首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In the present study we have developed a method which, by combining histochemical, immunohistochemical, electrophoretic and immunoblotting analyses on a single fibre, enables a sensitive characterization of human skeletal muscle fibres dissected from freeze-dried biopsy samples. For histochemical (and immunohistochemical) analysis fibre fragments (500 m) of individual fibres were mounted in an embedding medium to allow cryostat sections of normalized thickness to be reproducibly obtained. The specificity of the myofibrillar Ca2+ ATPase (mATPase) staining profiles in gelatin-embedded single fibre sections was tested by immunohistochemical reactions with anti-myosin heavy chain (MyHC) monoclonal antibodies specific to human MyHC I, IIA, IIB and IIA+IIB and by gel electrophoresis.The combined methodologies demonstrated the specificity of the mATPase staining patterns which correlated to the expression of distinct MyHC isoforms. In addition the results provide evidence that many fibres co-expressed different MyHC isoforms in variable relative amounts, forming a continuum. Staining intensities for mATPase, converted into optical density values by image analysis revealed that a relationship between mATPase and MyHC expression holds for hybrid fibres even when displaying one MyHC type with overwhelming dominance. The results also revealed that three MyHC isoforms I, IIA and IIB can be co-expressed on a single muscle fibre. In such a case mATPase alone, with the current protocols, does not allow an accurate characterization of the specific MyHC-based fibre type(s). although some hybrid fibres may have displayed a non-uniform expression of myosins along their lengths, most fibres from the IIA/B group (type) remained very stable with respect to the relative amounts of the MyHCs expressed. Finally, a second slow MyHC isoform was recognized on immunoblots of a mixed muscle sample.  相似文献   

2.
3.
Cross-bridge kinetics underlying stretch-induced force transients was studied in fibres with different myosin light chain (MLC) isoforms from skeletal muscles of rabbit and rat. The force transients were induced by stepwise stretches (< 0.3% of fibre length) applied on maximally Ca2+-activated skinned fibres. Fast fibre types IIB, IID (or IIX) and IIA and the slow fibre type I containing the myosin heavy chain isoforms MHC-IIb, MHC-IId (or MHC-IIx), MHC-IIa and MHC-I, respectively, were investigated. The MLC isoform content varied within fibre types. Fast fibre types contained the fast regulatory MLC isoform MLC2f and different proportions of the fast alkali MLC isoforms MLC1f and MLC3f. Type I fibres contained the slow regulatory MLC isoform MLC2s and the slow alkali MLC isoform MLC1s. Slow MLC isoforms were also present in several type IIA fibres. The kinetics of force transients differed by a factor of about 30 between fibre types (order from fastest to slowest kinetics: IIB > IID > IIA ≫ I). The kinetics of the force transients was not dependent on the relative content of MLC1f and MLC3f. Type IIA fibres containing fast and slow MLC isoforms were about 1.2 times slower than type IIA fibres containing only fast MLC isoforms. We conclude that while the cross-bridge kinetics is mainly determined by the MHC isoforms present, it is affected by fast and slow MLC isoforms but not by the relative content of MLC1f and MLC3f. Thus, the physiological role of fast and slow MLC isoforms in type IIA fibres is a fine-tuning of the cross-bridge kinetics.  相似文献   

4.
The maximum velocity of unloaded shortening (V0) and the myosin heavy chain (MyHC) and light chain (MyLC) isoform composition were determined in single fibres from soleus and extensor digitorum longus (EDL) muscles of male and female rats 3–6 and 22–24 months old. In the soleus muscle, the β/slow (type I MyHC) isoform predominated in both young and old animals, irrespective of gender. In the EDL, fibres expressing type IIX MyHC or a combination of IIX and IIB (IIXB) MyHC isoforms were predominant in old rats, while type IIB MyHC fibres predominated in young individuals of both genders. The V0 of soleus fibres expressing the type I MyHC isoform decreased (P < 0.001) by 40% with age in spite of an unchanged MyLC composition. In the EDL, the V0 of fibres expressing IIX, IIXB and IIB MyHC isoforms did not change with age or differ between males and females. In conclusion, similar age-related changes in V0 and MyHC composition were observed in single muscle cells from both male and female rats. The present results demonstrate that the relationship between V0 and MyHC isoform composition at the single fibre level is similar in male and female rats, and that similar qualitative changes take place during ageing in both genders.  相似文献   

5.
6.
The effects of 4 weeks of thyroid hormone (3,5,3′-triiodothyronine, T3) treatment on the expression of myosin heavy chain (MyHC) isoforms were examined in young (3–6 months) and old (20–24 months) female rats, and compared with those in age-matched male rats (Larsson et al. 1995). In control rats, ageing was associated with a type IIA to I MyHC isoform switching in the slow-twitch soleus and a type IIB to IIX MyHC isoform switching in the fast-twitch extensor digitorum longus muscle (EDL). Gender- and muscle-specific differences were observed in the regulation of MyHC isoforms by T3. In the soleus, dramatic downregulation of the type I and upregulation of the type IIA MyHC isoform were observed in both females and males, but upregulation of the IIX MyHC isoform was observed only in male rats. In EDL, T3 treatment had no significant influence on the MyHC isoform composition in the males irrespective of the age of the animal. In the females, on the other hand, T3 treatment resulted in a significant MyHC transformation from IIA to IIB, probably via IIX myosin, in spite of the fact that type IIA mRNA has been reported to be downregulated in both females and males. It is concluded that the regulation of MyHC isoforms by thyroid hormone differs between females and males, presumably as a result of a gender-related difference in the translational or post-translational regulation of MyHC synthesis.  相似文献   

7.
Succinate dehydrogenase (SDH) activities and cross-sectional areas (CSAs) of different types of fibers in the superficial (EDLs) and deep (EDLd) regions of the extensor digitorum longus and soleus (SOL) muscles and the left ventricular muscle of the heart (HEART) of 10-week-old male rats were determined using quantitative histochemistry and a computer-assisted image processing system. The fibers were classified as type I, type IIA, type IIB, or type IIC according to their histochemically assessed adenosine triphosphatase activities. The mean SDH activity was higher and the mean CSA was smaller in type IIA fibers than in type IIB fibers in both the EDLs and EDLd. The mean SDH activity of type IIA fibers in the SOL was higher than that of type I fibers. Fibers in the HEART showed the highest mean SDH activity and the smallest mean CSA among all fiber types in the muscles examined. There was an inverse correlation between CSA and SDH activity for the different fiber types in different muscles. These data suggest that the SDH activity of fibers in muscle is fiber type- and size-specific, and that the highest SDH activity of fibers in the left ventricular muscle of the heart contributes to their functional properties, i.e., high fatigue resistance.  相似文献   

8.
The recovery of high-energy phosphate levels in single human skeletal muscle fibres following short-term maximal (all-out) exercise was investigated. Three male volunteers exercised maximally for 25 s on an isokinetic cycling ergometer. Muscle biopsy samples from the vastus lateralis were collected at rest, immediately post-exercise and at 1.5 min of recovery. The subjects also performed a second exercise bout 1.5 min after the first, on a separate occasion. Single muscle fibres were dissected, characterized and assigned to one of four groups according to their myosin heavy chain (MyHC) isoform content; namely, type I, IIA, IIAx and IIXa (the latter two groups containing either less or more than 50% IIX MyHC). Fibres were analysed for adenosine 5'-triphosphate (ATP), inosine-5'-monophosphate (IMP), phosphocreatine (PCr) and creatine (Cr) levels. Type I fibres had a lower Cr content than type II fibres (P<0.01). Within type II fibres resting [PCr] increased with increasing MyHC IIX isoform content (r=0.59, P<0.01). Post-exercise [PCr] was very low in all fibre groups (P<0.01 versus rest) while great reductions in ATP were also observed (P<0.01 versus rest), especially in the type II fibre groups. [PCr] at 1.5 min of recovery was still lower compared to rest for all fibre groups (P<0.01) especially in the IIAx and IIXa fibres.  相似文献   

9.
Biopsies for histochemical and biochemical analyses were taken from the vastus lateralis muscle of 55 untrained, healthy male subjects from 22 to 65 years of age. Fibre type distribution changed towards a decrease in the percentage of type II fibres, both in type IIA and type IIB fibres, whereas type IIB/IIA fibre ratio and type IIC percentage did not change with increasing age. It was found that the type IIB/IIA fibre ratio was inversely related to type I fibres, i.e. subjects rich in type I fibres had a relatively smaller proportion of type IIB fibres. Fibre area determinations revealed a selective decrease in type II fibre area. Consequently, the type II/I fibre area ratio and relative type II fibre area decreased. No changes in the specific activities of Mg2+ stimulated ATPase and myokinase were observed, while the activity of lactate dehydrogenase (LDH) was higher in the youngest groups than in the oldest. LDH isozyme pattern shifted towards a decrease in percentage distribution of the muscle specific isozymes and a corresponding decrease in muscle specific activity while the activity of the heart specific isozymes did not change.  相似文献   

10.
Enzyme activities were determined in pools of type I (slow twitch) and IIA and II B (fast twitch) fibres of the thigh muscle from individuals engaged to a high degree in physical training of an endurance character and from non-endurance-trained controls. The endurance-trained (ET) group had significantly higher activity levels of the mitochondrial enzymes citrate synthase, malate dehydrogenase, and 3-OH-acylCoA dehydrogenase both in type I (2.1×, 1.7×, 1.4×) and in type IIA (2.3×, 1.8×, 1.4×) and IIB fibres (2.0×, 1.5 ×, 1.5×) than the non-endurance-trained (NET) group. Of the glycolytic enzymes, phosphofructokinase (PFK) in type I fibres was significantly higher (I.8×) in the ET than in the NET group whereas glyceraldehydephosphate dehydrogenase (GAPDH) in type I fibres was similar in the two groups. In type II fibres both PFK and GAPDH levels tended to be higher in the ET group. Lactate dehydrogenase (LDH) of both fibre types were not different in the two groups. Type 1 fibres differed significantly from type II fibres for all the six enzymes measured in both groups. However, no significant difference between fibres of types IIA and IIB was found. The results indicate that fibres of types I, IIA and IIB in human skeletal muscle all possess great adaptability with regard to their oxidative capacity. Furthermore, the data suggest that extensive endurance training may enhance the glycolytic capacity in both type I and type II fibres although the glycolytic capacity of the muscle as a whole generally is low in endurance trained subjects owing to a predominance of type I fibres. It is concluded that further studies are needed to determine whether there is a metabolic distinction between fibres of types IIA and IIB.  相似文献   

11.
To determine which myosin heavy chain (MHC) isoforms are expressed in canine skeletal muscles, different muscle samples of five mixed-breed dogs were analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The separated MHC isoforms were identified by immunoblotting technique using a set of specific monoclonal antibodies. To compare the results of the electrophoretic and immunoblotting study, the pattern of MHC isoform expression and histochemical profiles of canine fibres were additionally demonstrated on serial muscle sections by immunohistochemistry and myofibrillar adenosine triphosphatase (mATPase) histochemistry. Not more than three MHC isoforms were demonstrated by SDS-PAGE in the analysed canine muscles. By the immunoblotting technique, the fastest migrating MHC band was identified as slow or MHC-I, the intermediate one as MHC-IIx and the slowest migrating band as MHC-IIa isoform. Since none of the three MHC bands and none of the analysed fibres were recognized by the antibody specific to MHC-IIb of rats, we concluded that MHC-IIb is not expressed in large skeletal muscles of dogs. Similarly, only three major fibre types, i.e. I, IIA and IIX, were revealed according to the pattern of MHC immunohistochemistry and mATPase reaction. Type IIA fibres were more alkali- and acid-stable than type IIX fibres after mATPase histochemistry; hence, the latter corresponded to type IIDog fibres. However, beside the three major fibre types, scarce hybrid fibres co-expressing two MHC isoforms (I/IIA and IIA/IIX) were demonstrated by immunohistochemistry.  相似文献   

12.
Biopsies for histochemical and biochemical analyses were taken from the vastus lateralis muscle of 55 untrained, healthy male subjects from 22 to 65 years of age. Fibre type distribution changed towards a decrease in the percentage of type II fibres, both in type IIA and type IIB fibres, whereas type IIB/IIA fibre ratio and type IIC percentage did not change with increasing age. It was found that the type IIB/flA fibre ratio was inversely related to type I fibres, i.e. subjects rich in type I fibres had a relatively smaller proportion of type IIB fibres. Fibre area determinations revealed a selective decrease in type II fibre area. Consequently, the type II/I fibre area ratio and relative type II fibre area decreased. No changes in the specific activities of Mg2+ stimulated ATPase and myokinase were observed, while the activity of lactate dehydrogenase (LDH) was higher in the youngest groups than in the oldest. LDH isozyme pattern shifted towards a decrease in percentage distribution of the muscle specific isozymes and a corresponding decrease in muscle specific activity while the activity of the heart specific isozymes did not change.  相似文献   

13.
Fibre type composition based on histochemical myosin ATPase reaction was studied in cross section of biopsies from the vastus lateralis muscle of men. In addition, protein composition as well as peptide patterns of isolated myosin heavy chains were examined in batches of individually classified fibres from the same biopsies. High intensity endurance training during 8 weeks induces significant decreases by 31–70% of the type IIB fibre population in 3 of 4 subjects (in one case no change was observed). These decreases were offset by corresponding increases in either type I or type IIA fibres with the type IIC fibres remaining always below 3%. A total of 13 professional cyclists with training periods over several years have a 20 times lower content of type IIB fibres than 4 sedentary controls and a concomitant high content of 80% of type I fibres. The content of type I and type IIB fibres of 8 sprinter athletes did almost not differ from that of controls. Thus the type IIB fibres respond most sensitively with a decrease to aerobic endurance training. Since both type IIA and IIB fibres were identical in protein composition containing the same fast variety of myosin light chains and heavy chains as well as troponin-I, their interconversion could not be seen at the molecular level. However, the slow variety of myosin light chains and of troponin-I started accumulating after 8 weeks of training in type IIA fibres. Furthermore, the myosin heavy chain isoform started shifting by producing new peptide patterns that resemble the digestion pattern of slow myosin heavy chains in fibres which still classified as type IIA. These changes on the molecular level in type IIA fibres mark the beginning of their transition over the intermediate and variable type IIC fibres, towards the slow type I fibre.Abbreviations VLM vastus lateralis muscle - maximal oxygen uptake capacity - MVD total mitochondrial volume density - I slow-twitch fibre type - IIA IIB, fast-twitch fibre types - IIC intermediate fibre type - HC myosin heavy chain - LC myosin light chain - TN-I troponin-I - ATPase adenosine 5-triphosphatase (EC 3.6.1.3) - SAV-8 Staphylococcus aureus V-8 proteinase (EC 3.4.21.19) - SDS sodium dodecyl sulfate - kD kilo Dalton  相似文献   

14.
In this study the effects of administration of cortisone acetate (100 mg kg-1 body weight subcutaneously for 11 days) on distribution and cross-sectional area of different fibre types of rat skeletal muscles were investigated. Diaphragm, parasternal intercostal (PI), extensor digitorum longus (EDL) and soleus muscles were examined in cortisone treated animals (CA) in comparison with ad libitum controls (CTRL) and pair-fed (PF) controls. Four fibre types (I or slow and IIA, IIX, IIB or fast) were identified on the basis of their myosin heavy chain composition using a set of monoclonal antibodies. In CA rats the reduction of cross-sectional area was above 30% in IIX fibres of diaphragm, IIB fibres of PI and in all fast fibres of EDL. In all muscles slow fibres were spared from atrophy. Significant variations in fibre type distribution were found in the muscles of CA rats when compared to CTRL. The percentage of IIB fibres decreased in EDL, PI and diaphragm. This decrease was accompanied by an increase in the percentage of IIA fibres in the same muscles. No changes in the percentage of slow fibres and of fast IIX fibres were observed in EDL, PI and diaphragm of CA rats in comparison with CTRL. In soleus of CA rats the proportion of IIA fibres was lower than in CTRL. In EDL of PF rats atrophy of IIA fibres and changes in fibre type distribution were similar to those observed in CA rats. In diaphragm, PI and soleus of PF rats no significant decrease in fibre cross-sectional area nor significant changes in fibre distribution were found in comparison with CTRL rats.  相似文献   

15.
Changes in high-energy phosphate levels in single human skeletal muscle fibres after 10 s of maximal (all-out) dynamic exercise were investigated. Muscle biopsies from vastus lateralis of two volunteers were collected at rest and immediately post exercise. Single muscle fibres were dissected from dry muscle and were assigned into one of four groups according to their myosin heavy chain (MyHC) isoform content: that is type I, IIA, IIAx and IIXa (the latter two groups containing either less or more than 50% IIX MyHC). Fragments of characterised fibres were analysed by HPLC for ATP, inosine-monophosphate (IMP), phosphocreatine (PCr) and creatine levels. After 10 s of exercise, PCr content ([PCr]) declined by approximately 46, 53, 62 and 59 % in type I, IIA, IIAx and IIXa fibres, respectively (P < 0.01 from rest). [ATP] declined only in type II fibres, especially in IIAx and IIXa fibres in which [IMP] reached mean values of 16 +/- 1 and 18 +/- 4 mmol (kg dry mass)(-1), respectively. While [PCr] was reduced in all fibre types during the brief maximal dynamic exercise, it was apparent that type II fibres expressing the IIX myosin heavy chain isoform were under a greatest metabolic stress as indicated by the reductions in [ATP].  相似文献   

16.
The effects of 4 and 8 weeks of thyroidhormone (3,5,3-triiodothyronine, T3) treatment on skeletalmuscles of young (3--6 months) male Wistar rats were investigatedin the present study. In the slow-twitch soleus, contraction andhalf-relaxation times of the isometric twitch were significantlyshorter in hyperthyroid rats than in the control group, andtwitch duration was shorter in rats treated with T3 for 8 weeksthan for 4 weeks. All single soleus muscle fibres fromhyperthyroid rats co-expressed types I and IIA myosin heavychains (type I/IIA fibres) or type I, IIA and IIX myosin heavychains (type I/IIAX fibres), while only type I MyHC fibres wereisolated from the controls. A significantly higher content oftype IIA myosin heavy chain and fast myosin light chain isoformswas observed in soleus fibres from the 8-week than from 4-week T3group. There was no significant difference in maximum velocity ofunloaded shortening (V0) between type I myosin heavy chain fibresfrom controls (1.12 ± 0.46 muscle lengths s–1, n = 48)and type I/IIA myosin heavy chain fibres from the 4 – (1.09± 0.36 muscle lengths s–1, n = 33) and 8-week (1.03± 0.31 muscle lengths s–, n = 31) groups, but typeI/IIAX fibres from the 8-week T3 group had significantly higherV0 (1.56 ± 0.10, n = 5) than type I from control and typeI/IIA from hyperthyroid rats. In the fast-twitch extensordigitorum longus, neither myosin isoform composition, twitchduration nor V0 was affected by 4 or 8 weeks of T3 exposure. Inconclusion, a dramatic and exposure duration-dependent change inthe contractile speed of the isometric twitch and the expressionof fast myosin isoforms was observed in soleus, but not inextensor digitorum longus, in response to T3 treatment. Long-termT3 treatment had relatively less influence, however, on V0 at thesingle cell level in spite of the dramatic increase in fastmyosin isoforms  相似文献   

17.
The aim of our study was to explore the fibre type composition of the human psoas major muscle at different levels of its origin, from the first lumbar to the fourth lumbar vertebra, and to compare the muscle fibre size and distribution of different fibre types between levels with respect to its complex postural and dynamic function. Muscle samples were collected from 15 young males (younger than 35 years). Serial transverse sections (5 μm) of the samples were cut by cryomicrotome. Type I, IIA and IIX muscle fibres were typed using myosin heavy chain identification. The serial sections were analysed using a light microscope with a magnitude of 100×. The differences between measurements were evaluated using a repeated‐measures anova and Scheffé test for post‐hoc analysis. Our study showed that the human psoas major muscle was composed of type I, IIA and IIX muscle fibres. It had a predominance of type IIA muscle fibres, whereas type I muscle fibres had the largest cross‐sectional area. Type IIX muscle fibres were present as a far smaller percentage and had the smallest cross‐sectional area. Moreover, the fibre type composition of the psoas major muscle was different between levels of its origin starting from the first lumbar to the fourth lumbar vertebra. We conclude that the fibre type composition of the psoas major muscle indicated its dynamic and postural functions, which supports the fact that it is the main flexor of the hip joint (dynamic function) and stabilizer of the lumbar spine, sacroiliac and hip joints (postural function). The cranial part of the psoas major muscle has a primarily postural role, whereas the caudal part of the muscle has a dynamic role.  相似文献   

18.
This comparative study of myonuclear domain (MND) size in mammalian species representing a 100 000-fold difference in body mass, ranging from 25 g to 2500 kg, was undertaken to improve our understanding of myonuclear organization in skeletal muscle fibres. Myonuclear domain size was calculated from three-dimensional reconstructions in a total of 235 single muscle fibre segments at a fixed sarcomere length. Irrespective of species, the largest MND size was observed in muscle fibres expressing fast myosin heavy chain (MyHC) isoforms, but in the two smallest mammalian species studied (mouse and rat), MND size was not larger in the fast-twitch fibres expressing the IIA MyHC isofom than in the slow-twitch type I fibres. In the larger mammals, the type I fibres always had the smallest average MND size, but contrary to mouse and rat muscles, type IIA fibres had lower mitochondrial enzyme activities than type I fibres. Myonuclear domain size was highly dependent on body mass in the two muscle fibre types expressed in all species, i.e. types I and IIA. Myonuclear domain size increased in muscle fibres expressing both the β/slow (type I; r = 0.84, P < 0.001) and the fast IIA MyHC isoform ( r = 0.90; P < 0.001). Thus, MND size scales with body size and is highly dependent on muscle fibre type, independent of species. However, myosin isoform expression is not the sole protein determining MND size, and other protein systems, such as mitochondrial proteins, may be equally or more important determinants of MND size.  相似文献   

19.
Summary The relationship between histochemical fibre type and contractile protein expression was analysed in three rabbit skeletal muscles, the erector spinae, the plantaris and the diaphragm. A procedure for staining fibre bundles was developed using the same histochemical methods as those for typing fibres in cross-section. This allowed pretyped fibres to be selected and their molecular composition to be analysed by gel electrophoresis.The balance of expression of the two predominant fast troponin species, TnT1f and TnT2f, and and tropomyosin subunits were studied in type IIA and IIB fast fibres. Type IIA fibres exhibited a restricted pattern of thin filament expression, exhibiting TnT1f and both tropomyosin subunits in all three muscles. The expression in type IIB fibres, however, ranges from predominantly TnT2f and the tropomyosin subunit in the erector spinae to TnT1f with both and subunits in the diaphragm.These results indicate that there is not a simple one-to-one relationship between the fast muscle fibre subtypes and the expression of different thin filament protein isoforms.  相似文献   

20.
To evaluate the effect of extreme endurance training on muscle fibre composition and activities of oxidative enzymes in different fibre types biopsies were taken from vastus lateralis, gastrocnemius and deltoideus of elite orienteers. Comparisons were made between the (trained) leg muscles and the (relatively untrained) arm muscles, and with leg muscles of 16--18 years old boys. The orienteers had the same percentage type I fibres and vastus lateralis and gastrocnemius as in deltoideus, but higher percentage type I fibres in vastus lateralis compared with the controls. The similarity between trained and untrained muscle in the orienteers suggests that training had not caused the high percentage type I fibres which rather might be the result of selection of individuals with the best prerequisites for high oxidative capacity. However, the distribution of type II subgroups in the leg muscles of the orienteers differed from both their own deltoideus and leg muscles of the controls, the relationship IIA/IIB being altered in favour of the more oxidative IIA. The leg muscles of the orienteers also showed an increased occurrence of the normally IIC fibre. These latter findings point at the possibility of a training induced alteration in the subgroup pattern. Unlike in the controls there was no significant difference in succinate dehydrogenase activity, measured in single fibres, between type I and II fibres in gastrocnemius of the orienteers. Thus, type II fibres have the ability metabolically to adapt to high oxidative demands. This might to some extent be mediated by a conversion from IIB to IIA form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号