首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
PURPOSE: To assess the quality of a navigator-gated, free breathing, steady-state free precession (SSFP) technique in comparison to a single breathhold for pulmonary artery imaging in normal volunteers. MATERIALS AND METHODS: Sagittal sections of the left pulmonary arteries of 10 volunteers were obtained with a three-dimensional SSFP sequence using both a single breathhold of 30 seconds and a navigator-gated version of the same sequence. The images were compared and rated by a blinded cardiovascular radiologist for image quality, sharpness, and artifact. RESULTS: On a scale ranging from -2 to 2, in which positive numbers denote that the navigator method was favorable compared to the single breathhold method, image quality was rated 0.7+/-1.4, sharpness 0.6+/-1.5, and artifact 0.1+/-1.4. Thus, there was no statistical difference between the two methods. CONCLUSION: The navigator-gated SSFP sequence is able to acquire images equal in quality to the breathhold sequence. This may be of clinical importance for pulmonary imaging in patients who are unable to sustain a long breathhold.  相似文献   

2.
Motion artifacts and the lack of accurate detection of cardiac motion present a major challenge for high-resolution cardiac MRI. Recently a multidimensional cardiac fat navigator was proposed to provide a fast and direct measurement of bulk cardiac motion. The objective of this study was to demonstrate the feasibility of employing the cardiac fat navigator in balanced steady-state free precession (SSFP) free-breathing 3D coronary MRA (CMRA). The cardiac fat navigator echo is optimized to provide both motion monitoring and epicardial fat suppression. Steady-state magnetization preparation, which is needed for SSFP CMRA, is optimized by comparing three preparation schemes: alpha/2, linear ramp with 20 RF pulses (20LR), and Kaiser ramp with six RF pulses (6KR). The present preliminary human study shows that the 6KR preparation provides better image quality than both the alpha/2 (P<0.0025) and the 20LR preparations (P<0.025) for free-breathing SSFP 3D CMRA (N=11).  相似文献   

3.
PURPOSE: To assess the feasibility of contrast-enhanced fat-saturated three-dimensional steady-state free precession (FIESTA) imaging for contrast-enhanced magnetic resonance (MR) portography. MATERIALS AND METHODS: Contrast-enhanced fat-saturated three-dimensional fast spoiled gradient-echo (SPGR) and FIESTA were performed as MR portography. In 10 cases, fat-saturated three-dimensional FIESTA was first performed and followed by fast SPGR, and the order of post-contrast imaging was reversed in the other 10 cases. Signal-to-noise ratios (SNRs) and contrast-to-noise ratios (CNRs) were estimated for portal and visceral veins on the source images. The visualization of portal vein was scored on three-dimensional MR portography. Portal venous system disorders were assessed using three-dimensional MR portography. RESULTS: The SNRs, CNRs, and visual assessment of portal and visceral veins were significantly higher in contrast-enhanced fat-saturated three-dimensional FIESTA than contrast-enhanced fat-saturated three-dimensional fast SPGR (P < 0.05). The contrast-enhanced fat-saturated three-dimensional FIESTA provided high venous signals even at 8 minutes after gadolinium injection. The abnormalities of portal venous system were well visualized with MR portography using contrast-enhanced fat-saturated three-dimensional FIESTA. CONCLUSION: Contrast-enhanced fat-saturated three-dimensional FIESTA was valuable for MR portography, with flexible time window and high vascular signals. This imaging may allow for other post-contrast imaging options before portography and release patients from consecutive breath-holds.  相似文献   

4.
PURPOSE: To compare the performance of the conventional diaphragm navigator (DNAV) and the recently developed cardiac fat navigator (FatNAV) in suppressing respiration-induced cardiac motion in free-breathing 3D balanced steady-state free precession coronary MRA (SSFP CMRA). MATERIALS AND METHODS: In 16 healthy volunteers the right coronary artery (RCA) was imaged at 1.5T using a navigator-gated 3D SSFP CMRA sequence. DNAV and FatNAV gating were performed in random order. Image quality difference was scored by three experienced readers blinded to the gating technique. Blood signal-to-noise ratio (SNR), blood-to-myocardium contrast-to-noise ratio (CNR), and navigator efficiency were calculated. RESULTS: Diagnostically interpretable CMRA was obtained successfully in all 16 subjects with FatNAV gating (0% failure rate) and only 14 subjects with DNAV gating (12% failure rate). Compared to DNAV gating, FatNAV gating provided similar SNR and CNR, better image quality (P < 0.01), and 28% improvement in navigator efficiency (P = 0.002). CONCLUSION: FatNAV gating provides more effective motion suppression and better image quality than DNAV gating for free-breathing 3D SSFP CMRA of the RCA in healthy subjects.  相似文献   

5.
Contrast-enhanced MR angiography (CE-MRA) using steady-state free precession (SSFP) pulse sequences is described. Using SSFP, vascular structures can be visualized with high signal-to-noise ratio (SNR) at a substantial (delay) time after the initial arterial pass of contrast media. The peak blood SSFP signal was diminished by <20% 30 min after the initial administration of 0.2 mmol/kg of Gd-chelate. The proposed method allows a second opportunity to study arterial or venous structures with high image SNR and high spatial resolution. A mask subtraction scheme using spin echo SSFP-S(-) acquisition is also described to reduce stationary background signal from the delayed SSFP angiography images.  相似文献   

6.
The purpose of this work was to investigate a new magnetization preparation scheme for navigator steady-state free precession (SSFP) 3D coronary MR angiography (MRA) that executes the navigator and fat saturation pulses in steady state after the dummy RFs in order to minimize the delay between the magnetization preparation and the image echoes. Compared to the previous preparation scheme that executes the navigator and fat saturation pulses before the dummy RFs, the new scheme was found to provide more effective motion suppression, significantly improved blood-to-myocardium contrast-to-noise ratio (46%, P < 0.001) at slightly but insignificantly decreased blood signal-to-noise ratio (SNR) (2%, P = 0.73), significantly reduced fat SNR (32%, P < 0.001), and better overall image quality (P = 0.05; Wilcoxon paired sample signed rank test).  相似文献   

7.
Current implementations of coronary artery magnetic resonance angiography (MRA) suffer from limited coverage of the coronary arterial system. Whole-heart coronary MRA was implemented based on a free-breathing steady-state free-precession (SSFP) technique with magnetization preparation. The technique was compared to a similar implementation of conventional, thin-slab coronary MRA in 12 normal volunteers. Three thin-slab volumes were prescribed: 1) a transverse slab, covering the left main (LM) artery and proximal segments of the left anterior ascending (LAD) and left circumflex (LCX) coronary arteries; 2) a double-oblique slab covering the right coronary artery (RCA); and 3) a double-oblique slab covering the proximal and distal segments of the LCX. The whole-heart data set was reformatted in identical orientations. Visible vessel length, vessel sharpness, and vessel diameter were determined and compared separately for each vessel. Whole-heart coronary MRA visualized LM/LAD (11.7 +/- 3.4 cm) and LCX (6.9 +/- 3.6 cm) over a significantly longer distance than the transverse volume (LM/LAD, 6.1 +/- 1.1 cm, P < 0.001; LCX, 4.2 +/- 1.2 cm, P < 0.05). Improvements in visible vessel length for RCA and LCX in the whole-heart approach vs. their respective targeted volumes were not significant. It is concluded that the whole-heart coronary MRA technique improves visible vessel length and facilitates high-quality coronary MRA of the complete coronary artery tree in a single measurement.  相似文献   

8.
Balanced steady-state free precession (bSSFP) is capable of producing ample fat-water separation. In the case of the bSSFP Dixon method, the phase between fat and water can be manipulated by setting repetition time (TR) to an odd-half-multiple of the cycle time and adjusting the center frequency to acquire fat-water in in-phase and opposed-phase images. Adding an image collected when fat and water are in-phase to an image in which fat and water are opposed-phase produces a water-only image. Of the water signals, arterial blood has the highest T(2)/T(1) contrast, making the arterial signal appear brighter than both venous blood and muscle in the final image. In this study, the bSSFP Dixon method was used to collect coronal water-only three-dimensional (3D) volumes at multiple anatomical stations in the legs of five healthy volunteers. The image quality was quantified by region-of-interest (ROI) analysis of signal intensities between arterial blood, venous blood, muscle, and fat. The images were also assessed for diagnostic quality by a trained radiologist. The bSSFP Dixon method was successful in producing non-contrast-enhanced (NCE) images of the blood vessels in the lower limbs. The work presented here is a proof-of-concept for the use of the bSSFP Dixon method for 3D peripheral angiography.  相似文献   

9.
PURPOSE: To explore the use of breath-hold and navigator-gated noncontrast Steady State Free Precession (SSFP) MR angiography (MRA) protocols for the evaluation of renal artery stenosis (RAS). MATERIALS AND METHODS: Twenty patients referred to rule out RAS were imaged using two breath-hold and one navigator-gated SSFP MRA sequences. All patients underwent contrast-enhanced MRA (CE-MRA). Two radiologists evaluated all sequences both qualitatively (blur, artifacts, reader confidence) and quantitatively (maximum stenosis). Using CE-MRA as truth, a receiver operating characteristics (ROC) curve was generated and a statistical analysis of navigator-gated SSFP (Nav SSFP) was performed. RESULTS: Seven patients had >50% renal artery stenosis by CE-MRA. Nav SSFP performed significantly better than either breath-hold SSFP technique in terms of blur, artifacts, and reader confidence. Using a 50% threshold for stenosis, sensitivity for detecting RAS was 100%, with a specificity of 85% and a negative predictive value of 100%. The average mean stenosis difference between Nav SSFP and CE-MRA was 9 +/- 9%. CONCLUSION: Nav SSFP outperformed breath-hold SSFP in measures of image quality and reader confidence. Sensitivity and negative predictive value for detecting RAS with Nav SSFP was perfect, with an acceptable specificity of 85%. This suggests further study is warranted to evaluate Nav SSFP as a noncontrast screening technique for renal artery stenosis.  相似文献   

10.
PURPOSE: To demonstrate the feasibility of three-dimensional thick-partition, contrast-enhanced, catheter-directed coronary artery magnetic resonance angiography (MRA) and test the hypothesis that three-dimensional imaging improves coronary artery background contrast-to-noise ratio (CNR) compared to two-dimensional imaging. MATERIALS AND METHODS: Catheters were advanced into the coronary arteries of swine (N = 6) under MR guidance. Three-dimensional coronary MRA was performed after intracoronary injection of a small dose of contrast media using magnetization-prepared steady-state free precession (SSFP) with two thick partitions. For comparison, two magnetization-prepared two-dimensional SSFP scans were also performed, one with no signal averaging and one with two signal averages. All sequences had the same coverage and in-plane spatial resolution. RESULTS: The coronary artery was successfully catheterized in all (6/6) animals. CNR for three-dimensional imaging was 11.1 +/- 1.2 for proximal arterial segments and 4.3 +/- 0.4 for distal segments. Without averaging, two-dimensional imaging CNRs for proximal and distal segments were 5.0 +/- 0.7 and 1.2 +/- 0.2, respectively. With averaging, two-dimensional imaging CNRs for proximal and distal segments were 9.4 +/- 1.5 and 2.9 +/- 0.4, respectively. Three-dimensional imaging showed a statistically significant increase in CNR over all two-dimensional imaging for both proximal and distal segments (P < 0.05). CONCLUSION: Three-dimensional thick-partition, contrast-enhanced, catheter-directed coronary MRA is feasible and improves CNR over two-dimensional projection imaging.  相似文献   

11.
Fat-suppressed steady-state free precession imaging using phase detection.   总被引:1,自引:0,他引:1  
Fully refocused steady-state free precession (SSFP) is a rapid, efficient imaging sequence that can provide diagnostically useful image contrast. In SSFP, the signal is refocused midway between excitation pulses, much like in a spin-echo experiment. However, in SSFP, the phase of the refocused spins alternates for each resonant frequency interval equal to the reciprocal of the sequence repetition time (TR). Appropriate selection of the TR results in a 180 degrees phase difference between lipid and water signals. This phase difference can be used for fat-water separation in SSFP without any increase in scan time. The technique is shown to produce excellent non-contrast-enhanced, flow-independent angiograms of the peripheral vasculature.  相似文献   

12.
PURPOSE: To compare the performance of a novel water-saturated b-SSFP sequence with that of a conventional T1-weighted turbo spin echo (T1W TSE) sequence for abdominal fat quantification. MATERIALS AND METHODS: A water-saturated, segmented, three-dimensional balanced steady-state free precession (b-SSFP) sequence and a traditional T1W TSE sequence were both employed on phantom and human studies. For phantom studies, a dual-layered phantom with known internal/external oil volumes was imaged using the two sequences. Images obtained by the two sequences were both processed using a computer-aided semiautomatic program for oil volume quantification. For human studies, six volunteers were scanned axially, centered at L2-L3 levels. Signal-to-noise ratio (SNR)(fat), contrast-to-noise ratio (CNR)(fat-muscle), CNR(fat-large bowel), and CNR(fat-small bowel) were calculated on hand-drawn regions of interest (ROIs), and averaged over all six slices for each subject. Statistical analyses were then performed to determine the SNR and CNR differences between images obtained by the two techniques. RESULTS: The phantom studies show that water-saturated b-SSFP offers a significantly closer estimation of true oil volumes compared with that of T1W TSE (P < 0.0001), as well as a more accurate internal/external volume ratio (P = 0.0001). In human studies, three-dimensional water-saturated b-SSFP images demonstrated higher CNR than that of T1W TSE (P < 0.0005), and very close SNR(fat) (P = 0.045). CONCLUSION: The proposed three-dimensional water-saturated b-SSFP sequence can generate high quality fat-only abdominal images with high CNR and SNR in shorter scan duration than the conventional T1W TSE approach. As images generated by this sequence suffer from no flow artifacts, and are less sensitive to bulk, respiratory, and bowel motion, three-dimensional water-saturated b-SSFP is a faster and more robust method for improving abdominal fat quantification using MRI.  相似文献   

13.
A novel fat-suppressed balanced steady-state free precession (b-SSFP) imaging method based on the transition into driven equilibrium (TIDE) sequence with variable flip angles is presented. The new method, called fat-saturated (FS)-TIDE, exploits the special behavior of TIDE signals from off-resonance spins during the flip angle ramp. As shown by simulations and experimental data, the TIDE signal evolution for off-resonant isochromats during the transition from turbo spin-echo (TSE)-like behavior to the true fast imaging with steady precession (TrueFISP) mode undergoes a zero crossing. The resulting signal notch for off-resonant spins is then used for fat suppression. The efficiency of FS-TIDE is demonstrated in phantoms and healthy volunteers on a 1.5T system. The resulting images are compared with standard TrueFISP data with and without fat suppression. It is demonstrated that FS-TIDE provides a fast and stable means for homogenous fat suppression in abdominal imaging while maintaining balanced SSFP-like image contrast and signal-to-noise ratio (SNR). The scan time of FS-TIDE is not increased compared to normal TrueFISP imaging without fat suppression and identical k-space trajectories. Because of the intrinsic fat suppression, no additional preparation is needed. Possible repetition times (TRs) are not firmly limited to special values and are nearly arbitrary.  相似文献   

14.
Balanced steady-state free precession (SSFP) sequences are useful in cardiac imaging because they achieve high signal efficiency and excellent blood-myocardium contrast. Spiral imaging enables the efficient acquisition of cardiac images with reduced flow and motion artifacts. Balanced SSFP has been combined with spiral imaging for real-time interactive cardiac MRI. New features of this method to enable scanning in a clinical setting include short, first-moment nulled spiral trajectories and interactive control over the spatial location of banding artifacts (SSFP-specific signal variations). The feasibility of spiral balanced SSFP cardiac imaging at 1.5 T is demonstrated. In observations from over 40 volunteer and patient studies, spiral balanced SSFP imaging shows significantly improved contrast compared to spiral gradient-spoiled imaging, producing better visualization of cardiac function, improved localization, and reduced flow artifacts from blood.  相似文献   

15.
PURPOSE: To evaluate the use of breath-hold three-dimensional (3D) steady-state free precession (SSFP) coronary magnetic resonance angiography (MRA) in patients with coronary artery disease (CAD) in comparison with conventional coronary x-ray angiography (XRA). MATERIALS AND METHODS: Twenty-eight patients with suspected CAD were examined with the use of a breath-hold 3D-SSFP-MRA sequence and conventional XRA. To assess the accuracy of MRA, two clinicians who were blinded to patient information independently reviewed the MRA and XRA data, which were presented in a randomized order. To identify discrepancies between MRA and XRA, and assess features of coronary lesions on MRA, two additional clinicians examined MRA and XRA data that were presented side by side, divided into proximal, mid, and distal segments, and compared them segment by segment. RESULTS: The sensitivity and specificity for diagnosing significant coronary stenoses (> 50% diameter narrowing) were 64% and 94%, respectively. At sites of coronary lesions identified on XRA, bright signals and enlarged vessel profiles, in addition to the characteristic narrow lumen, were frequently observed on MRA. CONCLUSION: Breath-hold SSFP coronary MRA has good specificity but inconclusive sensitivity in diagnosing significant coronary stenoses, and provides important image features for depicting coronary lesions.  相似文献   

16.
Balanced steady-state free precession is an ultrafast sequence with high signal-to-noise efficiency, but it also generates a strong fat signal which can mask important features. One method of fat suppression is to modify the balanced steady-state free precession spectrum using multiple repetition times to create a wide stopband over the fat frequency. However, with three or more pulse repetition times, the number of parameters creates a vast search space with many local minima of a cost function. We report on the initial results of using simulated annealing to find optimal sequences for two applications of multiple-pulse repetition time balanced steady-state free precession: positive contrast imaging and fat suppression.  相似文献   

17.
Various pulse sequences for fast proton spectroscopic imaging (SI) using the steady-state free precession (SSFP) condition are proposed. The sequences use either only the FID-like signal S(1), only the echo-like signal S(2), or both signals in separate but adjacent acquisition windows. As in SSFP imaging, S(1) and S(2) are separated by spoiler gradients. RF excitation is performed by slice-selective or chemical shift-selective pulses. The signals are detected in absence of a B(0) gradient. Spatial localization is achieved by phase-encoding gradients which are applied prior to and rewound after each signal acquisition. Measurements with 2D or 3D spatial resolution were performed at 4.7 T on phantoms and healthy rat brain in vivo allowing the detection of uncoupled and J-coupled spins. The main advantages of SSFP based SI are the short minimum total measurement time (T(min)) and the high signal-to-noise ratio per unit measurement time (SNR(t)). The methods are of particular interest at higher magnetic field strength B(0), as TR can be reduced with increasing B(0) leading to a reduced T(min) and an increased SNR(t). Drawbacks consist of the limited spectral resolution, particularly at lower B(0), and the dependence of the signal intensities on T(1) and T(2). Further improvements are discussed including optimized data processing and signal detection under oscillating B(0) gradients leading to a further reduction in T(min).  相似文献   

18.
PURPOSE: To decompose multicoil CINE steady-state free precession (SSFP) cardiac images acquired at short echo time (TE) increments into separate water and fat images, using an iterative least-squares "Dixon" (IDEAL) method. MATERIALS AND METHODS: Multicoil CINE IDEAL-SSFP cardiac imaging was performed in three volunteers and 15 patients at 1.5 T. RESULTS: Measurements of signal-to-noise ratio (SNR) matched theoretical expectations and were used to optimize acquisition parameters. TE increments of 0.9-1.0 msec permitted the use of repetition times (TRs) of 5 msec or less, and provided good SNR performance of the water-fat decomposition, while maintaining good image quality with a minimum of banding artifacts. Images from all studies were evaluated for fat separation and image quality by two experienced radiologists. Uniform fat separation and diagnostic image quality was achieved in all images from all studies. Examples from volunteers and patients are shown. CONCLUSION: Multicoil IDEAL-SSFP imaging can produce high quality CINE cardiac images with uniform water-fat separation, insensitive to Bo inhomogeneities. This approach provides a new method for reliable fat-suppression in cardiac imaging.  相似文献   

19.
PURPOSE: To compare orthogonal measurements of the thoracic aortic luminal diameter to standard axial measurements within the same patient population using ECG-gated high-resolution contrast-enhanced MR angiography (CE-MRA). MATERIALS AND METHODS: In all, 45 consecutive patients who had undergone CE-MRA for suspected disease of the thoracic aorta were evaluated retrospectively. Two diameter measurement techniques were performed for each patient's thoracic aorta: standard axial and orthogonal to the aorta. Seven anatomic locations along the thoracic aorta were used for measurement. The data obtained were compared using a paired, two-tailed t-test. RESULTS: We found that the aorta diameter measurements acquired from axial MRA images were significantly greater (P < 0.05) than those acquired from images orthogonal to the course of the aorta at six of seven anatomic sites. Overall, standard axial measurements were found to overestimate luminal diameter of the thoracic aorta by 0.24 cm (95% confidence interval [CI]: 0.14, 0.33) compared to orthogonal measurements. 13.3% of the patients were placed into a greater aorta size classification based on the axial versus the orthogonal measurements. CONCLUSION: Standard axial measurements can overestimate vessel size of the thoracic aorta. ECG-gated high-resolution CE-MRA can be used to measure orthogonal diameters of the thoracic aorta.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号