首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies on the pulmonary removal and metabolism of catecholamines in rat lungs have shown that, when the lungs are perfused with a low concentration (1 nmol/1) of noradrenaline, the amine is metabolized by catechol-O-methyltransferase (COMT) and monoamine oxidase (MAO), but is predominantly O-methylated, and the activities of COMT and MAO are 0.357 min–1 and 0.186 min–1, respectively. The aim of the present study was to examine the changes in the metabolic profile of noradrenaline in rat lungs over a range of concentrations, and to examine the kinetics of the pulmonary O-methylation of noradrenaline and adrenaline.In isolated lungs perfused with 3H-noradrenaline, there was a progressive decrease in the proportion of O-methylated metabolites and a corresponding increase in the proportion of deaminated metabolites, as the noradrenaline concentration in the perfusion solution was increased from 1 to 10 to 100 to 1000 nmol/l. Experiments designed to determine the rate of uptake of noradrenaline in lungs perfused with 1 nmol/l 3H-noradrenaline, under conditions of MAO inhibited, COMT inhibited and COMT and MAO inhibited, showed that the results were compatible with co-existence of COMT and MAO in the pulmonary endothelial cells. Hence, it appeared that the changing metabolic profile with amine concentration in the previous series of experiments was not due to saturation of noradrenaline uptake into cells that contained COMT but not MAO.Further experiments to examine the kinetics of O-methylation of noradrenaline and adrenaline (MAO inhibited) showed that the O-methylation of these amines in the lungs was predominantly saturable, with half-saturation occurring at concentrations (9.8 nmol/I and 19.4 nmol/l, respectively) that were two orders of magnitude lower than those required to half-saturate uptake1 of the amines. Saturation of O-methylation by these low concentrations of noradrenaline (1) provides the explanation for the change in the metabolic profile of noradrenaline described above and (ii) appears to occur because Vmax uptake Vmax COMT for the metabolizing system consisting of non-neuronal uptake1 + COMT in the lungs, as has been described previously for the system consisting of uptake2 + COMT in extraneuronal sites in rat heart. The results show that the metabolic profile of catecholamines in the pulmonary circulation will reflect that occurring at physiological levels only if studies are carried out with very low amine concentrations.Abbreviations COMT Catechol-O-methyltransferase - DOMA 3,4-dihydroxymandelic acid - DOPEG 3 4-dihydroxyphenylglycol - ECS Extracellular space - HSOC Half-saturating outside concentration - Km uptake Half-saturation constant for uptake - kCOMT Rate constant for O-methylation - kMAO Rate constant for deamination - kout NA Rate constant for efflux of noradrenaline - MAO Monoamine oxidase - MB-COMT Membrane-bound - COMT NMN Normetanephrine - OMDA O-methylated deaminated metabolites - S-COMT Soluble COMT - T/MNA Tissue to medium ratio of noradrenaline - U-0521 3,4-dihydroxy-2-methylpropiophenone - Vmax Maximal rate of uptake or O-methylation - Vst-st Steady-state rate of metabolite formation - Vuptake Rate of uptake Preliminary results of part of this study were presented to the Seventh Meeting on Adrenergic Mechanisms, Porto, Portugal (Bryan 1990)  相似文献   

2.
The aim of this study was to investigate the deamination of dopamine in the intact pulmonary circulation of isolated lungs of the rat. The first part of the study showed that dopamine is not converted to noradrenaline by dopamine--hydroxylase (DBH) when dopamine is perfused through isolated lung preparations with monoamine oxidase (MAO) and catechol-O-methyltransferase (COMT) inhibited. Hence, it was not necessary to inhibit DBH in subsequent experiments.The metabolite profile for deamination of dopamine in the lungs was examined by determining whether MAO and semicarbazide-sensitive amine oxidases (SSAO) contribute to the deamination of dopamine (and noradrenaline), and by determining the activity of MAO (kMAO) for the metabolism of dopamine. Lungs were perfused with I nmol/l 3H-dopamine or 3H-noradrenaline with COMT inhibited and, in experiments to determine the contribution of SSAO to deamination, with MAO inhibited. Inhibition of MAO reduced the deamination of dopamine and noradrenaline by 99.8% and 98.6%, respectively, indicating that MAO, and not SSAO, was responsible for deamination of the catecholamines in the lungs. The kMAO value for deamination of dopamine was 3.89 min–1. Further experiments were carried out to determine the contributions of MAO-A and MAO-B to the deamination of dopamine in lungs perfused with 1 nmol/l 3H-dopamine and 100 nmol/1 lazabemide or 300 nmol/I Ro41-1049, respectively. The values of kMAO-A and kMAO-B were 3.05 min–1 and 0.626 min–1, respectively.It was concluded that, in rat lungs, MAO-A contributed 78–84% and MAO-B 16–22% to the total deamination of dopamine and SSAO had no significant role in its pulmonary metabolism. These relative contributions of MAO-A and MAO-B to the deamination of dopamine are very similar to those that have been determined previously for noradrenaline, but the rate constant for deamination of dopamine is 26-fold greater than that for noradrenaline in rat lungs.Abbreviations COMT Catechol-O-methyltransferase - DBH Dopamine-\-hydroxylase - DOPEG 3,4-dihydroxyphenylglycol - DOMA 3,4-dihydroxyman delic acid - DOPAC 3,4-dihydroxyphenylacetic acid - DOPET 3,4-dihydroxphenylethanol - ECS Extracellular space - Km Michaelis or half-saturation constant - kCOMT Rate constant for O-methylation by COMT - kdeam Rate constant for total deamination - kMAO Rate constant for deamination by MAO - MAO Monoamine oxidase - MB-COMT Membrane-bound COMT - SSAO Semicarbazidesensitive amine oxidases - S-COMT Soluble COMT - T/M Tissue to medium concentration ratio of dopamine or noradrenaline - Vmax Maximal rate - Vst - st Steady-state rate of metabolite formation  相似文献   

3.
The aims of this study were to obtain conclusive evidence about the roles of a 5-hydroxytryptamine [5-HT] transporter and uptake, in the dissipation of 5-HT in the lungs of the rat and to compare the properties of the 5-HT transporter in rat lungs with that in other tissues, including brain and platelets. In the first part of the study, the IC50 values of a range of selective inhibitors and substrates of the 5-HT transporter or uptake1 were determined for inhibition of uptake of 5-HT or noradrenaline in intact perfused lungs of rats. Monoamine oxidase was inhibited and, in experiments with noradrenaline, catechol-O-methyltransferase was also inhibited. Initial rates of uptake of 5-HT or noradrenaline were measured in lungs perfused with 2 nmol/l 3H-5-HT or 3H-noradrenaline for 2 min, in the absence or presence of at least three concentrations of paroxetine, citalopram, fluoxetine, 7-methyltryptamine, tryptamine, nisoxetine, imipramine, 5-HT, desipramine, (+)-oxaprotiline, cocaine or tyramine. The results showed that pharmacologically distinct transporters are involved in the uptake of 5-HT and noradrenaline in rat lungs, since there was no significant correlation between the IC50 values for inhibition of 5-HT and noradrenaline uptake in the lungs. However, there were significant correlations between the IC50 values for (a) inhibition of 5-HT uptake in rat lungs and of uptake by the 5-HT transporter in rat brain and (b) inhibition of noradrenaline uptake1 in rat lungs and of uptake, in rat phaeochromocytoma PC-12 cells. The results support the conclusion that 5-HT uptake in rat lungs occurs, at least predominantly, by a 5-HT transporter which is very similar to or the same as that in other tissues, such as the brain, and provide further evidence for transport of noradrenaline by uptake1.Further experiments were carried out to determine whether there is any transport of 5-HT by uptake1 or of noradrenaline by the 5-HT transporter in rat lungs. Lungs were perfused with 2 nmol/1 3H-5-HT or 3H-noradrenaline for 2 min in the absence or presence of 1 mol/l citalopram, desipramine, or citalopram and desipramine. The results showed that there was no evidence of any transport of 5-HT in the lungs by uptake1 or of noradrenaline by the 5-HT transporter, in that desipramine had no effect on 5-HT uptake (in the absence or presence of citalopram) and citalopram had no effect on noradrenaline uptake (in the absence or presence of desipramine).The final series of experiments was carried out to determine whether, at high concentrations of the amine, there is any interaction of 5-HT with uptake1 or of noradrenaline with the 5-HT transporter. Noradrenaline, at a concentration of 10 mol/l, did not affect 5-HT uptake in lungs perfused with 2 nmol/l 3H-5-HT for 2 min (uptake1 inhibited), but 50 mol/l 5-HT inhibited noradrenaline uptake by 56% in lungs perfused with 2 nmol/l 3H-noradrenaline for 2 min (5HT transporter inhibited). These and the above results show that the 5-HT transporter appears to be exclusively responsible for 5-HT uptake in rat lungs, despite the possible interaction of 5-HT at high concentrations with the uptake, transporter in the cells. On the other hand, noradrenaline is transported exclusively by uptake1 in the lungs, and there is no evidence that it interacts with the 5-HT transporter, even at high concentrations.Preliminary results of this study were presented to the December 1993 meeting of the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists (Paczkowski and Bryan-Lluka 1993).  相似文献   

4.
Previous pharmacological studies have demonstrated that pulmonary endothelial cells and noradrenergic neurones possess the same transporter for inward transport of catecholamines, uptake1. In noradrenergic neurones, it has been shown that uptake1 is also involved in the carrier-mediated outward transport, or efflux, of noradrenaline and dopamine. The aim of the present study was to examine the efflux of noradrenaline and dopamine from perfused lungs of rats to determine whether uptake1, in addition to diffusion, mediates efflux of catecholamines from pulmonary vascular endothelial cells.The effects of reducing the cellular sodium gradient and of substrates and inhibitors of uptake1 on the efflux of 3H-noradrenaline and 3H-dopamine from rat lungs were measured. Isolated; perfused lungs of rats (monoamine oxidase and catechol-0-methyltransferase inhibited) were loaded with 3H-(–)noradrenaline or 3H-dopamine for 10 min followed by perfusion with either (1) a low sodium, amine-free: Krebs solution, in which NaCl was replaced by either Tris.HCl or LiCl, for 15 or 10 min, respectively or (2) amine-free Krebs solution for 30 min in the absence or presence of a substrate or inhibitor of uptake1 for the last 15 min. The rate constants for spontaneous efflux of noradrenaline and dopamine from the lungs were 0.0163 min–1 and 0.0466 min–1, respectively. When NaCl was replaced by Tris.HCl during efflux, the rate constants for efflux of noradrenaline and dopamine were increased 2.5-fold and 3-fold, respectively, whereas, when NaCl was replaced by LICl, the rate constants were increased 8-fold and 4-fold, respectively. The uptake1 substrates, dopamine (1 and 3 mol/l) and adrenaline (40 mol/l), both caused a rapid and marked increase in the efflux of noradrenaline, while noradrenaline (4 mol/l) had a similar effect on the efflux of dopamine. The uptake 1 inhibitors, imipramine (3 and 10 mol/l) and nisoxetine (50 nmol/l), caused small and gradual increases in the efflux of noradrenaline and dopamine from rat lungs.These results demonstrate that efflux of noradrenaline and dopamine from rat lungs is affected by alterations in the normal sodium gradient across the cell and by drugs that interact with the uptake1 transporter. Thus, it can be concluded that the spontaneous efflux of catecholamines from pulmonary vascular endothelial cells is mediated predominantly by uptake1. In addition, efflux of catecholamines from the lungs has a diffusional component, which, combined with inhibition of reuptake, accounts for the small increase in amine efflux by inhibitors of uptake1.Abbreviations COMT Catechol-O-methyltransferase - FRL Fractional rate of loss - K m Michaelis or half-saturation constant - t out rate constant for efflux - k uptake rate constant for uptake - MAO monoamine oxidase - t /12 half-time for efflux - U-0521 3,4-dihydroxy-2-methylpropiophenone - V max maximal rate of uptake Preliminary results of this study were presented to the 1993 Meeting of the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists (Scarcella et al. 1993).  相似文献   

5.
Summary Possible effects of (±)-dobutamine on adrenergic nerve endings were determined in experiments with ghosts of bovine chromaffin granules, with rat phaeochromocytoma (PC-12) cells and with the rat vas deferens. Dobutamine inhibited the vesicular uptake of a mixture of 70% adrenaline + 30% 3H-noradrenaline into ghosts, with an IC50 of 1.7 mol/l. Dobutamine inhibited uptake, of 3H-noradrenaline in PC-12 cells (with an IC50 of 0.38 mol/l) without being a substrate. However, dobutamine easily entered PC-12 cells by diffusion. After inhibition of MAO, COMT and vesicular uptake dobutamine (15 and 45 mol/l) released tritium from rat vasa deferentia preloaded with 3H-noradrenaline. Equi-inhibitory concentrations of dobutamine and desipramine (against uptake1) were equireleasing. On the other hand, when MAO and vesicular uptake were intact, dobutamine (15 mol/l) increased the efflux of tritium from preloaded vasa deferentia much more than did an equi-inhibitory concentration of desipramine. Most of the released tritium was then 3H-DOPEG.Dobutamine is a potent inhibitor of uptake1 as well as of vesicular uptake; moreover, it easily diffuses into adrenergic nerve endings. Hence, it blocks the neuronal and the vesicular re-uptake of noradrenaline; consequently, when MAO and vesicular uptake are intact, dobutamine increases the net leakage of noradrenaline from the storage vesicles, thereby leading to an efflux of deaminated metabolites. However, dobutamine is virtually unable to release noradrenaline into the extracellular space.Abbreviations COMT catechol-O-methyl transferase - DOPEG dihydroxyphenylglycol - DOMA dihydroxymandelic acid - MAO monoamine oxidase Supported by the Deutsche Forschungsgemeinschaft (Gr 490/5 and SFB 176) Send offprint requests to P. Fischer at the above address  相似文献   

6.
Summary The influence of inhibitors of metabolism and uptake of noradrenaline on the 3H-noradrenaline removal from the perfusion fluid by the isolated rat liver was studied. Livers were perfused with 3 nmol/l 3H-noradrenaline and 3H-noradrenaline and 3H-metabolites were determined in effluent, liver and bile. After the perfusion with 14,900 ±920 dpm · g–1 · min–1 during 90 min, cumulative removal of tritium was 323,574 ± 63,103 dpm/g. 3H-metabolites recovered from the liver after 90 min perfusion represented 71.1 ± 9.0% of total metabolite formation. Only the OMDA-fraction appeared in the perfusate; its approach to steady state of efflux was slow. The inhibition either of MAO or COMT changed neither the total removal of tritium nor the 3H-metabolites recovered from the liver. Cocaine (10 mol/l) reduced the accumulation of 3H-noradrenaline in the liver. The uptake2 inhibitor corticosterone (30 mol/l) diminished total removal of tritium and the 3H-metabolites recovered from the liver without changing the accumulation of 3H-noradrenaline. The hypothesis of two different compartments, one responsible for the metabolism and the other for the accumulation of the amine is discussed.Abbreviations NA noradrenaline - NMN normetanephrine - OMDA O-methylated deaminated metabolites - MAO monoamine oxidase - COMT catechol-O-methyl transferase Send offprint requests to M. C. Rubio  相似文献   

7.
Summary This study describes for the first time an experimental system for the extraneuronal transport mechanism of noradrenaline (uptake2) which is based on a clonal cell line (Caki-1). Caki-1 cells were originally derived from a human renal cell carcinoma. The conclusion that these cells express uptake2 is supported by several experimental findings. (1) The initial rate of 3H-noradrenaline uptake in Caki-1 cells is saturable, the K m being 450 mol/l. (2) Inhibitors of uptake2 such as corticosterone (1 mol/l) and O-methyl-isoprenaline (100 Emol/l) largely inhibit 3H-noradrenaline uptake in Caki-1 cells. Whereas inhibitors of the neuronal transport mechanism for noradrenaline (uptake1) such as desipramine (1 mol/l) and cocaine (10 mol/l) do not reduce it. (3) Depolarization of Caki-1 cells by the elevation of extracellular potassium inhibits 3H-noradrenaline uptake. (4) There is a highly significant correlation between the IC50's of various compounds for the inhibition of 3H-noradrenaline uptake in Caki-1 cells and rabbit aorta known to possess uptake2.Interestingly enough, uptake2 in Caki-1 cells and rabbit aorta is inhibited by cimetidine, quinidine and procainamide which are substrates of the renal transport mechanism for organic cations. Moreover, 3H-cimetidine is shown to be a substrate of uptake2 in the isolated perfused rat heart. These results indicate a striking similarity between uptake2 and the renal transport mechanism for organic cations. Send offprint requests to E. Schömig at the above addressSupported by the Deutsche Forschungsgemeinschaft (SFB 176, Scho 373) and the Dr. Robert Pfleger Stiftung  相似文献   

8.
Summary The uptake and metabolism of 3H-noradrenaline has been examined in the FL cell-line derived originally from human amnion. Cell cultures metabolised 3H-noradrenaline (1.0 mol/l) to 3H-normetanephrine and, to a lesser extent, to metabolites (not distinguished) of the O-methylated deaminated fraction; primary deaminated metabolites were not detected. 3(H-normetanephrine formation a) was not saturable in the noradrenaline concentration range 0.2–150 mol/l, b was decreased to 20%–30% of control levels by uptake2 inhibitors (O-methylisoprenaline, 20 and 100 mol/l; cimetidine, 10 mol/l; hydrocortisone, 200 mol/l) and c, was almost insensitive to uptake1 inhibitors (cocaine, 30 mol/l; desipramine, 3 mol/l).Uptake of noradrenaline was manifested after 30 minutes as a 6-fold increase in the cell content of the amine following inhibition of catechol-O-methyl transferase, either alone or in conjunction with inhibition of monoamine oxidase. Uptake was decreased maximally to 40% of control levels by O-methylisoprenaline. IC50 values for inhibition of the O-methylisoprenaline-sensitive component of uptake were (in mol/l): corticosterone (0.3), papaverine (1.1), O-methylisoprenaline (3.0), cimetidine (6.0), (–)noradrenaline (460), and tetraethylammonium (2230). Except for the last agent, for which a comparative value is not available, the IC50's are in good agreement with those for inhibition of uptake2 in the Caki-1 cell-line reported by other investigators.The component of uptake resistant to O-methylisoprenaline was depressed by papaverine (a 50% decrease at 50 mol/l), but was not affected by the other uptake2 inhibitors or by cocaine (30 mol/l).It is concluded that the FL cell possesses an extraneuronal metabolising system very similar to the system in tissues such as heart and smooth muscle where transport of noradrenaline into the cell by uptake2 is followed by rapid O-methylation via catechol-O-methyl transferase. The only difference appears to be the absence of saturation of 3H-normetanephrine formation in the FL cell at low micromolar concentrations of 3H-noradrenaline. The presence of a second uptake process is suggested by the inhibitory effect of papaverine on uptake resistant to O-methylisoprenaline; lack of effect of cocaine implies that this second process is not uptake,.Abbreviations COMT catechol-O-methyl transferase - DOMA dihydroxymandelic acid - DOPEG dihydroxyphenylethylene glycol - MAO monoamine oxidase - NMN normetanephrine - OMDA O-methylated and deaminated metabolite fraction - OMI 3-O-methylisoprenaline - TEA tetraethylammonium Correspondence to I. S. de la Lande at the above address  相似文献   

9.
Summary The handling of five amines by the extraneuronal deaminating system was studied in perfused hearts of rats (pretreated with reserpine; COMT and neuronal uptake inhibited). Hearts were perfused with 50 nmol/l 3H-noradrenaline for 30 min, in the presence of increasing concentrations of unlabelled (–)-adrenaline, (–)-noradrenaline, dopamine, tyramine and 5-HT. IC50's were determined as those concentrations of unlabelled amines which halved the steady-state rate of deamination of 3H-noradrenaline. After correction for changes in the tissue/medium ratio for 3H-noradrenaline, half-saturating outside concentrations were obtained. They increased in the order (–)-adrenaline (15 mol/l) — tyramine — dopamine — noradrenaline —5-HT (53 mol/l). The V max for extraneuronal deamination was determined for 3H-(–)-adrenaline, 3H-(–)-noradrenaline and 3H-dopamine, as well as (by HPLC and electrochemical detection) for tyramine and 5-HT. It was low for (–)-adrenaline, intermediate for (–)-noradrenaline, dopamine and 5-HT, high for tyramine. For the three catecholamines the half-saturating outside concentrations of the extraneuronal deaminating system clearly exceeded those for the extraneuronal O-methylating system of the same organ (see Grohmann and Trendelenburg 1985), although the two enzymes appear to co-exist in the same cells, so that the same transport system is involved.Abbreviations COMT catechol-O-methyl transferase - DOMA dihydroxymandelic acid - DOPEG dihydroxyphenylglycol - 5-HT 5-hydroxytryptamine - MAO monoamine oxidase Supported by the Deutsche Forschungsgemeinschaft (SFB 176) Send offprint requests to U. Trendelenburg  相似文献   

10.
Summary The corticosterone-sensitive extraneuronal transport mechanism for noradrenaline (uptake2) removes the neurotransmitter from the extracellular space. Recently, an experimental model for uptake2 has been introduced which is based on tissue culture techniques (human Caki-1 cells). The present study describes some properties of uptake2 in Caki-1 cells and introduces a new substrate, i.e., 1-methyl-4-phenylpyridinium (MPP+).Experiments on Caki-1 cells disclosed disadvantages of tritiated noradrenaline as substrate for the investigation of uptake2. The initial rate of 3H-noradrenaline transport [kin = 0.58 l/(mg protein · min)] was low compared with other cellular transport systems and intracellular noradrenaline was subject to rapid metabolism (kO-methylation = 0.54 min–1). The neurotoxin MPP+ was found to be a good substrate of uptake2. Initial rates of specific 3H-MPP+ transport into Caki-1 cells were saturable, the Km being 24 mol/l and the Vmax being 420 pmol/(mg protein · min). The rate constant of specific inward transport was 34 times higher [19.6 mol/l (mg protein · min)] than that of 3H-noradrenaline. The ratio specific over non-specific transport was considerably higher for 3H-MPP+ (12.6) than for 3H-noradrenaline (3.0). 3H-MPP+ transport into Caki-1 cells was inhibited by various inhibitors of uptake2. The highly significant positive correlation (p < 0.001, r = 0.986, n = 7) between the IC50's for the inhibition of the transport of 3H-noradrenaline and 3H-MPP+, respectively, proves the hypothesis that MPP+ enters Caki-1 cells via uptake2. 3H-MPP+ is taken up via uptake2 not only by Caki-1 cells but also by the isolated perfused rat heart which is another established model of uptake2.Tritiated MPP+ is a new and convenient tool for the investigation of uptake2. The rate constant for inward transport, the factor of accumulation and the ratio specific over non-specific transport are considerably higher for 3H-MPP+ than for 3H-noradrenaline. In uptake studies with 3H-MPP+ inhibition of intracellular noradrenaline-metabolizing enzymes is not necessary. In tissues and tissue cultures which possess fewer uptake2 carriers than Caki-1 cells or the rat heart, the identification and characterization of uptake2 can be expected to be greatly facilitated by the use of 3H-MPP+.Supported by the Deutsche Forschungsgemeinschaft (SFB 176) Send offprint requests to H. Russ at the above address  相似文献   

11.
Summary The extraneuronal removal and disposition of noradrenaline in rabbit dental pulp was examined in view of earlier evidence that the tissue possessed an extra-neuronal uptake process resembling neuronal uptake1. Pulp, which had been depleted of sympathetic nerves by homolateral superior cervical ganglionectomy, was incubated in vitro with 3H-noradrenaline in low concentrations (0.025 or 0.18 mol/l). When the metabolising enzymes (monoamine oxidase, catechol-O-methyl transferase) were active, 3H retention by the denervated pulp, as indicated by the 3H content after the tissue had been washed for 30 min following incubation with 3H-noradrenaline, was less than 30% of that of the innervated pulp. When the enzymes were inhibited, retention rose to approximately 30% of that of the innervated pulp. Analysis of the time course of the 3H efflux indicated that the 3H-noradrenaline in the denervated pulp had accumulated in a single compartment characterised by a t1/2 for efflux of several hours. Accumulation did not occur under Na+-free conditions, and was inhibited by desipramine (IC50 < 0.03 mol/l) and by substrates of neuronal uptake1. Mean IC50, values of the latter were very similar to those for inhibition of neuronal uptake1 and comprised (in mol/l): (+)amphetamine (0.29), dopamine (0.31), tyramine (0.39), (–)noradrenaline (0.70), (–)adrenaline (1.50), 5-hydroxytryptamine (20) and bretylium (35). Uptake2 inhibitors were less active (O-methyl isoprenaline, IC50 = 60 mol/l) than uptake1 inhibitors, or were without inhibitory effects at the concentrations tested (hydrocortisone, 210 mol/l; 2-methoxy oestrone, 10 mol/l).The effects of Na+ omission, of (+)amphetamine, and of O-methylisoprenaline on 3H-normetanephrine formation (measured in the absence of catechol-O-methyl transferase inhibition) matched their effects on 3H-noradrenaline accumulation. The results provide strong support for the presence in rabbit dental pulp of extraneuronal uptake1 which is linked with catechol-O-methyl transferase in the removal of noradrenaline. Send offprint requests to D. A. S. Parker at the above address  相似文献   

12.
Summary The mechanism of action of indirectly acting sympathomimetic amines was studied in the rat vas deferens, after inhibition of vesicular uptake (by reserpine), of MAO (by pargyline) and of COMT (by U-0521). 1. K m-values for the neuronal uptake of 12 substrates were determined as the IC50 of the unlabelled substrate inhibiting the initial rate of neuronal uptake of 0.2 mol/l 3H-(–)-noradrenaline. The IC50 ranged from 0.35 mol/l (for (+)-amphetamine) to 44.3 mol/l (for 5-HT). The V max (determined for 8 substrates) was substrate-dependent. 2. Tissues were loaded with 0.2 mol/l 3H-(–)-noradrenaline and then washed out with amine-free solution. All 12 substrates of uptake1, induced an outward transport of 3H-noradrenaline, and equieffective concentrations were positively correlated with K m. Moreover, the EC50 for release greatly exceeded K m. It is proposed that this discrepancy between EC50 and K m is indicative of the fact that at least four factors (each one in strict dependence on K m) contribute to the initiation of outward transport of 3H-noradrenaline: a) the appearance of the carrier on the inside of the axonal membrane (facilitated exchange diffusion), b) the co-transport of Na+, c) the co-transport of Cl (both lowering the K m for 3H-noradrenaline at the inside carrier), and d) inhibition of the re-uptake of released 3H-noradrenaline (through competition for the outside carrier). 3. At least for amezinium, V max. appears to limit the maximum rate of outward transport. 4. For some substrates (especially for the highly lipophilic ones) bell-shaped concentration-release curves were obtained. Apparently, inward diffusion of the substrates can lead to partial saturation of the inside carrier. Moreover, if release is expressed as a FRL (fractional rate of loss), loading with 37 mol/l 3H-(–)-noradrenaline decreased the releasing effect of various substrates. In this case the inside carrier appears to be partially saturated by the high axoplasmic concentration of 3H-noradrenaline. 5. Very high concentrations (especially of highly lipophilic substrates) were able to induce an additional intraneuronal release mechanism, presumably by increasing the pH inside storage vesicles.Abbreviations COMT catechol-O-methyl transferase - DOMAA dihydroxymandelic acid - DOPEG dihydroxyphenylglycol - FRL fractional rate of loss (rate of efflux/tissue tritium content) - 5-HT 5-hydroxytryptamine - MAO monoamine oxidase - OM-fraction sum of all O-methylated metabolites of noradrenaline, deaminated or not This study was supported by the Deutsche Forschungsgemeinschaft (Bo 521, Tr 96 and SFB 176). Some of the results were presented to the German Pharmacological Society (Langeloh 1986)A. L. was the recipient of a fellowship of the Humboldt-Foundation Send offprint requests to: U. Trendelenburg  相似文献   

13.
Summary The aim of the study was to determine whether the uptake process for catecholamines in rat lungs is Uptake1, Uptake2 or a distinct process with some properties of both Uptake1 and Uptake2. The initial rate of uptake of noradrenaline was measured in isolated lungs of rats perfused with 2 nmol/l 3H-(–)-noradrenaline for 2 min with monoamine oxidase (MAO) and catechol-O-methyltransferase (COMT) inhibited, in the absence or presence of drugs that are substrates or inhibitors of Uptake1 or Uptake2 or of alterations in the ionic composition of the Krebs solution. The rank order of the IC50 values for inhibition of uptake of noradrenaline in the lungs by drugs that are substrates or inhibitors of Uptake1 or Uptake2 is compatible with the conclusion that uptake of catecholamines in rat lungs occurs by Uptake2, and not by a process with the properties of Uptake2. Additional evidence was provided by the marked inhibition of uptake in the lungs when the Na+ concentration in the Krebs solution was decreased from 143 to 25 mmol/l and by the lack of inhibition when the K+ concentration was increased from 5.9 mmol/l to either 10.9 or 20.9 mmol/1.Further experiments were included in the study to obtain data additional to histological evidence (Hughes et al. 1969; Nicholas et al. 1974) regarding the site of Uptake1 in rat lungs. Pretreatment of rats with either 6-hydroxydopamine (to destroy noradrenergic neurones) or reserpine (to inhibit synaptic vesicle uptake) had no effect on the deamination or accumulation of noradrenaline in lungs perfused with 3H-noradrenaline (COMT inhibited). In a further series of experiments, efflux of noradrenaline from rat lungs, after loading with 3H-noradrenaline (MAO and COMT inhibited), could be described by a single compartment with a half-time for efflux of 42 min and with no bound fraction. These results provide further evidence that no significant uptake of noradrenaline in the lungs occurs into noradrenergic neurones and are compatible with histological evidence that the endothelial cells of the lung microvasculature are the site of noradrenaline uptake.The study has shown that the uptake of catecholamines in the lungs, at least in the rat, occurs by Uptake1, and hence the pulmonary endothelial cells are a nonneuronal site where catecholamine transport occurs by Uptake1.Some of the results of this study were presented to the Australasian Society of Clinical and Experimental Pharmacologists (Bryan and O'Donnell 1988; Bryan et al. 1988a) and the British Pharmacological Society (Bryan et al. 1988) Send offprint requests to L. J. Bryan-Lluka at the above address  相似文献   

14.
Isolated rat hepatocytes were incubated with 200 nmol/l 3H-(–)-noradrenaline or 50 nmol/l 3H(–)-adrenaline for 15 min, in Krebs-Henseleit solution at 37°C, gassed with 95% O2 5010 CO2. Monoamine oxidase and catechol-O-methyl transferase were inhibited withpargyline (500 mol/l)and Ro 01-2812 (3,5-dinitropyrocatechol; 2 ol/l), respectively. Total radioactivity present in the cells, which corresponded mostly to intact 3H-amine, was measured.The content of 3H-noradrenaline increased with time of incubation, a plateau having been reached after 15 min of incubation. After 15 min of incubation,the cell: medium ratio for 3H-noradrenaline and 3H-adrenaline was 0.6–0.7. Desipramine (an inhibitor of the neuronal uptake of catecholamines — uptake,; 1 mol/l) did not affect the uptake of either 3H-noradrenaline or 3H-adrenaline into hepatocytes. Corticosterone (an inhibitor of the extraneuronal uptake of catecholamines — uptake2; 40 mol/l) slightly inhibited (by 28%) the uptake of 3H-adrenaline, and did not significantly reduce 3H-noradrenaline uptake. Probenecid (an inhibitor of the renal transport of organic anions; 100 mol/l) did not influence the amount of either 3H-noradrenaline or 3H-adrenaline in hepatocytes. Cyanine 863 (an inhibitor of the renal transport of organic cations; 10 mol/l) decreased by 62% the uptake of 3H-adrenaline into cells but did not significantly affect 3H-noradrenaline uptake. Bilirubin (a substrate of a hepatic transport for organic anions; 200 ol/l) produced a significant increase (50%) in the amount of 3H-noradrenaline and 3H-adrenaline present in the cells. When isolated hepatocytes were incubated in a sodium-free medium (sodium being replaced by choline or lithium) there was a very marked inhibition of 3H-noradrenaline and 3H-adrenaline uptake (by 85–97%). An increase in potassium content of the medium (from 6.6 to 50 mmol/l) did not affect the uptake of either 3H-amine into isolated cells.In conclusion, the uptake of catecholamines by isolated liver cells possesses characteristics that distinguish it from the classic uptake systems for catecholamines (uptake1 and uptake2): (1) it is sodium-dependent but not affected by desipramine; (2) it is only slightly sensitive to corticosterone and not affected by potassium-induced depolarization; (3) it is partially sensitive to cyanine 863. Moreover, the increase of 3H-amine content in the cells in the presence of bilirubin suggests the possibility of catecholamines being excreted from the hepatocytes through the bilirubin transporter.PhD student with a grant from JNICT (Programa Ciência)Abbreviations COMT catechol-O-methyl transferase - MAO monoamine oxidase - RTOC renal transport of organic cations Supported by Programa STRIDE (STRDA/P/SAU/259/92) Correspondence to: F. Martel at the above address  相似文献   

15.
The macrolide antibiotic bafilomycin A1, a selective inhibitor of the vesicular H+-transporting ATPase, increased irreversibly the overflow of 3,4-dihydroxyphenylethylene glycol from isolated segments of the rat tail artery. Maximum increase in the overflow was produced by exposing the tissues to 0.5 mol/l bafilomycin As. Unless the Na-dependent neuronal amine carrier (uptake1) was inhibited, overflow of noradrenaline was below the detection limit. The bafilomycin As-induced increase in overflow of noradrenaline from tissues with inhibited uptakes was accompanied by a significant decrease in the (noradrenaline overflow:glycol overflow) ratio. Unlike reserpine and tetrabenazine, the antibiotic did not alter the (noradrenaline overflow:glycol overflow) ratio in arteries incubated in Ca2+-free, 120 mmol/1 K+ medium.Bafilomycin A1 increased overflow of noradrenaline and normetanephrine from tissues with inhibited monoamine oxidase. Inhibitors of extraneuronal catecholamine transport (uptake2), corticosterone, 3-O-methylisoprenaline and 1,1-diethyl-2,2-cyanine, suppressed overflow of normetanephrine while increasing that of noradrenaline. Further increase in overflow of noradrenaline was produced by concomitant inhibition of uptake1. A similar effect was observed in tissues previously exposed to phenoxybenzamine. After exposure to bafilomycin As, tyramine and (+) amphetamine (10 mol/l) were equally effective in increasing overflow of noradrenaline from tissues with inhibited monoamine oxidase into corticosterone-containing medium.Bafilomycin A1 promotes leakage of noradrenaline from storage vesicles without affecting its conversion to 3,4-dihydroxyphenylethylene glycol. When uptake1 is inhibited, axoplasmic noradrenaline can be translocated effectively across the axonal membrane by the diffusional efflux. When uptakes is inhibited, spontaneous quantal release contributes significantly to overflow of noradrenaline into normal media. The diffusional efflux of noradrenaline is unaffected by inhibitors of uptake2. Even at highly elevated concentrations of axoplasmic noradrenaline, the uptake1-mediated influx of noradrenaline exceeds the uptake1-mediated efflux. Enhancement of noradrenaline overflow from tissues with inhibited monoamine oxidase by indirectly acting sympathomimetic amines depends primarily on their ability to induce leakage of the transmitter from storage vesicles rather than its translocation across the axonal membrane.  相似文献   

16.
Summary Intra- and extraneuronal compartments of rat hearts were selectively labelled by perfusion with 3H-noradrenaline in the presence of corticosterone 87 M or cocaine 30 M, respectively. The subsequent outflow of 3H-compounds was examined. As little as 1 nM amezinium diminished the outflow of intraneuronally formed 3H-DOPEG. This effect was antagonized by cocaine. Amezinium 1 M was necessary to diminish the outflow of extraneuronally formed 3H-DOPEG. This effect was not counteracted by corticosterone. The results indicate that amezinium is both a potent and, at low concentrations, selective inhibitor of intraneuronal MAO.Abbreviations used DOMA 3,4-dihydroxymandelic acid - DOPEG 3,4-dihydroxyphenylglycol - MAO monoamine oxidase (EC 1.4.3.4) - NA noradrenaline - NMN normetanephrine - OMDA O-methylated deaminated metabolites  相似文献   

17.
Summary Recently, uptake2 was shown to exist in the clonal Caki-1 cell line. The aim of this study was two-fold: a) to determine, in Caki-1 cells, the intracellular fate of 3H-noradrenaline after its translocation by uptake2 and b) to analyse the force driving uptake2.Caki-1 cells have the characteristics of a metabolizing system in which the activity of catechol-O-methyl transferase (COMT) greatly exceeds that of monoamine oxidase (MAO). In all subsequent experiments these enzymes were inhibited. The determination of initial rates of uptake2 into Caki-I cells at an extracellular pH between 6.9 and 7.9 indicated that the protonated species of 3H-noradrenaline is transported. Depolarization of Caki-1 cells (by three different procedures) inhibited the inward transport. Determination of the time course of the specific accumulation of 3H-noradrenaline in Caki-I cells and of 3H-isoprenaline in the perfused rat heart (both mediated by uptake2) revealed that depolarization (by high K+) reduced the rate constant for inward transport (kIN) and increased that for outward movement (kOUT). Consequently, depolarization reduced the steady-state factor of accumulation.It is proposed that, as the protonated species of the substrates of uptake2 is transported, the membrane potential is likely to provide the driving force for uptake2. The fact that depolarization decreased kIN and increased kOUT agrees with this proposal, as do the magnitudes of the steady-state accumulation factors determined in Caki-I cells and perfused rat heart.Abbreviations COMT catechol-O-methyl transferase - DOMA dihydroxymandelic acid - DOPEG dihydroxyphenylglycol - MAO monoamine oxidase - NMN normetanephrine - OMDA O-methylated and deaminated metabolites Supported by the Deutsche Forschungsgemeinschaft (SFB 176) and the Dr. Robert Pfleger-Stiftung Send offprint requests to E. Schömig at the above address  相似文献   

18.
Summary Isolated rat hepatocytes were incubated with 0.05 mol/l or 0.2 mol/l 3H-(–)-noradrenaline or 0.05 mol/l 3H-(–)-adrenaline for 15 min and the content of amines as well as the formation of metabolites was measured.The removal Of both amines from the incubation medium was quantitatively similar, and mainly due to metabolism (which represented 96% of the removal of 3H-adrenaline and 98% of the removal of 3H-noradrenaline). O-methylation predominated for 3H-adrenaline: O-methylated and deaminated metabolites (3H-OMDA) and 3H-metanephrine (3H-MN) were the most abundant metabolites, accounting for 63% and 34% of total metabolite formation, respectively. Deamination predominated for 3H-noradrenaline: 3H-OMDA and 3H-dihydroxymandelic acid (3H-DOMA) were the most abundant metabolites, representing respectively 56% and 36% of total metabolite formation. The following activities of monoamine oxidase and catechol-O-methyl transferase were determined for 3H-noradrenaline: kCOMT 0.70±0.15 min–1 and kMAO 2.27±0.14 min–1 In experiments with 3H-noradrenaline, inhibition of monoamine oxidase reduced the formation of 3H-OMDA and deaminated metabolites [3H-dihydroxyphenylglycol (3H-DOPEG) and 3H-DOMA] and increased the formation of 3H-normetanephrine (3H-NMN). Inhibition of catechol-O-methyl transferase, On the Other hand, decreased 3H-NMN and increased 3H-DOPEG formation. When both enzymes were inhibited, the formation of all metabolites was strongly reduced but surprisingly there was no accumulation of 3H-amines in the cells, as the cell: medium ratio for 3H-noradrenaline or 3H-adrenaline was about unity. In experiments with either 3H-noradrenaline or 3H-adrenaline, specific inhibitors of either uptake, or uptake2 produced discrete effects, slightly decreasing the formation of 3H-OMDA and 3H-NMN or 3H-MN, and having no effect on 3H-amine content of the cells. Additional experiments were carried Out with rat liver slices incubated for 15 min with 3H-noradrenaline 0.2 mol/l. The pattern of metabolism of 3H-noradrenaline (3H-OMDA and 3H-DOMA were the most abundant metabolites) as well as the degree of metabolism of the amine removed from the incubation medium (91% of the removal) were similar to those of the isolated cells. Likewise, there was no accumulation of intact 3H-noradrenaline in the tissue. Moreover, the results obtained with enzyme inhibitors as wells as with uptake inhibitors were similar to those obtained with hepatocytes.In conclusion, isolated hepatocytes remove and metabolize catecholamines very efficiently, being one of the most active systems studied in this respect. Uptake1 and uptake2 are responsible for part of the removal of catecholamines by hepatocytes; the system(s) involved in the remaining removal seem(s) to be active, but possess(es) characteristics that do not allow us to characterize it (them) either as uptake1 or uptake2.Abbreviations COMT catechol-O-methyl transferase - DOMA 3,4-dihydroxymandelic acid - DOPEG 3,4-dihydroxyphenylglycol - HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - MAO monoamine oxidase - MN metanephrine - NMN normetanephrine - OMDA O-methylated and deaminated metabolites (i.e., MOPEG = 4hydroxy-3-methoxyphenylglycol and VMA = 4-hydroxy-3-methoxymandelic acid) Supported by Programa STRIDE (STRDA/P/SAU/259/92)PhD student with a grant from JNICT (Programa Ciência) Correspondence to: F. Martel at the above address  相似文献   

19.
Summary The uptake and subsequent metabolism by catechol-O-methyltransferase (COMT) and monoamine oxidase (MAO) of dopamine, adrenaline, isoprenaline and noradrenaline in isolated perfused lungs of rats has been examined. In lung preparations in which COMT and MAO were inhibited, the uptake of 3H-labelled dopamine, (–)-adrenaline and (–)-noradrenaline, but not (±)-isoprenaline, was reduced by cocaine (10 or 100 mol/l) The rank order of the Km values of the amines that were substrates for uptake in the lungs were: dopamine (0.246 mol/l) < noradrenaline (0.967 mol/l) < adrenaline (3.32 mol/l). These results are consistent with transport of catecholamines in rat lungs by Uptake1.In lung preparations with COMT and MAO intact, dopamine and noradrenaline were removed from the circulation (50% and 32%, respectively) and mainly metabolized. There was very little (3.0%) removal of isoprenaline by the lungs and adrenaline was not included in this part of the study. In lung preparations in which only MAO was inhibited, the rank order of COMT activity for O-methylation of the amines was dopamine noradrenaline adrenaline (kCOMT values: 4.98 min–1, 0.357 min–1, and 0.234 min–1, respectively).If dopamine or adrenaline are perfused through the pulmonary circulation in isolated lungs of the rat, they are taken up and then metabolized by COMT and MAO, as also occurs for noradrenaline. Isoprenaline is not a substrate for uptake in the lungs. There was less uptake of adrenaline than noradrenaline, indicating that uptake and metabolism in the lungs may not be a significant removal process for adrenaline in the circulation of rats in vivo. The more marked uptake of dopamine (than of noradrenaline) indicates that uptake and metabolism by the lungs, at least in the rat, may play an important role in the removal of dopamine from the circulation in vivo.Abbreviations COMT catechol-O-methyltransferase - DOMA 3,4-dihydroxymandelic acid - DOPAC 3,4-dihydroxyphenylacetic acid - DOPEG 3,4-dihydroxyphenylglycol - DOPET 3,4-dihydroxyphenyl ethanol - MAO monoamine oxidase - MN metanephrine - MTA 3-methoxytyramine - NMN normetanephrine - OMDA O-methylated deaminated metabolites - OMI 3-O-methylisoprenaline - U-0521 3,4-dihydroxy-2-methylpropiophenone Some of the results of this study were presented to the Australasian Society of Clinical and Experimental Pharmacologists (Bryan and O'Donnell 1987, 1988; Bryan et al. 1989; Bryan-Lluka 1990) Send offprint requests to L.J. Bryan-Lluka at the above address  相似文献   

20.
Summary The mechanism of action of indirectly acting sympathomimetic amines was studied in vasa deferentia of unpretreated rats (COMT inhibited), preloaded with 3H-noradrenaline. 1. Concentration-release curves were obtained for 12 unlabelled indirectly acting amines. From differences between these results and those in an accompanying report (involving tissues from rats pretreated with reserpine and pargyline), it is concluded that a mobilisation of vesicular 3H-noradrenaline is required for high and sustained rates of outward transport of 3H-noradrenaline from intact adrenergic varicosities. 2. Experiments with a reserpine-like compound (Ro 4-1284) supported the view that a mobilisation of vesicular 3H-noradrenaline is required for substantial release. 3. An atypical time course of release and abnormally high rates of release were observed in the presence of excessive concentrations of (+)-amphetamine. Such atypical effects are ascribed to the ability of basic amines to increase the intravesicular pH. 4. Analysis of the ratio NA/DOPEGG (rate of efflux of 3H-noradrenaline/rate of efflux of 3H-DOPEGG) indicated that the inward transport (by uptake,) of substrates of MAO fails to achieve axoplasmic concentrations which saturate MAO. Inhibition (or saturation) of MAO is not a prerequisite for the initiation of outward transport. 5. A larger fraction of vesicular 3H-noradrenaline is accessible to equireleasing concentrations of (+)-amphetamine (an inhibitor of MAO) than of tyramine (a substrate of MAO). 6. From the present and the accompanying report it is concluded that substantial and sustained indirect sympathomimetic effects are to be expected for substrates of uptake1 which additionally mobilise vesicular noradrenaline. However, this mobilisation does not seem to involve a change in intravesicular pH, except at excessive concentrations.Abbreviations: COMT catechol-O-methyl transferase - DOMAA dihydroxymandelic acid - DOPEGG dihydroxyphenylglycol - FRL fractional rate of loss (rate of efflux/tissue tritium content) - 5-HT 5-hydroxytryptamine - MAO monoamine oxidase - OM-fraction sum of all O-methylated metabolites of noradrenaline, deaminated or not This study was supported by the Deutsche Forschungsgemeinschaft (Tr 96 and SFB 176). Some of the results were presented to the German Pharmacological Society (Langeloh 1986)The author was the recipient of a fellowship of the Humboldt-Foundation Send offprint requests to U. Trendelenburg  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号