首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present experiments examined the effects of the GABA(B) receptor agonist, baclofen, on the acquisition of ethanol-induced conditioned place preference (CPP) and conditioned taste aversion (CTA) in male DBA/2J mice. Mice in the CPP experiment received four pairings of ethanol (2g/kg) with a distinctive floor stimulus for a 5-min conditioning session (CS+ sessions). On intervening days (CS- sessions), mice received saline injections paired with a different floor type. On CS+ days, mice also received one of four doses of baclofen (0.0. 2.5, 5.0, or 7.5 mg/kg) 15 min before an injection of ethanol. For the preference test, all mice received saline injections, and were placed on a half-grid and half-hole floor for a 60-min session. Baclofen dose dependently reduced ethanol-stimulated activity, but did not alter the magnitude of ethanol-induced CPP at any dose. For the CTA experiment, mice were adapted to a 2-h per day water restriction regimen followed by five conditioning trials every 48 h. During conditioning trials, subjects received an injection of saline or baclofen (2.0 and 6.0 mg/kg) 15 min before injection of 2 g/kg ethanol or saline following 1-h access to a saccharin solution. Baclofen did not alter the magnitude of ethanol-induced CTA at any dose. In addition, baclofen alone did not produce a CTA. Overall, these studies show that activation of GABA(B) receptors with baclofen reduces ethanol-induced locomotor activation, but does not alter ethanol's rewarding or aversive effects in the CPP and CTA paradigms in DBA/2J mice.  相似文献   

2.
Rationale Although many studies have shown Pavlovian conditioned approach to cues paired with natural reinforcers, it has been quite difficult to induce such behavior with drug reinforcers. Objectives This experiment tested a novel Pavlovian procedure for inducing approach to a conditioned stimulus (CS) paired with ethanol. Methods Mice (NZB/B1NJ, DBA/2J) received intraperitoneal injections of ethanol (2 g/kg) immediately before 10-min exposure to a rectangular chamber that contained a distinctive visual cue (star) at one end (Paired group, CS+ trials). On alternate days, saline injection preceded apparatus exposure with no distinctive cues (CS− trials). Unpaired control mice received ethanol in the home cage 60–75 min after each CS+ trial. Results NZB/B1NJ Paired group mice spent increasing amounts of time (>85% of the session) in proximity to the star, whereas Unpaired group mice did not. DBA/2J Paired group mice spent slightly more time on the star side than Unpaired group mice but did not show an acquisition curve. Postconditioning tests showed a strong preference for the star side in Paired groups from both strains after saline injection. However, only NZB/B1NJ mice showed a preference after ethanol. Conclusions This study provides the first unambiguous demonstration of Pavlovian conditioned approach to an ethanol-paired visual stimulus in the absence of any contingency between the animal’s behavior and drug exposure. This effect, which is remarkable both in terms of its magnitude and the rapidity with which it was produced (within 2–3 trials), may be related to the cue-associated craving that accompanies alcohol and drug addiction.  相似文献   

3.
The influence of genotype on the rewarding and locomotor activating effects of morphine and ethanol was examined in the place conditioning paradigm. Two inbred mouse strains (C57BL/6J and DBA/2J) were exposed to a differential conditioning procedure in which each mouse received four pairings of a distinctive floor stimulus with IP injection of morphine (0, 2.5, 5 or 10 mg/kg) or ethanol (0, 1, 2, 3 or 4 g/kg). A different floor stimulus was paired with saline. Conditioning trials lasted 30 min and each experiment concluded with a floor preference test in the absence of drug. In accord with previous studies, morphine evoked a dose-dependent increase in activity during conditioning that was greater in C57BL/6J mice than in DBA/2J mice. In contrast, ethanol produced a dose-dependent increase in activity that was greater in DBA/2J than in C57BL/6J mice. Both strains showed conditioned place preference with morphine, but only the DBA/2J strain showed conditioned place preference with ethanol. No conditioned place aversion was seen. With both drugs, stronger place preference conditioning was obtained in DBA/2J mice, supporting the general conclusion that sensitivity to drug reward is influenced by genotype. The fact that the same genotype is more sensitive to the rewarding effects of two different drugs supports theories postulating commonality in the biological mechanisms of drug reward. Although the outcome of the ethanol study supports predictions of the psychomotor stimulant theory of addiction concerning the relationship between drug-induced activation and reward, the outcome of the morphine study does not. The direction of the strain difference in conditioned place preference is opposite to what might be predicted on the basis of strain differences previously reported in drug consumption and preference studies, suggesting that genetic differences in drug consumption may not accurately reflect postabsorptive motivational effects of drug.  相似文献   

4.
RATIONALE: A frequently expressed criticism of the conditioned place preference (CPP) procedure is that it sometimes lacks a graded dose-response curve for many drugs. OBJECTIVE: We used a combination of standard and reference-dose CPP procedures to examine the dose-response curve for ethanol-induced CPP in DBA/2J mice. MATERIALS AND METHODS: In the standard procedure, ethanol (0.5, 1.5, 2, and 4 g/kg) was paired with a distinctive floor cue, whereas saline was paired with a different floor cue. In the reference-dose procedure, each cue was paired with a different dose of ethanol. All mice received four 5-min trials of each type in both procedures. RESULTS: Standard procedures yielded similar levels of CPP at doses of 1.5, 2, and 4 g/kg, whereas 0.5 g/kg did not produce significant CPP. However, in the reference-dose procedure, exposure to the 0.5-g/kg dose interfered with CPP normally produced by 1.5 or 2 g/kg. Moreover, mice showed significant preference for the 4-g/kg-paired cue over the 1.5-g/kg-paired cue. CONCLUSIONS: These studies show that a reference-dose procedure can reveal effects of low doses that are sometimes difficult to detect in a standard procedure. The reference-dose procedure may also uncover differences between higher doses that normally produce similar preference. Efficacy of the reference-dose procedure may be explained by a theoretical analysis that assumes the procedure places behavior between the extremes of the performance range, offering a more sensitive method for detecting effects of manipulations that produce small changes and/or differences in the rewarding effects of ethanol.  相似文献   

5.
Apolipoprotein (apo) E is a glycoprotein that is most commonly associated with cardiovascular and Alzheimer's disease risk. Recent data showing that apoE mRNA expression is reduced in the frontal cortex of alcoholics raise the possibility that apoE may also be related to the rewarding properties of ethanol. In this study, we examined whether Apoe deletion affects the rewarding properties of ethanol in mice. Male and female wild-type (WT; C57BL/6J) and apoE knockout (Apoe(-/-); C57BL/6J-Apoe(tm1Unc)) mice underwent an unbiased place conditioning procedure with ethanol (2 g/kg) or cocaine (5 mg/kg). Female mice were also tested for ethanol intake in a two-bottle choice procedure. Apoe(-/-) mice showed greater ethanol-induced conditioned place preference (CPP). In contrast, cocaine-induced CPP and ethanol intake were similar between the genotypes. These findings suggest that apoE normally reduces the conditioned rewarding properties of ethanol but not of cocaine. While the exact mechanisms underlying these effects of apoE are unknown, these data support a possible role for apoE in modulating the conditioned rewarding properties of ethanol.  相似文献   

6.
The effects of opioid antagonists on conditioned reward produced by ethanol provide variable and sometimes conflicting results, especially in mice. In the present set of experiments, male C57BL/6 mice received 4 vehicle and 4 ethanol conditionings, and the rewarding effects of ethanol were assessed in an unbiased version of the conditioned place preference (CPP) apparatus and an unbiased stimulus assignment procedure. Intraperitoneal (ip) administration of ethanol (2 g/kg, but not 1 g/kg) resulted in the conditioned reward when conditionings lasted for 6 min but not when conditioning lasted for 20 min. Administration of the non-selective opioid receptor antagonist naloxone (1 and 5 mg/kg) before the conditionings attenuated the acquisition of ethanol-induced place preference. Naloxone (1 mg/kg) also inhibited expression of the CPP response, but it did not alter the preference of vehicle-conditioned mice, suggesting the lack of its own motivational effects in this experimental setting. Taken together, the present results suggest that an unbiased version of ethanol-induced CPP in C57BL/6 mice could be a valid model for the study of the motivational effects of ethanol, confirming and expanding previous findings that have demonstrated inhibitory effects of opioid receptor antagonist on alcohol conditioned reward.  相似文献   

7.
Rationale: In previous comparisons with C57BL/6J mice, DBA/2J mice have been characterized as ”hyporesponsive” to cocaine’s rewarding effect in the conditioned place-preference paradigm. This finding contrasts with other studies showing greater sensitivity of DBA/2J mice to the rewarding effects of ethanol and morphine in the place conditioning task. Objectives: The purpose of the present study was to examine cocaine- induced place conditioning in both strains using apparatus and procedures similar to those used previously to assess ethanol and morphine preference conditioning. Methods: Mice from both strains were exposed to an unbiased place-conditioning procedure using 1, 10, or 30 mg/kg cocaine. Conditioning trial duration was 15, 30, or 60 min. Results: In general, C57BL/6J mice displayed a significant conditioned place preference that was relatively unaffected by cocaine dose or trial duration. In contrast, DBA/2J mice showed no place conditioning at the shortest trial duration, but an increasing level of preference as trial duration increased. At the longest trial duration, both strains showed similar levels of place preference. Conclusions: Genetic differences in sensitivity to cocaine’s rewarding effect depend critically on temporal parameters of the place-conditioning procedure. One possible interpretation of these findings is that short trial durations produce conditioned activity responses that interfere more with expression of conditioned place preference in DBA/2J mice than in C57BL/6J mice. More generally, these findings underscore the need for caution when drawing conclusions about genetic differences in place conditioning, especially when using this paradigm to evaluate the effects of gene knockouts or insertions on drug reward. Received: 31 December 1998 / Final version: 15 April 1999  相似文献   

8.
RATIONALE: The literature offers many examples of tolerance to ethanol's inhibitory/depressant effects and sensitization to its activating effects. There are also many examples of tolerance to ethanol's aversive effects as measured in the conditioned taste aversion and conditioned place aversion (CPA) procedures. However, there are very few demonstrations of either tolerance or sensitization to ethanol's rewarding or reinforcing effects. OBJECTIVE: The present studies were designed to examine effects of two forms of ethanol pre-exposure (distal or proximal) on ethanol's rewarding and aversive effects as indexed by the place conditioning procedure. METHOD: Male inbred (DBA/2J) mice were exposed to ethanol (2 g/kg IP) in an unbiased place conditioning procedure that normally produces either conditioned place preference (CPP) (ethanol injection before CS exposure) or CPA (ethanol injection after CS exposure). In the distal pre-exposure studies (experiments 1 and 2), mice initially received a series of four ethanol injections (0, 2, or 4 g/kg) in the home cage at 48-h intervals during the week before place conditioning. In the proximal pre-exposure studies (experiments 3-4), mice were injected with ethanol 65 min before (experimental groups) or 65 min after (control groups) each paired ethanol injection on CS+ trials. RESULTS: Distal pre-exposure produced a robust sensitization to ethanol's activating effect, whereas proximal pre-exposure generally reduced the activation normally produced by the paired ethanol injection. Both forms of pre-exposure interfered with CPA, but had no effect on CPP. CONCLUSIONS: These studies suggest that both forms of pre-exposure reduced ethanol's aversive effect, but had no impact on ethanol's rewarding effect. In general, the detrimental effects of pre-exposure on CPA are explained best in terms of a reduction in ethanol's efficacy as an aversive unconditioned stimulus (i.e. tolerance), although explanations based on other types of associative interference are also possible. The failure to affect CPP with pre-exposure treatments that reduced or eliminated CPA suggests that these behaviors are mediated by independent, motivationally opposite effects of ethanol. Moreover, these results indicate dissociation between sensitization to ethanol's locomotor activating effect and changes in its rewarding effect. To the extent that motivational processes measured by CPP and CPA normally contribute to ethanol drinking, the present findings suggest that increases in ethanol intake seen after chronic ethanol exposure are more likely caused by tolerance to ethanol's aversive effect rather than sensitization to its rewarding or reinforcing effect.  相似文献   

9.
This experiment examined the impact of a dopamine receptor blocker on ethanol's rewarding effect in a place conditioning paradigm. DBA/2J mice received four pairings of a tactile stimulus with ethanol (2 g/kg, IP), haloperidol (0.1 mg/kg, IP) + ethanol, or haloperidol alone. A different stimulus was paired with saline. Ethanol produced increases in locomotor activity that were reduced by haloperidol. However, conditioned preference for the ethanol-paired stimulus was not affected by haloperidol. Haloperidol alone decreased locomotor activity during conditioning and produced a place aversion. These results indicate a dissociation of ethanol's activating and rewarding effects. Moreover, they suggest that ethanol's ability to induce conditioned place preference is mediated by nondopaminergic mechanisms.  相似文献   

10.
Genetic differences in ethanol's ability to induce conditioned place preference were studied in 20 BXD Recombinant Inbred (RI) mouse strains and in the C57BL/6J and DBA/2J progenitor strains. Male mice from each strain were exposed to a Pavlovian conditioning procedure in which a distinctive floor stimulus (CS+) was paired four times with ethanol (2 g/kg). A different floor stimulus (CS-) was paired with saline. Control mice were injected only with saline. Floor preference testing without ethanol revealed significant genetic differences in conditioned place preference, with some strains spending nearly 80% time on the ethanolpaired floor while others spent only 50% (i.e., no preference). Control mice showed genetic differences in unconditioned preference for the floor cues, but unconditioned preference was not genetically correlated with conditioned preference. There were also substantial genetic differences in ethanol-stimulated activity, but contrary to psychomotor stimulant theory, ethanol-induced activity on conditioning trials was not positively correlated with strength of conditioned place preference. However, there was a significant negative genetic correlation (r=–0.42) between test session activity and preference. Quantitative trait loci (QTL) analyses showed strong associations (P<0.01) between conditioned place preference and marker loci on chromosomes 4, 8, 9, 18 and 19. Weaker associations (0.01<P<0.05) were identified on several other chromosomes. Analysis also yielded several significant QTL for unconditioned preference, ethanol-stimulated activity, and sensitization. Overall, these data support the conclusion that genotype influences ethanol-induced conditioned place preference, presumably via genetic differences in sensitivity to ethanol's rewarding effects. Moreover, several chromosomal regions containing candidate genes of potential relevance to ethanol-induced conditioned place preference have been identified.  相似文献   

11.

Rationale

Studies support differential roles of dopamine receptor subfamilies in the rewarding and reinforcing properties of drugs of abuse, including ethanol. However, the roles these receptor subfamilies play in ethanol reward are not fully delineated.

Objective

To examine the roles of dopamine receptor subfamilies in the acquisition of ethanol-induced conditioned place preference (CPP), we pretreated animals systemically with antagonist drugs selective for dopamine D1-like (SCH-23390) and D2-like (raclopride) receptors prior to ethanol conditioning trials.

Methods

Effects of raclopride (0–1.2 mg/kg) and SCH-23390 (0–0.3 mg/kg) on the acquisition of ethanol-induced CPP were examined in DBA/2J mice (experiments 1 and 2). Based on significant effects of SCH-23390, we then determined if SCH-23390 (0.3 mg/kg) produced a place preference on its own (experiment 3). To evaluate whether SCH-23390 impaired learning, we used a conditioned place aversion (CPA) paradigm and pretreated animals with SCH-23390 (0–0.3 mg/kg) before conditioning sessions with LiCl (experiment 4).

Results

Whereas raclopride (0–1.2 mg/kg) did not affect acquisition, SCH-23390 (0.1–0.3 mg/kg) impaired the development of ethanol-induced CPP. SCH-23390 (0.3 mg/kg) did not produce place preference when tested alone and SCH-23390 (0.1–0.3 mg/kg) did not perturb the acquisition of LiCl-induced CPA.

Conclusions

Our results support a role for dopamine D1-like but not D2-like receptors in ethanol’s unconditioned rewarding effect as indexed by CPP. Blockade of D1-like receptors did not affect aversive learning in this procedure.  相似文献   

12.
To identify brain areas involved in ethanol-induced Pavlovian conditioning, brains of male DBA/2J mice were immunohistochemically analyzed for FOS expression after exposure to a conditioned stimulus (CS) previously paired with ethanol (2 g/kg) in two experiments. Mice were trained with a procedure that normally produces place preference (Before: ethanol before the CS) or one that normally produces place aversion (After: ethanol after the CS). Control groups received unpaired ethanol injections in the home cage (Delay) or saline only (Na?ve). On the test day, mice were exposed to the 5-min CS 90 min before sacrifice. Before groups showed a conditioned increase in activity, whereas the After group showed a conditioned decrease in activity. FOS expression after a drug-free CS exposure was significantly higher in Before-group mice than in control mice in the bed nucleus of the stria terminalis (Experiment 1) and anterior ventral tegmental area (Experiments 1-2). Conditioned FOS responses were also seen in areas of the extended amygdala and hippocampus (Experiment 2). However, no conditioned FOS changes were seen in any brain area examined in After-group mice. Overall, these data suggest an important role for the mesolimbic dopamine pathway, extended amygdala and hippocampus in ethanol-induced conditioning.  相似文献   

13.
Abstract Rationale. Self-administration studies have suggested that dopamine (DA) is important for the reinforcing effects of ethanol. However, ethanol place conditioning studies have less consistently demonstrated a role for DA in conditioned place preference. Objectives. The purpose of the present study was to determine whether blockade of D1, D2 or D3 DA receptors would impact the expression of the conditioned place preference induced by ethanol in DBA/2J mice. Methods. Mice underwent an unbiased place conditioning procedure with 2 g/kg ethanol. Prior to the preference test, mice were injected i.p. with SCH23390 (0, 0.015 or 0.03 mg/kg), raclopride (0, 0.3 or 0.6 mg/kg) or U99194A (0, 10 or 20 mg/kg). Results. Ethanol produced a significant conditioned place preference that was not affected by any of the dopamine antagonists tested. Each of the antagonists decreased locomotor activity, though U99194A was minimally effective. Conclusions. These findings suggest that the conditioned reinforcing effects of ethanol in DBA/2J mice as assessed by place conditioning are mediated by non-dopaminergic mechanisms. Electronic Publication  相似文献   

14.
Rationale In previous studies, we have demonstrated that mice of the inbred strain C57BL/6J (C57) are more susceptible to amphetamine-induced conditioned place preference (CPP) than DBA/2J (DBA) mice. Moreover, we also observed parallel strain differences for the locomotor-stimulant effects of the drug. However, other studies have reported either no difference or opposite strain differences for cocaine- and morphine-induced CPP as well as for the locomotor effects of these drugs, suggesting that amphetamine-related behavioral phenotypes might depend on a specific pharmacological action of the psychostimulant. Objectives This study was aimed at testing strain differences for cocaine- and morphine-related behavioral phenotypes in the same experimental protocol and conditions previously used for amphetamine. Methods C57 and DBA mice were tested for CPP induced by cocaine (0, 5, 10, and 20 mg/kg) and morphine (0, 5, 7.5, and 10 mg/kg). Locomotor activity data were simultaneously obtained by measuring distance moved during all different CPP phases and unconditioned locomotor activity, behavioral sensitization and conditioned hyperactivity were measured together with CPP. Results (a) Either cocaine or morphine promoted significant CPP at lower doses in C57 than in DBA mice; (b) only drug-trained C57 mice showed a significant CPP compared with the control group; and (c) only C57 mice showed dose-dependent effects of cocaine on CPP. Moreover, there was no relationship between drug-induced CPP and locomotion. Conclusions The results demonstrate that C57 and DBA mice differ in their sensitivity to cocaine- and morphine-induced CPP and suggest that the two strains differ in sensitivity to the positive incentive properties of drugs of abuse.  相似文献   

15.
Sigma-1 receptor agonists are reported to augment and antagonists block the rewarding effects of drugs of abuse. However, their effect on reinstatement of ethanol-induced conditioned place preference (CPP) has not yet been explored. Therefore, we investigated the ability of 2-(4-morpholino)ethyl-1-phenylcyclohexane-1-carboxylate (PRE-084), a sigma-1 receptor agonist, and N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino) ethylamine dihydrobromide (BD-1047), a sigma-1 receptor antagonist, on the acquisition, expression, and reinstatement of ethanol-induced CPP using adult male Swiss mice. BD-1047 (0.1-10 μg/mouse, intracerebroventricularly) dose-dependently blocked the development, expression, and reinstatement of ethanol-induced CPP, and PRE-084 (0.01-10 μg/mouse, intracerebroventricularly) dose-dependently reinstated the extinguished response. These effects of PRE-084 and BD-1047 alone or in combination with ethanol did not influence the motor activity. Therefore, it is concluded that sigma-1 receptor ligands can modulate the acquisition, expression, and reinstatement of conditioned reinforcing effects of ethanol with no reinforcing or aversive influence of their own. The results add to the growing literature on sigma-1 receptor modulation in the pharmacotherapy of ethanol addiction.  相似文献   

16.
Rationale: GABAA receptor antagonists have been shown to reduce ethanol self-administration and ethanol-induced conditioned taste aversion (CTA) in rats, suggesting a role for the GABAA receptor in modulating ethanol’s motivational effects. Objectives: The present experiments examined the effects of the GABAA receptor antagonists, bicuculline and picrotoxin, on the acquisition of ethanol-induced conditioned place preference (CPP) and CTA in male DBA/2J mice. Methods: Mice in the CPP experiments received four pairings of ethanol (2 g/kg) with a distinctive floor stimulus for a 5-min conditioning session (CS+ sessions). During CS+ sessions, mice also received bicuculline (0, 1.0, 3.0, or 5.0 mg/kg) or picrotoxin (2.0 mg/kg) before an injection of ethanol. On intervening days (CS– sessions), the pretreatment injection was always vehicle followed by saline injections that were paired with a different floor type. For the preference test, all mice received saline injections and were placed on a half grid and half hole floor for a 60-min session. For the CTA experiments, mice were adapted to a 2-h per day water restriction regimen followed by five conditioning trials every 48 h. During conditioning trials, subjects received an injection of vehicle, bicuculline (0.5 and 2.0 mg/kg), or picrotoxin (0.75 and 2.5 mg/kg) before injection of 2 g/kg ethanol or saline following 1-h access to a saccharin solution. Results: Both picrotoxin and the lowest dose of bicuculline (1.0 mg/kg) significantly increased the magnitude of CPP relative to vehicle-treated controls. Picrotoxin alone did not produce place conditioning. Ethanol-stimulated locomotor activity was significantly reduced during conditioning trials with picrotoxin and the higher doses of bicuculline (3.0 and 5.0 mg/kg). Bicuculline did not alter ethanol-induced CTA; however, picrotoxin dose-dependently increased the magnitude of ethanol-induced CTA. Bicuculline and picrotoxin did not produce CTA when administered alone. Conclusions: Overall, these results suggest that blockade of GABAA receptors with bicuculline and picrotoxin enhances ethanol’s motivational effects in the CPP paradigm; however, only picrotoxin enhances ethanol’s motivational effects in the CTA paradigm. Received: 12 September 1998 / Final version: 21 December 1998  相似文献   

17.
 Four experiments examined the effect of naloxone pretreatment on the expression and extinction of ethanol-induced conditioned place preference (experiments 1, 2, 4) or conditioned place aversion (experiments 1, 3). DBA/2 J mice received four pairings of a distinctive tactile (floor) stimulus (CS) with injection of ethanol (2 g/kg) given either immediately before or after 5-min exposure to the CS. A different stimulus was paired with injection of saline. Pre-CS injection of ethanol produced conditioned place preference, whereas post-CS injection of ethanol produced conditioned place aversion. Both behaviors extinguished partially during repeated choice testing after vehicle injection. Naloxone (10 mg/kg) had little effect on the initial expression of conditioned place preference, but facilitated its extinction. Moreover, repeated naloxone testing resulted in the expression of a weak conditioned place aversion to the CS that initially elicited a place preference. In contrast, naloxone (1.5 or 10 mg/kg) enhanced expression of conditioned place aversion, thereby increasing its resistance to extinction. A control experiment (experiment 4) indicated that repeated testing with a different aversive drug, lithium chloride, did not affect rate of extinction or produce an aversion to the CS previously paired with ethanol. These findings do not support the suggestion that naloxone facilitates the general processes that underlie extinction of associative learning. Also, these data are not readily explained by the conditioning of place aversion at the time of testing. Rather, naloxone’s effects appear to reflect a selective influence on maintenance of ethanol’s conditioned rewarding effect, an effect that may be mediated by release of endogenous opioids. Overall, these findings encourage further consideration of the use of opiate antagonists in the treatment of alcoholism. Received: 4 December 1997 / Final version: 16 February 1998  相似文献   

18.

Rationale

Reexposure to ethanol during acute withdrawal might facilitate the transition to alcoholism by enhancing the rewarding effect of ethanol.

Objective

The conditioned place preference (CPP) procedure was used to test whether ethanol reward is enhanced during acute withdrawal.

Methods

DBA/2J mice were exposed to an unbiased one-compartment CPP procedure. Ethanol (0.75, 1.0, or 1.5 g/kg IP) was paired with a distinctive floor cue (CS+), whereas saline was paired with a different floor cue (CS?). The withdrawal (W) group received CS+ trials during acute withdrawal produced by a large dose of ethanol (4 g/kg) given 8 h before each trial. The no-withdrawal (NW) group did not experience acute withdrawal during conditioning trials but was matched for acute withdrawal experience. Floor preference was tested in the absence of ethanol or acute withdrawal.

Results

All groups eventually showed a dose-dependent preference for the ethanol-paired cue, but development of CPP was generally more rapid and stable in the W groups than in the NW groups. Acute withdrawal suppressed the normal activating effect of ethanol during CS+ trials, but there were no group differences in test activity.

Conclusions

Acute withdrawal enhanced ethanol’s rewarding effect as indexed by CPP. Since this effect depended on ethanol exposure during acute withdrawal, the enhancement of ethanol reward was likely mediated by the alleviation of acute withdrawal, i.e., negative reinforcement. Enhancement of ethanol reward during acute withdrawal may be a key component in the shift from episodic to chronic ethanol consumption that characterizes alcoholism.  相似文献   

19.
The influence of the opioid system on acquisition of an ethanol-induced conditioned taste aversion was examined in alcohol-preferring and avoiding inbred strains of mice (C57BL/6J and DBA/2J). Fluid-deprived mice from each strain received either ethanol alone, naloxone alone, or both ethanol and naloxone immediately after access to a novel tasting fluid. Naloxone alone (1 or 3 mg/kg) did not induce a conditioned taste aversion in either strain of mice. Administration of ethanol (1.5 g/kg) to DBA/2J mice produced a moderate taste aversion that was not affected by co-administration of naloxone. Although ethanol administered alone (3 g/kg) did not cause a taste aversion in C57BL/6J mice, the combination of ethanol and the higher dose of naloxone produced a significant taste aversion that increased across trials. A second experiment addressed the possibility that naloxone failed to enhance the ethanol-induced condition taste aversion in DBA/2J mice due to a floor effect on consumption. A lower ethanol dose (1 g/kg) was given alone or in combination with naloxone (1 or 3 mg/kg). Again, ethanol produced a moderate conditioned taste aversion that was not potentiated by naloxone. Subsequent conditioning with a high ethanol dose produced further suppression of intake, confirming that naloxone's failure to enhance aversion on earlier trials was not due to a floor effect. These data demonstrate a strain specific interaction between the aversive effect of ethanol and naloxone. More specifically, the results indicate that blockade of opioid receptors enhances the aversive effect of ethanol in C57BL/6J but not DBA/2J mice, suggesting that genetically determined differences in the endogenous opioid system of alcohol-preferring mice may mitigate ethanol's aversive effect.  相似文献   

20.
Previous findings implicate opioid receptors in the expression of the conditioned rewarding and aversive properties of ethanol. We have recently reported that the conditioned rewarding effect of ethanol is mediated by opioid receptors in the ventral tegmental area (VTA). We attempted to determine whether VTA opioid receptors also mediate the expression of the conditioned aversive properties of ethanol. However, the magnitude of conditioned place aversion (CPA) was not consistent with our previous findings and prevented us from making definitive conclusions. We hypothesized that the handling required to make intracranial infusions in mice alters the expression of CPA, but not conditioned place preference (CPP). Therefore, non-operated animals underwent a Pavlovian conditioning procedure for either ethanol CPA or CPP. Just before testing, half of the animals were held by the scruff of the neck to mimic intracranial infusion handling. Animals conditioned for CPA did not express CPA if they were handled. However, animals conditioned for CPP exhibited robust CPP, regardless of handling. These findings provide additional evidence that the conditioned rewarding and aversive effects of ethanol are mediated by different neural mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号