首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The amplitudes of many scalp-recorded evoked potential (EP) deflections are higher in females than in males, and in elderly than in young subjects. Since EPs critically depend on the electric conductivity of the cranium, it is not known whether these differences reflect age- and gender-dependent changes in the intensity of neuronal activation, or changes in the volume conductor. Evoked magnetic fields are not significantly affected by the conductivities of the cranial tissues and therefore reflect more directly the neuronal activation than EPs. We report here on the effects of age and gender on somatosensory evoked fields (SEFs) from the primary somatosensory cortex (SI) in 43 healthy subjects (21 males) aged from 20 to 73 years (males 51+/-18 years, females 51+/-14 years). The intensity of neuronal activation was estimated with equivalent current dipoles (ECDs) found at the peaks of the N20m, P35m and P60m deflections from the left SI after right median nerve stimulation. The peak latencies of N20m and P35m (but not of P60m) were shorter in females than in males. The N20m latency was positively correlated with age in males, but otherwise the latencies did not correlate with age. The ECD amplitudes did not differ between males and females for any of the deflections. The N20m ECD strength showed a significant positive correlation (r=0.39, p<0.01) with age while P35m and P60m ECD strengths did not. The results thus did not disclose gender differences in the activation strengths of the somatosensory cortex, implying that such differences in evoked potentials may possibly be due to gender differences in the volume conductor. On the other hand, the results suggest a slight age-related increase in cortical excitability.  相似文献   

2.
We tested the possible role of dopaminergic activity in the processing of somatosensory afferent information in healthy humans. Somatosensory evoked magnetic fields (SEFs) were recorded in seven subjects in response to left median nerve stimulation. SEFs were obtained in all subjects after oral administration of 2 mg haloperidol, an antagonist to dopaminergic D2 receptors, and placebo, which were given in a randomized, double-blind cross-over design. SEFs were analyzed using a multiple equivalent current dipole (ECD) model, with one dipole at the right primary somatosensory cortex (SI) and at both left and right secondary somatosensory cortices (SII). The earliest responses from SI, peaking at about 20 ms (N20m) and 35 ms (P35m), were not affected by haloperidol. A later deflection peaking at about 75 ms (P60m), however, was slightly reduced (p < 0.05). Responses arising from SII were not significantly changed. The results suggest that dopaminergic activity may be involved in modulating somatosensory processing after the initial stages of cortical activation.  相似文献   

3.
We recorded somatosensory evoked magnetic fields (SEFs) to median nerve stimulation from 15 patients in the acute stage (1-15 days from the onset of the symptoms) of their first-ever unilateral stroke involving sensorimotor cortical and/or subcortical structures in the territory of the middle cerebral artery (MCA). Neuronal activity corresponding to the peaks of the N20m, P35m and P60m SEF deflections from the contralateral primary somatosensory cortex (SI) was modelled with equivalent current dipoles (ECDs), the locations and strengths of which were compared with those of an age-matched normal population. Four patients with pure motor stroke had symmetric SEFs. In one of the 4 patients with pure sensory stroke, and in 5 of the 7 patients with sensorimotor paresis, the SEFs were markedly attenuated or missing. All except one patient with abnormal SEFs had deficient two-point discrimination ability; especially the attenuation of N20m was more clearly correlated with two-point discrimination than with joint-position or vibration senses. Of the different SEF deflections, P35m and P60m were slightly more sensitive indicators of abnormality than N20m, the former being affected in two patients with symmetric N20m. Three patients with pure sensory stroke and lesions in the opercular cortex had normal SEFs from SI. We conclude that the SEF deflections N20m, P35m and P60m from SI are related to cutaneous sensation, in particular discriminative to touch. The results also demonstrate that basic somatosensory perception can be affected by lesions in the opercular cortex in patients with functionally intact SI.  相似文献   

4.
OBJECTIVE: To evaluate somatosensory and auditory primary cortices using somatosensory evoked potentials (SEPs) and middle latency auditory evoked potentials (MLAEPs) in the prognosis of return to consciousness in comatose patients. METHODS: SEPs and MLAEPs were recorded in 131 severe comatose patients. Latencies and amplitudes were measured. Coma had been caused by transient cardiac arrest (n=49), traumatic brain injury (n=22), stroke (n=45), complications of neurosurgery (n=12) and encephalitis (n=3). One month after the onset of coma patients were classified as awake, still comatose or dead. Three months after (M3), they were classified into one of the 5 categories of the Glasgow outcome scale (GOS). RESULTS: At M3, 41.2% were dead, 47.3% were conscious (GOS 3-5) and 11.5% had not recovered consciousness. None of the patients in whom somatosensory N20 and auditory Pa were absent did return to consciousness and in the post-anoxic group, reduced cortical amplitude too was always associated with bad outcome. Conversely, N20 and Pa were present, respectively, in 33/69 and 34/69 patients who did not recover. CONCLUSIONS: The prognostic value of SEPs and MLAEPs in comatose patients depends on the cause of coma. Measurement of response amplitudes is informative. Abolition of cortical SEPs and/or cortical MLAEPs precludes post-anoxic comatose patients from returning to consciousness (100% specificity). In any case, the presence of short latency cortical somatosensory or auditory components is not a guarantee for return to consciousness. Late components should then be recorded.  相似文献   

5.
OBJECTIVE: The aim of this study is to investigate a source of cortical magnetic fields evoked by index finger movements. METHODS: We analysed both movement-related cortical fields (MRCFs) and somatosensory-evoked fields (SEFs) by single equivalent current dipole (ECD) method in six healthy subjects. Dipole locations were superimposed on MR images of each individual subject. RESULTS: The first component after finger movement (movement-evoked field I, MEFI) was observed in all subjects. The dipole of MEFI was oriented posteriorly, and was located on the posterior wall of the central sulcus of the hemisphere contralateral to the movement. The SEFs showed three major components: N20m, P30m and P60m. The dipoles of P30m and P60m were orientated posteriorly, similarly to the MEFI dipole, while that of N20m was orientated anteriorly. The dipole location of MEFI was closely located to P60m, not to N20m and P30m. The mean location of the MEFI dipole was significantly (p<0.05) superior to N20m. CONCLUSION: These findings suggest that MEFI would be generated in the sensory area (area 3b) affected by multiple afferents and activities, and that the source of the MEFI is not identical to that of the N20m component.  相似文献   

6.
目的:研究急性脑梗死患者脑磁图(magnetoencephalography,MEG)体感诱发磁场发生源等价电流偶极子(equivalentcurrentdipole,ECD)强度变化特征。方法:对15例急性脑梗死患者于发病后3~4周进行体感诱发磁场(SEFS)检测;同时检测16例健康志愿者作为对照。电刺激部位为腕部正中神经处,电流脉冲宽度0.3ms,刺激间隔0.5s。SEFS波峰由ECD评估。结果:所有受检者SEFs的最基本波形为M20,急性脑梗死患者患侧ECD强度减小(P<0.01)。结论:MEG可灵敏地检测出急性脑梗死患者体感皮层中枢功能损伤。  相似文献   

7.
OBJECTIVE: To explore the somatosensory cortical responses to natural moving tactile stimulation in adult subjects using magnetoencephalography. METHODS: We measured cortical somatosensory magnetic evoked fields (SEFs) to moving tactile stimuli by a brush over the right thumb once every 1.5 s in seven subjects. Electric SEFs with various intensity or simulated jitter were used for comparison. RESULTS: Tactile SEFs in primary somatosensory cortex (SI) consisted of two deflections: N24mT and P55mT. Electric SEFs consisted of N24mE, P30mE, P40mE, and P55mE. The amplitude of N24mT was only 34% +/- 12% of N24mE, whereas P55mT and P55mE were of about the same size. With increased jitter or decreased intensity, attenuation of electric SEFs was more clearly found in early deflection than late deflection. CONCLUSIONS: Natural moving tactile stimulation produced simpler cortical somatosensory waveforms in comparison with electric SEFs, partly related to less sharp intensity and stimulation jitter with moving tactile stimulation. We propose that of all the afferent fibers conveying the early deflection, the low threshold components participate the generation of the late deflection.  相似文献   

8.
OBJECTIVE: To determine whether standardised low-resolution brain electromagnetic tomography modified for a quantifiable method (sLORETA-qm) can be used for quantitative analysis in magnetoencephalography (MEG). METHODS: Somatosensory evoked fields (SEFs) were obtained from 10 hemispheres of five healthy volunteers stimulated on the median nerve at 0.75, 1.0, 1.25, 1.5, 1.75 and 2.0 x threshold of thenar muscle twitch (TMT). N20 m intensity changes were analysed quantitatively using sLORETA-qm. Then, SEFs were measured with stimulation on the median nerve at 1.5 x TMT from 47 hemispheres in 24 subjects. sLORETA-qm intensity and the equivalent current dipole (ECD) moment of N20 m were calculated, and relationships between the values were evaluated. RESULTS: sLORETA-qm intensity increased linearly with stimulus intensity between 0.75 and 1.5 x TMT, and tended to reach a plateau or decrease at higher stimulus intensities. The distribution of sLORETA-qm intensity after natural logarithmic transformation was normal and a close correlation was found between the ECD moment and sLORETA-qm intensity (r(s)=0.91, p<0.001). CONCLUSIONS: The results of this study focusing on N20 m suggested that sLORETA-qm is reliable for quantitative analysis of MEG as well as ECD models. SIGNIFICANCE: sLORETA-qm appears promising for quantitative analyses of MEG for which ECD models are inappropriate.  相似文献   

9.
The purpose of this study is to investigate the primary somatosensory function in patients with unilateral polymicrogyria. Somatosensory evoked fields (SEFs) due to median and posterior tibial nerve stimulation were compared in the normal and dysplastic cortices of five patients with unilateral polymicrogyria. SEFs were observed in all five normal hemispheres and three dysplastic hemispheres. Latencies of N20m and P38m, the first cortical components of and SEFs for median nerve and tibial nerve stimulation, were all within the normal range in both normal and dysplastic hemispheres. The amplitudes of the N20m and P38m in the dysplastic hemispheres were smaller in one patient and larger in two patients compared to the normal hemispheres. Equivalent current dipoles of N20m and P38m were localized on the anatomical central sulcus of the normal hemispheres and over the central area of the dysplastic hemispheres. P38m dipoles were localized medial and upward to the N20m dipole in both normal and dysplastic hemispheres. N20m dipole orientation was normal in all normal hemispheres and in one dysplastic hemisphere, but abnormally inferior in two dysplastic hemispheres. P38m dipole had normal medial orientation in all hemispheres except one dysplastic hemisphere. Abnormality of the primary somatosensory function in the dysplastic cortex of patients with unilateral polymicrogyria was clearly demonstrated by magnetoencephalography with high resolution in time and space. The normal somatotopic arrangement was preserved.  相似文献   

10.
OBJECTIVE: We examined the effect of tactile interference to the face on somatosensory evoked magnetic fields (SEFs) following electric thumb stimulation. METHODS: SEFs were elicited by electric stimulation of the right thumb in a control and two interference conditions. In the interference conditions, continuous tactile stimuli were delivered to the skin surface over the right upper face or the right thumb. RESULTS: The face interference significantly attenuated N20m and enhanced P30m. The amplitudes of N20m in the face and thumb interference conditions were 90.3 and 70.3% of the value in the control condition, respectively, while those of P30m were 120.2 and 74.4%. CONCLUSIONS: In human somatosensory area 3b, the representation of the thumb is immediately adjacent to that of the face although the thumb and face are physically distant. We suggest, therefore, that the effect of tactile interference on N20m depends on a cortical distance between electrically and mechanically activated 3b areas, rather than a physical distance between the body parts to which these two stimuli were administered. Although it is unclear why the face interference specifically enhanced the P30m, it is suggested that the generating mechanism of the interference effect on P30m may be different from that on N20m. SIGNIFICANCE: The tactile interference effect on N20m does not depend on the physical distance between electrically and mechanically activated skin areas, but on the distance of the 3b cortex receiving these two inputs.  相似文献   

11.
In order to investigate functional topography of the hand somatosensory cortex in five patients with peri-Rolandic tumors (four frontal lobes and one parietal lobe), we recorded somatosensory evoked fields (SEFs) using magnetoencephalography (MEG) after stimulation of the median nerve (MN) and the five digits. The results obtained were compared with those of five normal healthy subjects. In all five patients, SEFs following MN and digit stimulation showed the previously described respective N20m and N22m components of primary sensory response. Single dipole modeling was applied to determine the three dimensional cortical representations of the N20m and N22m components. The cortical representations of the hand were identical to those of normal subjects, arranging in an orderly somatotopic way from lateral inferior to medial superior in the sequence thumb, MN, index, middle, ring, and little fingers. This sensory homunculus was confirmed by cortical recording of the somatosensory evoked potentials (SEPs) at the time of surgery. Thus, we demonstrate that SEFs, recorded on MEG in conjunction with source localization techniques, are useful to non-invasively investigate the functional topography of the human hand somatosensory cortex in pathological conditions.  相似文献   

12.
Varicella-associated acute necrotizing encephalopathy with a good prognosis   总被引:1,自引:0,他引:1  
A patient with acute necrotizing encephalophathy (ANE) following varicella infection with a good prognosis is reported. A somatosensory evoked magnetic field (SEF) study using a 37-channel-magnetoencephalography system demonstrated normal latency and strength of the first component (N20m) elicited by median nerve stimulation, despite bilateral symmetrical thalamic lesions on MRI. The normal SEF findings and the good prognosis suggested a reversible breakdown of the blood-brain barrier, and an edematous process as the brain pathology. Furthermore, our results support the idea of distinct generators for the three earliest cortical SEF components (N20m, P30m, N45m).  相似文献   

13.
ObjectiveTo evaluate the maturation of tactile processing by recording somatosensory evoked magnetic fields (SEFs) from healthy human subjects.MethodsSEFs to tactile stimulation of the left index finger were measured from the contralateral somatosensory cortex with magnetoencephalography (MEG) in five age groups: newborns, 6- and 12–18-month-olds, 1.6–6-year-olds, and adults. The waveforms of the measured signals and equivalent current dipoles (ECDs) were analyzed in awake and sleep states in order to separate the effects of age and vigilance state on SEFs.ResultsThere was an orderly, systematic change in the measured and ECD source waveforms of the initial cortical responses with age. The broad U-shaped response in newborns (M60) shifted to a W-shaped response with emergence of a notch by 6 months of age. The adult-type response with M30 and M50 components was present by 2 years. The ECDs of M60 and M30 were oriented anteriorly and that of M50 posteriorly. These maturational changes were independent of vigilance state.ConclusionsThe most significant maturation of short latency cortical responses to tactile stimulation takes place during the first 2 years of life.SignificanceThe maturational changes of somatosensory processing can noninvasively be evaluated with MEG already in infancy.  相似文献   

14.
目的:研究急性脑梗死患者体感皮层中枢和听觉皮层中枢脑磁图(MEG)变化特征。方法:对15例急性脑梗死患者于发病后3-4周进行体感诱发磁场(SEFs)和听觉诱发磁场(AEFs)检测,同时检测健康志愿者作为对照。SEFs电刺激部位为腕部正中神经处,电流脉冲宽度0.3ms,刺激间隔0.5s。AEFs采用双耳纯音刺激,频率2KHz,声音强度90dB,刺激间隔ls,持续时间8ms,脑磁图检查后进行MRI超薄扫描。结果:SEFs的最主要波峰为M20,其ECD均位于体感皮层中枢,AEFs为M100,位于两侧颞横回。两侧ECD位置三维不对称性由(△X2+△Y2+△Z2)1-2表示,SEFs和AEFs测定患者组均较正常对照组不对称性增大。结论:MEG可灵敏地检测出急性脑梗死患者皮层中枢功能损伤。  相似文献   

15.
The calculation of central somatosensory conduction time by subtracting the peak latency of the cervical potential from that of the initial cortical response in patients in posttraumatic coma provides both a reliable indication of outcome plus an assessment of brain damage. The interpretation of such recordings is confounded in a minority of patients by the presence in the cortical SEP of a biphasic cortical negativity, giving the impression that the initial cortical response (N20) has bifurcated into two subcomponents. Depending upon which subcomponent is assumed to be N20, an individual recording may ambiguously appear to have a central conduction time either within normal limits or very abnormally prolonged. The aetiology and significance of this double peak phenomenon was studied in 30 patients with severe head trauma. It is concluded that the first of the subcomponents invariably represents the genuine N20 potential irrespective of its relative amplitude. The second subcomponent is assumed to be N25, a minor cortical potential which can be recorded in only a limited number of normal subjects. The double peak effect appears to be created by a distortion in the early cortical waveform probably due to the characteristic reduction in its amplitude following head injury.  相似文献   

16.
We recorded somatosensory evoked magnetic fields (SEFs) by a whole head magnetometer to elucidate cortical receptive areas involved in pain processing, focusing on the primary somatosensory cortex (SI), following painful CO(2) laser stimulation of the dorsum of the left hand in 12 healthy human subjects. In seven subjects, three spatially segregated cortical areas (contralateral SI and bilateral second (SII) somatosensory cortices) were simultaneously activated at around 210 ms after the stimulus, suggesting parallel processing of pain information in SI and SII. Equivalent current dipole (ECD) in SI pointed anteriorly in three subjects whereas posteriorly in the remaining four. We also recorded SEFs following electric stimulation of the left median nerve at wrist in three subjects. ECD of CO(2) laser stimulation was located medial-superior to that of electric stimulation in all three subjects. In addition, by direct recording of somatosensory evoked potentials (SEPs) from peri-Rolandic cortex by subdural electrodes in an epilepsy patient, we identified a response to the laser stimulation over the contralateral SI with the peak latency of 220 ms. Its distribution was similar to, but slightly wider than, that of P25 of electric SEPs. Taken together, it is postulated that the pain impulse is received in the crown of the postcentral gyrus in human.  相似文献   

17.
OBJECTIVE: To assess the clinical value of magnetoencephalography (MEG) in localising the primary hand motor area and evaluating cortical distortion of the sensorimotor cortices in patients with intracerebral tumour. METHODS: 10 normal volunteers (controls) and 14 patients with an intracerebral tumour located around the central region were studied. Somatosensory evoked magnetic fields (SEFs) following median nerve stimulation, and movement related cerebral magnetic fields (MRCFs) following index finger extension, were measured in all subjects and analysed by the equivalent current dipole (ECD) method to ascertain the neuronal sources of the primary sensory and motor components (N20m and MF, respectively). These ECD locations were defined as the primary hand sensory and motor areas and the positional relations between these two functional areas in controls and patients were investigated. RESULTS: The standard range of ECD locations of MF to N20m was determined in controls. In 11 of the 14 patients, MRCFs could identify the primary motor hand area. ECD locations of MF were significantly closer to the N20m in the medial-lateral direction in patients than in controls. In patients with a tumour located below the sensorimotor hand area, relative ECD locations of MF to N20m moved anteriorly over the standard range determined in the control subjects. These MEG findings correlated well with radiological tumour locations. The mean estimated ECD strength of MF was significantly lower in patients than in controls. CONCLUSIONS: MRCF was useful in localising the primary motor hand area in patients with intracerebral tumour. The relative ECD locations of MF to N20m describe the anatomical distortion of the sensorimotor cortex.  相似文献   

18.
The present study aimed at investigating gating of median nerve somatosensory evoked cortical responses (SECRs), estimated during executed continuous complex ipsilateral and contralateral sequential finger movements. SECRs were modeled with an advanced high resolution electroencephalography technology that dramatically improved spatial details of the scalp recorded somatosensory evoked potentials. Integration with magnetic resonance brain images allowed us to localize different SECRs within cortical areas. The working hypothesis was that the gating effects were time varying and could differently influence SECRs. Maximum statistically significant (p<0. 01) time-varying gating (magnitude reduction) of the short-latency SECRs modeled in the contralateral primary motor and somatosensory and supplementary motor areas was computed during the executed ipsilateral movement. The gating effects were stronger on the modeled SECRs peaking 30-45 ms (N30-P30, N32, P45-N45) than 20-26 ms (P20-N20, P22, N26) post-stimulus. Furthermore, the modeled SECRs peaking 30 ms post-stimulus (N30-P30) were significantly increased in magnitude during the executed contralateral movement. These results may delineate a distributed cortical sensorimotor system responsible for the gating effects on SECRs. This system would be able to modulate activity of SECR generators, based on the integration of afferent somatosensory inputs from the stimulated nerve with outputs related to the movement execution.  相似文献   

19.
To assess the accuracy of magnetoencephalography (MEG) as a tool for quantitative detection of neuronal activity, the dipole moment was estimated at N20m of somatosensory evoked fields (SEFs) produced by median nerve stimulation.Neurologically stable patients were examined twice within 2 weeks. Since the estimated moment values of the two examinations should be essentially the same, we assessed the margin of error for our measurement system. The results showed that a change of more than 5.2 nAm is statistically significant (p=0.05; n=91).The patients were classified as without or with functional asymmetries by measuring the conventional cerebral blood flow (CBF) with single photon emission CT (SPECT), and the dipole moment difference between hemispheres was measured. Hemispheric moment differences were statistically larger for the group with CBF laterality, indicating consistency between conventional CBF results and the moment measurements as a group. Moreover, MEG was able to detect more functional asymmetries than CBF study.The dipole moment provided a reliable quantitative index of cortical response to somatosensory stimulus, and the moment measurement thus holds promise as a clinical tool for direct quantification of cortical response.  相似文献   

20.
《Clinical neurophysiology》2014,125(5):1021-1029
ObjectiveAge-related changes are well documented in the primary somatosensory cortex (SI). Based on previous somatosensory evoked potential studies, the amplitude of N20 typically increases with age probably due to cortical disinhibition. However, less is known about age-related change in the secondary somatosensory cortex (SII). The current study quantified age-related changes across SI and SII mainly based on oscillatory activity indices measured with magnetoencephalography.MethodsWe recorded somatosensory evoked magnetic fields (SEFs) to right median nerve stimulation in healthy young and old subjects and assessed major SEF components. Then, we evaluated the phase-locking factor (PLF) for local field synchrony on neural oscillations and the weighted phase-lag index (wPLI) for cortico-cortical synchrony between SI and SII.ResultsPLF was significantly increased in SI along with the increased amplitude of N20m in the old subjects. PLF was also increased in SII associated with a shortened peak latency of SEFs. wPLI analysis revealed the increased coherent activity between SI and SII.ConclusionsOur results suggest that the functional coupling between SI and SII is influenced by the cortical disinhibition due to normal aging.SignificanceWe provide the first electrophysiological evidence for age-related changes in oscillatory neural activities across the somatosensory areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号