首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The therapeutic potential of embryonic stem (ES) cells in neurodegenerative disorders has been widely recognized, and methods are being developed to optimize culture conditions for enriching the cells of interest and to improve graft stability and safety after transplantation. Whereas teratoma formation rarely occurs in xenogeneic transplantation paradigms of ES cell-derived neural progeny, more than 70% of mice that received murine ES cell-derived neural precursor cells develop teratomas, thus posing a major safety problem for allogeneic and syngeneic transplantation paradigms. Here we introduce a new differentiation protocol based on the generation of substrate-adherent ES cell-derived neural aggregates (SENAs) that consist predominantly of neuronally committed precursor cells. Purified SENAs that were differentiated into immature but postmitotic neurons did not form tumors up to four months after syngeneic transplantation into the acutely degenerated striatum and showed robust survival.  相似文献   

2.
3.
A mechanistic understanding of adipose tissue differentiation is critical for the treatment and prevention of obesity and type 2 diabetes. Conventional in vitro models of adipogenesis are preadipocytes or freshly isolated adipocytes grown in two-dimensional (2D) cultures. Optimal results using in vitro tissue culture models can be expected only when adipocyte models closely resemble adipose tissue in vivo. Thus the design of an in vitro three-dimensional (3D) model which faithfully mimics the in vivo environment is needed to effectively study adipogenesis. Pluripotent embryonic stem (ES) cells are a self-renewing cell type that can readily be differentiated into adipocytes. In this study, a 3D culture system was developed to mimic the geometry of adipose tissue in vivo. Murine ES cells were seeded into electrospun polycaprolactone scaffolds and differentiated into adipocytes in situ by hormone induction as demonstrated using a battery of gene and protein expression markers along with the accumulation of neutral lipid droplets. Insulin-responsive Akt phosphorylation, and beta-adrenergic stimulation of cyclic AMP synthesis were demonstrated in ES cell-derived adipocytes. Morphologically, ES cell-derived adipocytes resembled native fat cells by scanning electron and phase contrast microscopy. This tissue engineered ES cell-matrix model has potential uses in drug screening and other therapeutic developments.  相似文献   

4.
In vitro differentiated embryonic stem (ES) cells have been proposed as potential donor cells for cell replacement therapies of neurodegenerative diseases. The functional synaptic integration of such cells appears conceivable because ES cell-derived neurons are well known to establish excitatory and inhibitory synapses. However, long-term synaptic plasticity, a prerequisite of memory formation, has not yet been demonstrated at these synapses. After in vitro differentiation and purification by immunoisolation, we co-cultured ES cell-derived neurons with neocortical explants, which strongly innervated the ES cell-derived target neurons. ES cell-derived neurons exhibited action potential firing similar to primary cultured neocortical neurons. The formation of glutamatergic synapses was indicated by AMPA receptor-mediated miniature excitatory postsynaptic currents (AMPA mEPSCs). In addition, a N-methyl-D-aspartate receptor-mediated, D-2-amino-5-phosphonopentanoic acid-sensitive mEPSC component was observed. We first studied activity-dependent homeostatic plasticity (synaptic scaling) of mEPSCs at glutamatergic synapses. Chronic blockade of action potential activity by TTX resulted in an increase in the amplitudes of AMPA mEPSCs. This indicates that ES cell-derived neurons are capable of a homeostatic regulation of postsynaptic AMPA receptors. In addition, we investigated neurotrophin-induced synaptic plasticity of mEPSCs at glutamatergic synapses. Chronic addition of brain-derived neurotrophic factor (BDNF; 100 ng/ml) to the culture medium resulted in an increase in both the frequency and the amplitudes of AMPA mEPSCs. These results suggest that BDNF induces the formation and/or the functional maturation of presynaptic release sites in parallel with an upregulation of postsynaptic AMPA receptors. Thus BDNF represents a potential co-factor that could improve functional synaptic integration of ES cell-derived neurons into neocortical networks.  相似文献   

5.
In vitro functional gut-like organ formation from mouse embryonic stem cells.   总被引:11,自引:0,他引:11  
BACKGROUND AND AIMS: Embryonic stem (ES) cells have a pluripotent ability to differentiate into a variety of cell lineages in vitro. We have recently found that ES cells can give rise to a functional gut-like unit, which forms a three-dimensional dome-like structure with lumen and exhibits mechanical activity, such as spontaneous contraction and peristalsis. The aim of the present study was to investigate the electrophysiological and morphological properties of ES cell-derived contracting clusters. METHODS: Electrical activity was examined by an extracellular recording. Morphology and cellular components were investigated by immunohistochemistry and electron microscopy. RESULTS: Clusters with rhythmic contractions displayed electrical slow waves at a regular rhythm, and clusters with highly coordinated peristalsis showed regular slow waves and spontaneous spike action potentials. Immunoreactivity for c-Kit, a marker of interstitial cells of Cajal (ICC), was observed in dense network structures. Neuronal marker PGP9.5 immunoreactivity was observed only in clusters with peristalsis. The topographical structure of the wall was organized by an inner epithelial layer and outer smooth muscle layer. The smooth muscle layer was provided with an ICC network and innervated with enteric neurons. CONCLUSIONS: ES cells can differentiate into a functional gut-like organ in vitro that exhibits physiological and morphological properties characteristic of the gastrointestinal (GI) tract. This ES cell-derived gut provides a powerful tool for studying GI motility and gut development in vitro, and has potential for elucidating and treating a variety of motility disorders.  相似文献   

6.
In vivo transplantation of undifferentiated embryonic stem (ES) cells can produce teratomas with uncontrolled cell proliferation. Although ES cells may be attractive candidates for human cell-replacement therapy in the future, the major limitation of its application to the therapy is teratoma formation. In the present study, ES cells containing herpes simplex virus-thymidine kinase (HSV-tk) transgene for a suicide gene expression under the control of the Oct-4 promoter was used for ablation of undifferentiated ES cells, which may produce teratomas, using three-dimensional cell culture system allowing a multilayer cell construct. Selective ablation of undifferentiated ES cells expressing HSV-tk gene under the control of Oct-4 promoter was achieved by ganciclovir treatment. Surviving ES cells after ganciclovir treatment expressed several neuron-associated markers such as synaptophysin, beta-tubulin, vesicular glutamate transporter 1, syntaxin, protein kinase C and glial fibrillary acidic protein (GFAP) but not Oct-4. Coexpression of synaptophysin as a marker of neuronal synapse and GFAP as that of glial fibers in the surviving ES cells revealed finely structured neuronal network. Furthermore, decrease of Ki-67 proliferative index was detected in the surviving ES cells. In conclusion, selective ablation of undifferentiated ES cells by a suicide gene decreases proliferative activity and induces neuron-like differentiation in ES cells.  相似文献   

7.
8.
Islet-like cells derived from embryonic stem (ES) cells may be a promising therapeutic option for future diabetes treatment. Here, we demonstrated a five-stage protocol with adding exendin-4 instead of nicotinamide finally could generate islet-like cells from human embryonic stem (ES) cells. Immunofluorescence analysis revealed a high percentage of c-peptide positive cells in the derivation. However, in addition to insulin/c-peptide, most cells also coexpressed PDX-1 (pancreas duodenum homeobox-1), glucagon, somatostatin or pancreatic polypeptide. Insulin and other pancreatic beta-cell-specific genes were all present in the differentiated cells. Insulin secretion could be detected and increased significantly by adding KCL in high glucose concentration in vitro. Furthermore, subcutaneous transplantation of scaffolds seeded with the islet-like cells or cell transplantation under kidney capsules for further differentiation in vivo could improve 6 h fasted blood glucose levels and diabetic phenotypes in streptozotocin-induced diabetic SCID mice. More interestingly, blood vessels of host origin, characterized by mouse CD31 immunostaining, invaded the cell–scaffold complexes. This work reveals a five-stage protocol with adding exendin-4 may be an effective protocol on the differentiation of human ES cells into islet-like cells, and suggests scaffolds can serve as vehicles for islet-like cell transplantation.  相似文献   

9.
Pluripotent embryonic stem (ES) cells have the potential to form teratomas composed of derivatives from all three germ layers in animal models. This tumorigenic potential prevents clinical translation of ES cell research. In order to understand the biology and physiology of teratoma formation, we investigated the influence of undifferentiated ES cell number, migration, and long-term follow up after transplantation. Murine ES cells were stably transduced with a self-inactivating (SIN) lentiviral vector with a constitutive ubiquitin promoter driving a double-fusion (DF) reporter gene that consists of firefly luciferase and enhanced green fluorescent protein (Fluc-eGFP). To assess effects of cell numbers, varying numbers of ES-DF cells (1, 10, 100, 1,000, and 10,000) were injected subcutaneously into the dorsal regions of adult nude mice. To assess cell migration, 1 x 10(6) ES-DF cells were injected intramyocardially into adult Sv129 mice, and leakage to other extracardiac sites was monitored. To assess effects of long-term engraftment, 1 x 10(4) ES-DF cells were injected intramyocardially into adult nude rats, and cell survival response was monitored for 10 months. Our results show that ES-DF cells caused extracardiac teratoma in both immunocompetent and immunodeficient hosts; the lowest number of undifferentiated ES cells capable of causing teratoma was 500-1,000; and long-term engraftment could be shown for >300 days. Collectively, these results illustrate the potent tumorigenic potential of ES cells, which presents an enormous obstacle for future clinical studies.  相似文献   

10.
Pluripotent cell lines such as embryonic stem cells are an attractive source for a potential cell replacement therapy. However, transplantation of differentiated cells harbors the risk of teratoma formation, presenting a serious health risk. To overcome this obstacle, a negative selection system was established that permits selective removal of undifferentiated cells during in vitro differentiation. Use of the HSV1 thymidine kinase and eGFP under the control of the Oct4 promoter allowed the destruction of undifferentiated ES cells by ganciclovir treatment; differentiated cells were unharmed. Clonal ES cells remained pluripotent and showed positive staining for a wide range of embryonic markers. Thus, treatment with ganciclovir during in vitro differentiation effectively removed the population of undifferentiated cells and provided a pure population of completely differentiated cells. This approach may pave the way for a safe application of ES cells in regenerative medicine in the future.  相似文献   

11.
12.
13.
14.
We recently reported a novel method to induce embryonic stem (ES) cells differentiate into an endodermal fate, especially pancreatic, using a supporting cell line. Here we describe the modified culture condition with the addition and withdrawal of secreted growth factors could induce ES cells to selectively differentiate into a hepatic fate efficiently. The signaling of BMP and FGF that have been implicated in hepatic differentiation during normal embryonic development are shown to play pivotal roles in generating hepatic cells from the definitive endoderm derived from ES cells. Moreover, the expression of AFP, Albumin or a biliary molecular marker appeared sequentially thus suggested the differentiation of ES cells recapitulated normal developmental processes of liver. The ES cell-derived differentiated cells showed evidence of glycogen storage, secreted Albumin, exhibited drug metabolism activities and expressed a set of cytochrome or drug conjugate enzymes, drug transporters specifically expressed in mature hepatocytes. With the same procedure, human ES cells also gave rise to cells with mature hepatocytes' characteristics. In conclusion, this novel procedure for hepatic differentiation will be useful for elucidation of molecular mechanisms of hepatic fate decision at gut regionalization, and could represent an attractive approach for a surrogate cell source for pharmaceutical studies such as toxicology.  相似文献   

15.
The differentiation of murine and human embryonic stem (ES) cells into pancreatic cell types has been shown by several methods including spontaneous differentiation, formation of multi-lineage progenitors, lineage selection or transgene expression. However, these strategies led to a mixture of cells of all three primary germ layers and only a low percentage of definitive endoderm cells giving rise to pancreas, liver, lung and intestine. To reproducibly generate functional insulin-producing cells, ES cells have to be differentiated via definitive endoderm and pancreatic endocrine progenitors recapitulating the in vivo development. Activin A, a member of the transforming growth factor beta superfamily, has been shown to induce definitive endoderm cells dependent on concentration, culture conditions and time of application. Moreover, serum components or contamination by feeder cells as well as differentiation and proliferation factors are critical for successful generation of activin A-induced ES cells into endoderm and pancreatic cells. The review presents an overview on those factors that influence activin A activity on endoderm and endocrine progenitor cells and determines the role of signaling factors in the differentiation process into the pancreatic lineage. Sabine Sulzbacher and Insa S. Schroeder contributed equally to this work.  相似文献   

16.
Co-culture of human embryonic stem (ES) cells on mouse fibroblast feeders is the commonly used method for in vitro expansion of human ES cells in an undifferentiated state. However, it has potential risks of pathogen transmission from animals; thus, human cell-derived feeders have been employed to minimize this problem. In this study, we compared human placenta-derived feeders with bone marrow to demonstrate its effectiveness as feeders for in vitro long-term culture of human ES cells. We cultured a human ES cell line, SNUhES3, on human placenta-derived mesenchymal stem cell feeders and compared their culture efficiency with human bone marrow-derived feeders and control group (mouse fibroblast feeders, STO). The mean number of human ES cell colonies was 166 +/- 35 in the placenta feeders; this was significantly higher than bone marrow-derived feeders (87 +/- 16, p < 0.05). We could propagate the culture of SNUhES3 on the placenta feeders past the 50th week similar to control group. During the culture, the maintenance of undifferentiated state of SNUhES3 was demonstrated by the expression of SSEA-4, TRA-1-81, TRA-1-60, and Oct-4. However, we failed to propagate the culture of human ES cells on the human bone marrow-derived feeders past the 5th week. The efficiency of embryoid body formation was similar between placenta and control group, indicating the preservation of differentiation ability. Thus, placenta-derived feeders are more efficient for the long-term in vitro culture of human ES cells than bone marrow-derived feeders suggesting the possible role of placenta as a source for human cell-derived feeders.  相似文献   

17.
Since the introduction of somatic cell nuclear transfer (SCNT), therapeutic cloning has been brought closer to reality. Among the potential applications of therapeutic cloning is therapeutic angiogenesis. Although recent progress has been made with clinical therapeutic angiogenesis, it has met with limited success. One reason for this limitation has been the cell types used to generate the collateral vessels used for shunting around coronary blockages. Consequently, we developed a procedure using the embryonic stem (ES) cell model system to generate microvascular tubes similar to small vessels found in vivo. We then evaluated their ability to graft and sustain blood flow by transplanting them onto enhanced green fluorescent protein (eGFP)-expressing embryonic day-9 (E9) embryo hearts. Microvascular tubes generated from ES cells have not been thoroughly tested for their ability to graft and function within the heart, primarily because of issues including immune rejection of the foreign cells comprising collateral vessels and limited methodologies to prevent teratoma risk. However, because recent therapeutic cloning techniques have provided evidence of diminished risk of immune rejection, we improved the methodology for generating and isolating tubes from ES cells to evaluate their applicability for therapeutic angiogenesis. Here, we demonstrate that microvascular tubes generated from ES cells are capable of grafting onto E9-day embryo hearts and sustaining the flow of blood cells as verified by eGFP-expressing blood cells within non-eGFP ES cell-derived microvascular tubes.  相似文献   

18.
The process of bone formation can be approximated in vitro in the form of a mineralized nodule. Osteoprogenitors and mesenchymal stem cells (MSCs), the immediate precursors of the osteoprogenitor, proliferate and differentiate into osteoblasts when placed into culture. These osteoblasts secrete and mineralize a matrix during a period of 3-4 weeks. The differentiation potential of embryonic stem (ES) cells suggests that ES cells should also have the ability to form osteogenic nodules in vitro. ES cells were allowed to form embryoid bodies (EBs) and were cultured in suspension for 2 days; EBs were disrupted and plated as single cells at concentrations as low as 25 cells/cm(2). We provide five lines of evidence for osteogenesis in these ES cell-derived cultures: (1) cell and colony morphology as revealed by phase-contrast microscopy, (2) mineralization of extracellular matrix as revealed by von Kossa staining, (3) quantitative real-time PCR (QRT-PCR) analysis of cDNA from entire plates and individual colonies revealing expression of genes characteristic of, and specific for, osteoblasts, (4) confocal microscopy of nodules from osteocalcin-green fluorescent protein (GFP) ES cell lines demonstrating the appropriate stage and position of osteoblasts expressing the reporter, and (5) immunostaining of nodules with a type I collagen antibody. Our method of initiating osteogenesis from ES cell-derived cultures is the only described method that allows for the observation and manipulation of the commitment stage of mesengenesis from single embryonic progenitors.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号