorders characterized by a reduction in the mtDNA copy number. We identified two patients with clinical presentations consistent with mtDNA depletion syndrome (MDS), who were subsequently found to have apparently homozygous point mutations in TYMP and DGUOK, two of the nine nuclear genes commonly associated with these disorders. Further sequence analyses of parents indicated that in each case only one parent; the mother of the first and the father of the second, was a heterozygous carrier of the mutation identified in the affected child. The presence of underlying deletions was ruled out by use of a custom target array comparative genomic hybridization (CGH) platform. A high-density single-nucleotide polymorphism (SNP) array analysis revealed that the first patient had a region of copy-neutral absence of heterozygosity (AOH) consistent with segmental isodisomy for an 11.3?Mb region at the long-arm terminus of chromosome 22 (including the TYMP gene), and the second patient had results consistent with complete isodisomy of chromosome 2 (where the DGUOK gene is located). The combined sequencing, array CGH and SNP array approaches have demonstrated the first cases of MDS due to uniparental isodisomy. This diagnostic scenario also demonstrates the necessity of comprehensive examination of the underlying molecular defects of an apparently homozygous mutation in order to provide patients and their families with the most accurate molecular diagnosis and genetic counseling.  相似文献   

12.
Malonic aciduria is a rare autosomal recessive disorder caused by deficiency of malonyl-CoA decarboxylase, encoded by the MLYCD gene.
We report on a patient with clinical presentation in the neonatal period. Metabolic investigations led to a diagnosis of malonyl-CoA decarboxylase deficiency, confirmed by decreased activity in cultured fibroblasts. High doses of carnitine and a diet low in lipids led to a reduction in malonic acid excretion, and to an improvement in his clinical conditions, but at the age of 4 months he died suddenly and unexpectedly. No autopsy was performed.
Molecular analysis of the MLYCD gene performed on the proband's RNA and genomic DNA identified a previously undescribed mutation (c.772–775delACTG) which was homozygous. This mutation was present in his mother but not in his father; paternity was confirmed by microsatellite analysis. A hypothesis of maternal uniparental disomy (UPD) was investigated using fourteen microsatellite markers on chromosome 16, and the results confirmed maternal UPD. Maternal isodisomy of the 16q24 region led to homozygosity for the MLYCD mutant allele, causing the patient's disease. These findings are relevant for genetic counselling of couples with a previously affected child, since the recurrence risk in future pregnancies is dramatically reduced by the finding of UPD. In addition, since the patient had none of the clinical manifestations previously associated with maternal UPD 16, this case provides no support for the existence of maternally imprinted genes on chromosome 16 with a major effect on phenotype.  相似文献   

13.
We describe a unique case of achondroplasia with associated complications, including severe respiratory problems. Molecular analysis of the fibroblast growth factor receptor type 3 (FGFR3) gene in this patient showed the common p.G380R mutation and a second novel p.L377R mutation. An allele-specific PCR demonstrated that these mutations were on the same allele (cis). Both mutations were not present in the parents and appear to have occurred de novo. To our knowledge, this is the first report in the literature on an achondroplasia patient with two FGFR3 mutations on the same allele.  相似文献   

14.
Primary hyperoxaluria type 1 (PH1) is an autosomal recessive disorder of glyoxylate metabolism, in which excessive oxalates are formed by the liver and excreted by the kidneys, causing a wide spectrum of disease, ranging from renal failure in infancy to mere renal stones in late adulthood. This disease is caused by a deficiency of alanine:glyoxylate aminotransferase (AGT), which is encoded by a single copy gene, AGXT, located in 2q37.3. We identified an apparently homozygous, loss-of-function, mutation in a patient; the gene defect was present in the heterozygous mother but not in the patient's father. We performed a microsatellite repeat analysis using 13 specific chromosome 2 markers and non-chromosome 2 minisatellites. Six specific chromosome 2 markers showed an apparently homozygous maternal inheritance while four showed a biparental transmission consistent with paternity (confirmed by minisatellite analysis). Quantitative PCR of AGXT exons 1 and 3 on the patient's and parents genomic DNA revealed the presence of two copies of the gene. This is the first case of PH1 caused by segmental maternal isodisomy of 2q37.3.  相似文献   

15.
The mitochondrial trifunctional protein (TFP) is an enzyme complex of the fatty acid beta-oxidation cycle composed of an alpha- and a beta-subunit. The two encoding genes are located in the same region on chromosome 2 (2p23). TFP deficiency due to either alpha- or beta-subunit mutations is characterized by mutational and phenotypic heterogeneity with severe, early-onset, cardiac forms and milder, later-onset, myopathic phenotypes. In two unrelated patients with lethal TFP deficiency, we delineated apparently homozygous alpha-subunit mutations that were present in heterozygous form in both mothers, but not in either biological father. We performed a microsatellite repeat analysis of both patients and their parents using seven chromosome 2-specific polymorphic DNA markers and four nonchromosome 2 markers. In both patients, two chromosome 2-specific markers demonstrated maternal isodisomy of chromosome 2. The other five chromosome 2-specific markers were noninformative in each patient. Inheritance of alleles from chromosomes 4, 5, and 7 was consistent with paternity. These results explain the apparently anomalous pattern of transmission. Six of our 12 known TFP-deficient patients with alpha-subunit mutations have disease due to homozygous changes and two of them via the mechanism of uniparental disomy (UPD) (16.7%). For very rare autosomal recessive diseases, UPD may represent a common mechanism. This study emphasizes the need to confirm mutations in parents whenever possible. TFP deficiency is another disorder that has become manifest due to isodisomy of chromosome 2. This information will impact genetic counseling for these families, reducing greatly the 25% risk normally used for recessive disorders.  相似文献   

16.
Harlequin ichthyosis (HI) is the most severe and often lethal form of congenital ichthyosis, characterized by abnormal desquamation and extreme skin thickening and hardening over the entire body. It is caused by recessive loss-of-function mutations in the ABCA12 gene located on chromosome 2q34. Here, we report a sporadic HI patient born prematurely due to severe growth delay and oligohydramnios. The diagnosis was confirmed by ABCA12 molecular analysis, which disclosed the novel homozygous mutation p.R287X. Microsatellite analysis and parental segregation study showed that the disease resulted from complete paternal isodisomy. In addition, chorionic villus karyotyping revealed a non-mosaic chromosome 2 trisomy, while postnatal peripheral blood karyotype resulted normal female. Thus, these findings indicate that trisomic rescue is one step of the mutational cascade leading to reduction to homozygosity for the ABCA12 mutation in the embryo. Our case is the first reported HI patient in whom the disease is due to uniparental isodisomy.  相似文献   

17.
We report on a boy with mosaicism for trisomy 15 and Prader-Willi syndrome (PWS) due to maternal isodisomy for chromosome 15. His phenotype is consistent with PWS and trisomy 15 mosaicism. Although our patient is unusual in having maternal isodisomy rather than the more common maternal heterodisomy, we think that his more severe PWS phenotype is due to his trisomy 15 mosaicism rather than to homozygosity for deleterious chromosome 15 genes. We propose that individuals with PWS have one of three similar but distinctive phenotypes depending on the cause of their condition. Patients with paternal deletions have the typical PWS phenotype, patients with maternal UPD have a slightly milder phenotype with better cognitive function, and those with maternal UPD and mosaic trisomy 15 have the most severe phenotype with a high incidence of congenital heart disease. These phenotype-genotype differences are useful to guide the work-up of patients with suspected PWS and to provide prognostic counseling for families.  相似文献   

18.
Congenital Disorder of Glycosylation (CDG) type Ic is caused by mutations in ALG6. This gene encodes an alpha1,3 glucosyltransferase used for synthesis of the lipid linked oligosaccharide (LLO) precursor of the protein N-glycosylation pathway. CDG-Ic patients have moderate to severe psychomotor retardation, seizures, hypotonia, strabismus, and feeding difficulties. We previously identified a typical patient with a heterozygous point mutation, c.391T>C (p.Tyr131His) in ALG6. Using complementation analysis of ALG6-deficient yeast, we show that this alteration is as severe as the most common disease-causing mutation, c998C>T (p. Ala333Val), which occurs in over half of all known CDG-Ic patients. The frequency of c.391T>C (p.Tyr131His) in the US population, is 0.0214, suggesting that homozygotes would occur at a rate of& tilde;1:2,200. We identified one patient with typical CDG-Ic symptoms and a homozygous p.Tyr131His alteration in ALG6. However, in contrast to most CDG patients, her LLO and plasma transferrin glycosylation appeared normal. Thus, it is unclear whether c.391T>C causes CDG-Ic or contributes to the symptoms. Genotyping additional patients with CDG-like symptoms will be required to resolve this issue.  相似文献   

19.
Maternal uniparental disomy for the entire chromosome 7 hasso far been reported in three patients with intrauterine andpostnatal growth retardation. Two were detected because theywere homozygous for a cystic fibrosis mutation for which onlythe mother was heterozygous, and one because he was homozygousfor a rare COL1A2 mutation. We investigated 35 patients witheither the Silver-Russell syndrome or primordial growth retardationand their parents with PCR markers to search for uniparentaldisomy 7. Four of 35 patients were found to have maternal disomy,including three with isodisomy and one with heterodisomy. Thedata confirm the hypothetical localization of a maternally imprintedgene (or more than one such gene) on chromosome 7. It is suggestedto search for UPD 7 in families with an offspring with sporadicSilver-Russell syndrome or primordial growth retardation.  相似文献   

20.
Although 22q terminal deletions are well documented, very few patients with mosaicism have been reported. We describe two new cases with mosaic 22q13.2-qter deletion, detected by karyotype analysis, showing the neurological phenotype of 22q13.3 deletion syndrome. Case 1 represents an exceptional case of mosaicism for maternal 22q13.2-qter deletion (45% of cells) and 22q13.2-qter paternal segmental isodisomy (55% of cells). This complex situation was suspected because cytogenetic, FISH and array-CGH analyses showed the presence of an 8.8 Mb mosaic 22q13.2-qter deletion, whereas microsatellite marker analysis was consistent with maternal deletion without any evidence of mosaic deletion. Molecular analysis led to the definition of very close, but not coincident, deletion and uniparental disomy (UPD) break points. Furthermore, we demonstrated that the segmental UPD arose by gene conversion in the same region. In Case 2, mosaicism for a paternal 8.9 Mb 22q13.2-qter deletion (73% of cells) was detected. In both patients, the level of mosaicism was also verified in saliva samples. We propose possible causative mechanisms for both rearrangements. Although the size of the deletions was quite similar, the phenotype was more severe in Case 2 than in Case 1. As maternal UPD 22 has not been generally associated with any defects and as the size of the deletion is very similar in the two cases, phenotype severity is likely to depend entirely on the degree of mosaicism in each individual.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号