首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The monoclonal antibody (mAb) 3G5 was found, by indirect immunofluorescence, to bind to renal cortical structures in frozen sections of human, rat and calf kidneys. Double indirect immunofluorescence studies on frozen sections of rat kidneys showed that 3G5 stained only the glomerulus and the distribution of the 3G5 antigen on the glomerulus was more extensive than the staining observed with antibodies to Factor VIII antigen. 3G5 stained the proximal convoluted tubules and collecting tubules in bovine renal sections but glomeruli did not stain with 3G5. The 3G5 mAb did not stain tissue cultured bovine glomerular endothelial cells or mesangial cells, but did stain bovine glomerular epithelial cell cultures. 3G5 did not stain MDCK cell cultures. The binding of mAb 3G5 to glomeruli was investigated by immunoelectron microscopy of rat renal tissue. In contrast to the podocyte specificity on bovine glomerular cells in vitro, it was found that the specificity of 3G5 expression on rat glomerular cells in vivo was broader. No binding of mAb 3G5 was found outside the glomerulus in the rat renal cortex. Podocytes, endothelial cells and capsular epithelial cells expressed the 3G5 antigen most strongly. A lesser amount of binding was found in the glomerular basement membrane. The mesangium showed a little binding of mAb 3G5 and no binding at all was found to other cortical structures. The 3G5 antigen in rat renal tissue was found to be a glycolipid that migrated between the ganglioside markers GM2 and GM1 by immunostaining of thin layer chromatograms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
BACKGROUND: The angiotensin I-converting enzyme (ACE, CD143, kininase II) plays a critical role in controlling the level of vasoactive peptides such as angiotensins and kinins in the local circulations and tissue interstitium. Because recent work has documented a vessel-, organ-, and species-specific pattern of endothelial ACE expression in the vascular system, we have analyzed whether or not changes of this pattern occur in vessels, tubules, and interstitium of the human kidney that is affected by different non-neoplastic diseases. METHODS: Using a set of well-characterized monoclonal antibodies (mAbs), ACE was assessed on renal tissue of 135 patients by immunohistochemistry, including an additional analysis at the ultrastructural level. A semiquantitative evaluation allowed the estimation and comparison of ACE content in different renal compartments. These data were compared with several clinical findings, diagnosis, therapeutic modalities, and histological features. RESULTS: In contrast to the normal human kidney, where ACE is abundant in the brush border of the proximal tubule but is usually absent in endothelial cells of any vessel type, an endothelial neoexpression of ACE was observed in different diseases. In general, this neoexpression was associated with histological sites of interstitial fibrosis and showed some selectivity for glomerular endothelial cells in diabetes mellitus and chronic arterial hypertension. There was also a loss of epithelial ACE in the proximal tubule in certain pathological conditions, for example, in chronic fibroplastic processes, acute pyelonephritis, and different stages of acute renal failure. CONCLUSIONS: Neoexpression of ACE by renal endothelial cells, as well as changes of the tubular ACE content, is a common finding in diseased human kidneys. As associated with certain tissue sites, clinical and/or morphological features, these changes may be involved in parenchymal remodeling and renal pathophysiology.  相似文献   

3.
BACKGROUND: To elucidate the sequence of renal responses leading to nephron loss in obstructive nephropathy, we examined the evolution of segmental nephron cellular changes consequent to chronic unilateral ureteral obstruction (UUO) in the neonatal mouse. METHODS: Neonatal mice were subjected to UUO or sham-operation, and kidneys were harvested 5, 12 or 19 days after surgery. Proximal tubules (PT), distal tubules (DT) and collecting ducts (CD) were identified with lectins. Histomorphometric quantitation was made for cellular necrosis, apoptosis, proliferation, tubular dilatation, tubular basement membrane (TBM) thickening, interstitial collagen, and glomerular maturation. The distribution of hypoxic tissue was determined using pimonidazole as a marker. Additional studies were performed by mechanically stretching monolayer cultures of mouse proximal tubular and collecting duct cells, and measuring apoptosis. RESULTS: Neonatal UUO induced an arrest of glomerular maturation throughout the period of study. Chronic UUO induced hypoxia, tubular necrosis, proliferation, and TBM thickening in the PT, but stimulated apoptosis in the DT and CD. Tubular dilation in the obstructed kidney was most severe in CD and least severe in PT. Tubular cell apoptosis closely paralleled tubular dilation (P < 0.05), and fibrosis surrounding individual tubules also correlated with tubular dilation (P < 0.001). Mechanical stretching of cultured mouse tubular cells induced apoptosis directly proportional to the magnitude of axial strain: apoptosis was consistently greater in CD than in PT cells (P < 0.05). CONCLUSIONS: Following UUO, the co-localization of hypoxia with cellular proliferation, necrosis, and TBM thickening of the PT is consistent with ischemic injury resulting from vasoconstriction. In contrast, a selective dilation of the distal portion of the nephron (DT and CD), which results from the greater tubular compliance there, leads to stretch-induced epithelial cell apoptosis, along with a progressive peritubular fibrosis. Nephron loss in the obstructed developing kidney likely results from complex, segment-specific cellular responses.  相似文献   

4.
5.
SUMMARY: Metanephric kidneys of nude mice were transplanted on embryonic day 12 into an adult kidney of the same strain, and the growth of the implants was analysed histochemically to investigate the ontogenesis, structure and function of the newly developed additional nephrons. By using a light microscope, developing nephrons at various stages were observed in the implants growing in the host kidney 7 days after transplantation. Immature nephrons, comprising the nephrogenic zone, were intensely positive for proliferating cell nuclear antigen (PCNA) immunostaining, but were no longer present 14 days after transplantation. Vascular integration was observed between the host and implant tissues. Electron microscopic observation 14 days after transplantation showed that the afferent arterioles together with juxtaglomerular cells had entered the gtomeruli. All of the cell types were identified in the vascularised glomeruli with erythrocytes. the visceral epithelial cells had differentiated foot processes, whereas the endothelium of the glomerular tufts was rather thick in parts, and most of the epithelial and endothelial basement membranes were not fused. Several parts of the uriniferous tubules, including proximal and distal tubules, could be identified, and it was found that many of them had remained immature. Some proximal tubules with well-developed brush-border microvilli reabsorbed the horseradish peroxidase (HRP) injected into the host inferior vena cava, thus providing evidence of glomerular ultrafiltration in the vascularised implants perfused by the host. These findings indicate that the nephrogenesis in the implants followed a nearly normal developmental route and showed marked vascularisation, which promoted the organogenesis of the implanted metanephros and nephron function.  相似文献   

6.
ADAM19, an enzyme from the ADAM (a disintegrin and metalloproteinase) family, is involved in various cell-cell and cell-matrix interactions. It can cleave epidermal growth factor (EGF)-like growth factors, such as heparin-binding (HB)-EGF and neuregulin (NRG), from the cell membrane. ADAM-mediated EGF receptor activation is crucial in the development of renal pathology. Based on these data, we studied ADAM19 in human nephrogenesis and renal disease. We collected 20 fetal kidneys and 56 biopsies from patients with various renal diseases. The unaffected part of kidneys from eight patients with renal cell carcinoma served as control. RNA in situ hybridization revealed widespread ADAM19 mRNA expression in the nephrogenic zone of human fetal kidneys. Normal human kidneys showed constitutive ADAM19 expression in distal tubules and endothelial cells, whereas proximal tubules were negative. In renal disease, ADAM19 was de novo expressed in proximal tubules and glomerular mesangium and upregulated in distal tubules and endothelial cells. ADAM19 colocalized with tubular and interstitial NRG, however, not with HB-EGF. Independent of renal disorder, mesangial ADAM19 expression was associated with glomerular damage as assessed by mesangial matrix expansion, focal glomerulosclerosis, and glomerular macrophage influx (all P<0.001). ADAM19 in proximal tubules and in peritubular capillaries was associated with interstitial fibrosis (P<0.05). Finally, increasing tubular ADAM19 was associated with declining renal function (P<0.05). The abundant ADAM19 expression during nephrogenesis points to a role in growth promotion and regulation. The high ADAM19 expression in renal disease suggests involvement in profibrotic and proinflammatory processes leading to renal deterioration.  相似文献   

7.
Creation of a functioning chimeric mammalian kidney   总被引:7,自引:0,他引:7  
The possibility of adding new nephrons to the mammalian kidney was studied. Embryonic metanephric tissue was implanted into the renal cortex of neonatal mice less than 24 hours old, and the development of the chimeric kidney was followed over the following two to four weeks. Donor tissue was obtained from the homozygous beige mouse and a mouse line transgenic for the beta-globin gene, which provided distinct cellular and nuclear markers which were used to distinguish donor from recipient nephrons. Differentiation and growth of donor nephrons occurred in the host kidney and included vascularized glomeruli, mature proximal tubules, and tubular extensions into the renal medulla. Glomerular filtration was demonstrable in donor nephrons using FITC-dextran as a marker of filtration into the proximal tubules. Transplantation of metanephric tissue into adult mouse kidneys did not lead to glomerular or tubular differentiation. This study demonstrates the feasibility of adding functioning nephrons to mammalian kidneys in species in which there is ongoing nephrogenesis post-natally.  相似文献   

8.
Renal phosphate reabsorption via the type II sodium/ phosphate cotransporter (NaPi-2) in the brush border membrane (BBM) of proximal tubules underlies alterations during aging. The ontogeny of NaPi-2 in kidneys from newborn to 6-wk-old rats was investigated. NaPi-2 protein distribution in the kidneys of neonatal, 13-d-old, 22-d-old, and 6-wk-old rats was immunohistochemically analyzed, and NaPi-2 mRNA distribution in neonatal and 6-wk-old rats was analyzed by in situ hybridization. In kidneys of newborn rats, the appearance of NaPi-2 protein and mRNA coincided with the development of the brush border (assessed by actin staining) on proximal tubular cells. NaPi-2 was not detectable in the nephrogenic zone or in the outgrowing straight sections of proximal tubules, which lack a brush border. In 13-d-old suckling rats, strong NaPi-2 staining was seen in the BBM of convoluted proximal tubules of all nephron generations. In contrast, in 22-d-old weaned rats, NaPi-2 staining in the BBM of superficial nephrons was weaker than that in the BBM of juxtamedullary nephrons. Western blotting demonstrated that the overall abundance of NaPi-2 protein in the BBM of 22-d-old rats was decreased to approximately 70% of that in 13-d-old rats. In kidneys of 6-wk-old rats, the internephron gradient for NaPi-2 abundance in the BBM corresponded to that in adult rats. The data suggest that the NaPi-2 system in the kidney is fully functional and possesses the capacity for regulation as soon as nephrogenesis is completed. The manifestation of NaPi-2 internephron heterogeneity immediately after weaning might be related to the change in dietary inorganic phosphate content.  相似文献   

9.
Polyamines are small biogenic molecules that are essential for cell cycle entry and progression and proliferation. They can also contribute to hypertrophy. The activity of ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis, increases in the early diabetic kidney to enable renal hypertrophy. Inhibition of ODC in early diabetes attenuates diabetic renal hypertrophy and glomerular hyperfiltration. The current studies examine the temporal profile of renal ODC protein expression and localization, intrarenal polyamine levels, and sites of proliferation in kidneys of rats during the first 7 days of streptozotocin diabetes. ODC mRNA and protein content were increased in diabetic kidneys. High-performance liquid chromatography analysis showed increased intrarenal polyamine concentrations peaking after 24 h of diabetes. A subsequent increase in the number of proliferating proximal tubular cells was detected by in vivo 5-bromodeoxyuridine (BrdU) incorporation on day 3. Surprisingly, immunohistochemical studies revealed that increased ODC protein was apparent only in distal nephrons, whereas the main site of diabetic kidney hypertrophy is the proximal tubule. These findings raise the possibility that polyamines produced in the distal nephron may mediate the early diabetic kidney growth of the proximal tubules via a paracrine mechanism.  相似文献   

10.
The effect of the synthetic form of ANF 0.1 to 10 microgram/ml (peptide 101-126), a diuretic and natriuretic peptide isolated from rat heart atria, on the metabolism of dog and rat kidney tubules was studied in vitro and compared to that of furosemide (0.1 to 1 mM), hydrochlorothiazide (0.5 mM) or amiloride (0.1 mM). In order to pinpoint eventual site(s) of ANF action along the nephron, proximal tubules, thick ascending limbs and papillary collecting ducts were isolated from dog kidneys as well as proximal tubules from rat kidneys. The substrate uptake (O2, lactate, glutamine, glucose) and production of metabolites (glutamate, ammonium, alanine, glucose) by these nephron segments were measured in absence or presence of the diuretic agents or the vehicle for ANF (acetate 1 mM). The total ATP turnover and the contribution of identified metabolic pathways for this turnover was calculated. It was expected that a molecule with diuretic properties reducing the permeability of cell membranes to NaCl would secondarily reduce the Na-K-ATPase activity, and therefore the oxygen and substrate utilization by affected cells. It was shown: that each nephron segment used presented the expected specific metabolic characteristics; that furosemide markedly inhibits the oxidative metabolism of thick ascending limbs; that acetate (the vehicle used for ANF) displaces the oxidation of glutamine and lactate in nephron segments with aerobic metabolism; that ANF had no effect on the metabolism of the studied segments despite the presence of specific c'GMP-generating receptors in the distal nephron. It is concluded that ANF must exert its natriuretic effect by a mechanism different from that of classical diuretics.  相似文献   

11.
BACKGROUND: Autosomal-dominant polycystic kidney disease (ADPKD) is associated with a progressive decline in glomerular filtration rate (GFR) that often leads to end-stage renal disease. The basis for this decline in GFR is poorly understood. METHODS: Glomeruli in heterozygous Han:SPRD rats with ADPKD and their normal litter mates were studied by light microscopy, using serial sectioning techniques. The connections of the renal corpuscles to proximal tubules were classified as normal, atrophied, or absent (atubular glomerulus). Renal corpuscles also were examined by scanning electron microscopy. Single nephron glomerular blood flows were determined using microspheres. RESULTS: In the kidneys of six-month-old rats with ADPKD, 50% of the glomeruli were atubular and another 26% were associated with atrophied neck segments; these glomeruli were most often smaller in size than normal. About 16% of the glomeruli were hypertrophied and had normal connections to proximal tubules. Sclerotic changes in cystic kidney glomeruli were usually mild or moderate, and belied the failure of glomerular function. Glomerular blood flow in the cystic kidneys averaged half of normal and was markedly heterogeneous; the majority of small glomeruli displayed very low blood flows and a few showed relatively high blood flows. Fewer glomerular abnormalities were found in rats treated for five months with potassium citrate in their drinking water. CONCLUSIONS: The diminished GFR in the rat with ADPKD can be accounted for largely by the formation of atubular glomeruli. Compensatory glomerular hypertrophy also is present and may contribute to the progression of the renal disease.  相似文献   

12.
The renal segmental distribution of claudins changes with development   总被引:7,自引:0,他引:7  
BACKGROUND: Permeability properties of mammalian nephron are tuned during postnatal maturation. The transepithelial electrical resistance (TER) and complexity of tight junctions (TJs) vary along the different tubular segments, suggesting that the molecules constituting this structure change. We studied the differential expression of occludin and several claudins in isolated renal tubules from newborn and adult rabbits. METHODS: Isolated renal tubules from newborn and adult rabbits were processed for occludin, claudin-1 and claudin-2 immunofluorescence, and Western blot detection of claudin-1 and -2. Claudin-5 was detected in whole kidney frozen sections. RT-PCR from isolated tubules was performed for claudins-1 to -8. RESULTS: Immunofluorescence revealed that occludin, claudin-1 and -2 were present at the cell boundaries at the neonatal stage of development. Claudin-1 was detected in the tighter segments of the nephron (distal and collecting duct), while claudin-2 was found in the leaky portions (proximal). Claudin 5 was found in the kidney vasculature. PCR amplification revealed the presence of claudins-1 to -4 in tubules of newborns. In adults, claudins-1, -2 and -4 were present in proximal, Henle's loop and collecting segments; claudin-3 was in proximal and collecting tubules, while claudins-5 and -6 were absent from all tubular portions. Claudin-7 was restricted to proximal tubules, while claudin-8 was present in proximal and Henle's segments. CONCLUSIONS: The pattern of occludin distribution is present from the neonatal age. Claudins-7 and -8 are up-regulated after birth. Each tubular segment expresses a peculiar set of claudins that might be responsible for the permeability properties of their TJs.  相似文献   

13.
Pathophysiology of the kidney in rats with Heymann nephritis   总被引:2,自引:0,他引:2  
Alterations in kidney function were assessed early in the course of Heymann nephritis that was induced in rats by immunization with Fx1A, an extract prepared from rat kidney cortex. Whole kidney and single nephron function were evaluated by clearance and micropuncture techniques. Kidney function was studied in stage 1 of Heymann nephritis, before the onset of proteinuria, and in stage 2, when antibodies are deposited along the brush border of proximal tubules. Although overall kidney function was similar in rats in stage 1 and normal controls, glucose reabsorption was somewhat depressed in the first part of the proximal convoluted tubule in stage 1. Both whole kidney and single nephron glomerular filtration rates were depressed in stage 2. Proteinuria in stage 2 was characterized by an increased albumin sieving coefficient, which resulted in an elevated excretion of albumin. Furthermore, several proximal tubule functions (glucose and fluid reabsorption and PAH extraction) were substantially depressed in stage 2. These findings demonstrate that immunological injury to the proximal tubules in stage 2 of Heymann nephritis produces a significant impairment of proximal function.  相似文献   

14.
Nestin is an intermediate filament protein originally identified in neuroepithelial stem cells. This cytoskeletal-associated protein is also expressed in some non-neuronal organs including renal tubular cells and glomerular endothelial cells during kidney development. Little is known, however, about nestin expression in the kidney during injury. In this study, we find nestin expression induced in renal tubular and interstitial myofibroblasts in the adult rat kidney following unilateral ureteral obstruction. The degree of nestin expression was well correlated with the degree of tubulointerstitial fibrosis. Immunohistochemical identification of specific nephron segments showed that nestin was primarily expressed by proximal tubules, partially by distal tubules and thick ascending limbs of Henle but not by collecting ducts. The nestin-positive tubular cells also expressed vimentin and heat-shock protein 47 (HSP47) suggesting these cells reverted to a mesenchymal phenotype. Not all vimentin- or HSP-expressing cells expressed nestin; however, suggesting that nestin is distinct from these conventional mesenchymal markers. Nestin expression was also found associated with phenotypical changes in cultured renal cells induced by hypoxia or transforming growth factor-beta. Nestin expression was located in hypoxic regions of the kidney with an obstructed ureter. Our results indicate that nestin could be a novel marker for tubulointerstitial injury.  相似文献   

15.
BACKGROUND/AIMS: Renal tubules undergo oxidative injury in various nephropathies. It is unknown whether tubular cells possess mechanisms to attenuate this form of injury. Heme oxygenase-1 (HO-1), the rate-limiting enzyme in heme catabolism, may provide such a mechanism by reducing levels of free heme, a prooxidant molecule, and by limiting activity of heme-containing prooxidant enzymes. Determination of the distribution of HO-1 in the nephron may identify those segments where HO-1 can afford protection against oxidative injury. METHODS: Rats were injected subcutaneously with two different inducers of HO-1: Stannous chloride and cobalt protoporphyrin. At completion of injections, frozen sections of kidneys were stained for HO-1 using a biotin-conjugated monoclonal anti-HO-1 antibody. To identify the origin of tubules staining positive for HO-1, Tetragonolobus purpureas (TP)-derived lectin and Arachnis hypogaea (AH)-derived lectin were applied to sequential sections of the kidney cortex. RESULTS: In rats injected with either HO-1 inducer, HO-1 was immunolocalized in tubules but not in glomeruli. Staining of sequential sections with TP-derived lectin, which binds mainly to proximal tubular cells, was negative in the tubules that stained positive for HO-1. Staining of sequential sections with AH-derived lectin, which binds mainly to distal and collecting tubular cells, was positive in those tubules that were also positive for HO-1. CONCLUSIONS: In kidneys of rats injected with inducers of HO-1, distal and collecting tubular cells were identified as the main segments of the nephron that express HO-1. We suggest that the distal nephron, by expressing HO-1, may be less vulnerable to oxidative injury.  相似文献   

16.
Although APOL1 gene variants are associated with nephropathy in African Americans, little is known about APOL1 protein synthesis, uptake, and localization in kidney cells. To address these questions, we examined APOL1 protein and mRNA localization in human kidney and human kidney-derived cell lines. Indirect immunofluorescence microscopy performed on nondiseased nephrectomy cryosections from persons with normal kidney function revealed that APOL1 protein was markedly enriched in podocytes (colocalized with synaptopodin and Wilms’ tumor suppressor) and present in lower abundance in renal tubule cells. Fluorescence in situ hybridization detected APOL1 mRNA in glomeruli (podocytes and endothelial cells) and tubules, consistent with endogenous synthesis in these cell types. When these analyses were extended to renal-derived cell lines, quantitative RT-PCR did not detect APOL1 mRNA in human mesangial cells; however, abundant levels of APOL1 mRNA were observed in proximal tubule cells and glomerular endothelial cells, with lower expression in podocytes. Western blot analysis revealed corresponding levels of APOL1 protein in these cell lines. To explain the apparent discrepancy between the marked abundance of APOL1 protein in kidney podocytes observed in cryosections versus the lesser abundance in podocyte cell lines, we explored APOL1 cellular uptake. APOL1 protein was taken up readily by human podocytes in vitro but was not taken up efficiently by mesangial cells, glomerular endothelial cells, or proximal tubule cells. We hypothesize that the higher levels of APOL1 protein in human cryosectioned podocytes may reflect both endogenous protein synthesis and APOL1 uptake from the circulation or glomerular filtrate.  相似文献   

17.
Deficiency of lysosomal alpha-galactosidase A (alpha-Gal A) in Fabry disease results in cellular accumulation of globotriaosylceramide (Gl3), often leading to end-stage renal failure. Gl3 accumulates in endothelial, glomerular, and tubular cells. Replacement therapy with recombinant alpha-Gal A to some extent reduces cellular accumulation of Gl3 in the kidney. This study shows high lysosomal expression of alpha-Gal A in all tubular segments and interstitial cells of normal human kidney. However, glomeruli and endothelial cells did not express the enzyme to any significant extent. Recombinant enzyme was taken up by rat yolk sac cells in a receptor-associated protein-inhibitive manner, and surface plasmon resonance experiments revealed binding to megalin, indicating a possible mechanism for uptake of alpha-Gal A in the tubular cells. After infusion into experimental animals or patients, alpha-Gal A was recovered in the urine, indicating glomerular filtration. Recombinant alpha-Gal A was also found in kidneys of normal and alpha-Gal A knockout mice by Western blotting and localized to endosomes and lysosomes in proximal tubules, interstitial cells, and glomerular podocytes by immunocytochemistry and autoradiography but not in vascular endothelial cells. In conclusion, intravenously administered enzyme is taken up by interstitial cells, is to some extent filtered in glomeruli, and is taken up by podocytes and reabsorbed by receptor-mediated endocytosis in proximal tubule cells, directly indicating a potential beneficial effect of enzyme replacement therapy for these cells.  相似文献   

18.
BACKGROUND: Ras GTPase isoforms have been implicated in proliferative renal disease and are known to have differential cellular expression in kidney. However, their exact subcellular location in various cells is unknown. METHODS: Immunogold labelling for Ras isoforms (Harvey, Kirsten and Neural) was performed for subcellular localization under electron microscopy in fresh normal kidney specimens, obtained from the opposite pole of kidneys removed for renal cell cancer. RESULTS: There was prominent staining shown by Ha-Ras only on the glomerular foot processes as compared with basement membrane or the endothelial cells. Mesangial cells showed intense staining in the cytosol with Ha-Ras (absent in the nucleus), minimal staining with Ki-Ras and none with N-Ras. In both the proximal and distal convoluted tubules, there was a clear staining of the mitochondria with Ha-Ras, with mild cytosolic staining with all of the isoforms. CONCLUSIONS: Ras isoforms have distinct and separate subcellular distributions in normal kidney cells. Understanding the functional aspects of this distribution pattern is essential if Ras is to be targeted by genetic or molecular therapeutic tools.  相似文献   

19.
PURPOSE: We quantify the structural components of the nephron in adult pig kidneys with neonatally induced unilateral hydronephrosis in comparison with nonobstructed kidneys. MATERIALS AND METHODS: The study included 11 pigs with unilateral partial ureteropelvic obstruction induced 2 days after birth and 8 sham operated control pigs. Obstructed kidney glomerular filtration rate was significantly reduced at age 4 weeks but did not differ from control kidneys after 24 weeks. At age 24 weeks the kidneys were perfusion fixed, and the number and volume of glomeruli and tubular lengths were measured using stereological methods. RESULTS: Mean obstructed kidney volume did not differ from that of control kidneys. Mean number plus or minus standard deviation of glomeruli in the obstructed kidneys was reduced by 28% compared to that of control kidneys (502 +/- 163 x 103 versus 697 +/- 161 x 103, p = 0.02), whereas no difference in mean glomerular volume was observed. Mean length of the proximal or distal tubules did not differ between obstructed and control kidneys. Mean number or volume of glomeruli in nonobstructed kidneys contralateral to obstructed kidneys did not differ from that of control kidneys. The individual number of glomeruli in the obstructed kidneys was not associated with function of these kidneys. CONCLUSIONS: Neonatally induced unilateral partial ureteropelvic obstruction causes impaired nephrogenesis with a significant reduction in the number of nephrons, which is not reflected in measurements of kidney function in this model. The reduction in the number of glomeruli suggests that congenital unilateral obstruction impairs nephrogenesis.  相似文献   

20.
BACKGROUND: Adenosine diphosphate (ADP)-ribosylation factors (ARFs) are small guanosine triphosphatases involved in membrane traffic regulation. Aiming to explore the possible involvement of ARF1 and ARF6 in the reabsorptive properties of the nephron, we evaluated their distribution along the different renal epithelial segments. METHODS: ARFs were detected by immunofluorescence and immunogold cytochemistry on renal sections, using specific anti-ARF antibodies. RESULTS: ARF1 was detected in proximal and distal tubules, thick ascending limbs of Henle's loops, and cortical and medullary collecting ducts. By immunofluorescence, labeling was mostly localized to the cell cytoplasm, particularly in Golgi areas. By electron microscopy, the Golgi apparatus and the endosomal compartment of proximal and distal tubular cells were labeled. ARF6 immunofluorescence was observed in brush border membranes and the cytoplasm of proximal convoluted tubular cells, whereas it was restricted to the apical border of proximal straight tubules. ARF6 immunogold labeling was detected over microvilli and endocytic compartments of proximal tubular cells. CONCLUSIONS: This study demonstrates the following: (a) the heterogeneous distributions of ARF1 and ARF6 along the nephron, (b) the existence of cytosolic and membrane-bound forms for both ARFs, and (c) their association with microvilli and endocytic compartments, suggesting an active participation in renal reabsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号