首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gordon KA  Valero J  Papsin BC 《Neuroreport》2007,18(6):613-617
Binaural auditory brainstem processing was examined using evoked potential measures in 40 children who were implanted early and received a second implant simultaneously or after long or short periods of unilateral implant use. Wave latencies were shorter when evoked by the experienced versus na?ve implanted ear at initial bilateral activation. Binaural difference waves were detected in most children in response to apical but not basal electrode stimulation and were prolonged in latency in children implanted after long or short delays between implants. Timing differences between the implanted ears in children receiving sequential but not simultaneous bilateral implants reflect a relative immaturity of pathways innervating the second ear and results in abnormal timing of binaural processing at this initial implant stage.  相似文献   

2.
OBJECTIVE: Maturation of acoustically evoked brainstem responses (ABR) in hearing children is not complete at birth but rather continues over the first two years of life. In particular, it has been established that the decrease in ABR wave V latency can be modeled as the sum of two decaying exponential functions with respective time-constants of 4 and 50 weeks [Eggermont, J.J., Salamy, A., 1988a. Maturational time-course for the ABR in preterm and full term infants. Hear Res 33, 35-47; Eggermont, J.J., Salamy, A., 1988b. Development of ABR parameters in a preterm and a term born population. Ear Hear 9, 283-9]. Here, we investigated the maturation of electrically evoked auditory brainstem responses (EABR) in 55 deaf children who recovered hearing after cochlear implantation, and proposed a predictive model of EABR maturation depending on the onset of deafness. The pattern of EABR maturation over the first 2 years of cochlear implant use was compared with the normal pattern of ABR maturation in hearing children. METHODS: Changes in EABR wave V latency over the 2 years following cochlear implant connection were analyzed in two groups of children. The first group (n=41) consisted of children with early-onset of deafness (mostly congenital), and the second (n=14) of children who had become profoundly deaf after 1 year of age. The modeling of changes in EABR wave V latency with time was based on the mean values from each of the two groups, allowing comparison of the rates of EABR maturation between groups. Differences between EABRs elicited at the basal and apical ends of the implant electrode array were also tested. RESULTS: There was no influence of age at implantation on the rate of wave V latency change. The main factor for EABR changes was the time in sound. Indeed, significant maturation was observed over the first 2 years of implant use only in the group with early-onset deafness. In this group maturation of wave V progressed as in the ABR model of [Eggermont, J.J., Salamy, A., 1988a. Maturational time-course for the ABR in preterm and full term infants. Hear Res 33, 35-47; Eggermont, J.J., Salamy, A., 1988b. Development of ABR parameters in a preterm and a term born population. Ear Hear 9, 283-9] of normal hearing children: a sum of two decaying exponential functions, one showing an early rapid decrease in latency and the other a slower decrease. Remarkably, the time-constants fell well within the ranges described by Eggermont and Salamy (i.e., 3.9 and 68 weeks), consistent with the time-course of the neurophysiological mechanisms presumably involved in auditory pathway maturation during the first 2 years of life: i.e., myelination and increased synaptic efficacy. In contrast, relatively little change in wave V was evident in children with late-onset deafness. In agreement with the notion that EABR maturation follows an apex-to-base gradient as described for ABR, we observed that wave V latencies were longer for the basal than the apical end of the implant electrode array and remained so throughout the study period, whatever the time of onset of deafness. CONCLUSIONS: The findings in the early-onset of deafness group support the theory that auditory pathways remain "frozen" during the period of sensory deprivation until cochlear implant rehabilitation restores the normal chronology of maturational processes. In children with late-onset deafness, however, some maturational processes may occur before the onset of deafness, and thus less additional maturation is required during the first two years of implant use resulting in no significant EABR latency changes being observed in this period. The results suggest that the rehabilitation-induced plasticity of the auditory pathways is, in case of late auditory deprivation, unlikely to result in neurophysiological outcomes similar to those observed in children with early auditory deprivation. SIGNIFICANCE: Changes in EABR wave V latency over the first 2 years of cochlear implant use were found to be well fitted by the sum of two decaying exponential functions in children with early-onset deafness. This is in line with the maturation of ABR wave V latency in normal-hearing children over the first two years of life. Further studies are needed to assess whether the differences observed in terms of auditory pathways maturation are associated with consistent differences in terms of language development.  相似文献   

3.
OBJECTIVE: This study determined the relationship between auditory evoked potential measures and speech perception in experienced adult cochlear implant (CI) users and compared the CI evoked potential results to those of a group of age- and sex-matched control subjects. METHODS: CI subjects all used the Nucleus CI-22 implant. Middle latency response (MLR), obligatory cortical potentials (CAEP), mismatch negativity (MMN) and P3a auditory evoked potentials were recorded. Speech perception was evaluated using word and sentence tests. RESULTS: Duration of deafness correlated with speech scores with poor scores reflecting greater years of deafness. Na amplitude correlated negatively with duration of deafness, with small amplitudes reflecting greater duration of deafness. Overall, N1 amplitude was smaller in CI than control subjects. Earlier P2 latencies were associated with shorter durations of deafness and higher speech scores. In general, MMN was absent or degraded in CI subjects with poor speech scores. CONCLUSIONS: Auditory evoked potentials are related to speech perception ability and provide objective evidence of central auditory processing differences across experienced CI users. SIGNIFICANCE: Since auditory evoked potentials relate to CI performance, they may be a useful tool for objectively evaluating the efficacy of speech processing strategies and/or auditory training approaches in both adults and children with cochlear implants.  相似文献   

4.
Attention deficit hyperactivity disorder (ADHD) is a neurobehavioral developmental disorder characterized by lack of sustained attention and hyperactivity. It has been suggested that asymmetrical conduction of the auditory stimulus in the brainstem plays a role in the pathophysiological process of ADHD. In the present study, the functional integrity of the central auditory pathway was assessed using the auditory brainstem response (ABR), mid-latency response (MLR) and slow vertex response (SVR). Twenty ADHD children and twenty controls were recruited for the study and recordings were done on a computerized evoked potential recorder using the 10-20 system of electrode placement. There emerged no significant difference in absolute peak latencies, interpeak latencies and amplitude of ABR or latency of MLR in the ADHD children as compared with the controls. Prolongation of the SVR latency was found in the children with ADHD versus the controls, but the difference was statistically insignificant. The present study does not suggest any auditory conduction abnormality as a contributory factor in ADHD.  相似文献   

5.
The preservation of central neurophysiological function was assessed in a 32-year-old woman with hydranencephaly using brainstem auditory evoked responses (BAER), auditory middle latency responses (MLR), cortical auditory evoked responses (CER), strobe electroretinograms (ERG), strobe-flash visual evoked responses (VER) and median and tibial nerve somatosensory evoked responses (SER). The BAER to the right ear stimulation revealed wave peaks I through VII with normal thresholds, morphology and latencies, while the BAER in the left ear was abnormal. The auditory MLR and CER were absent. Grossly normal strobe ERGs were acquired bilaterally with peak waves at 20 and 50 ms. Strobe VERs were poorly defined and abnormal bilaterally. Left and right median nerve SER revealed significant conduction defects in the large fiber sensory system caudal to the thalamus, above the lower pontine level. Bilateral tibial nerve stimulation revealed normal knee popliteal fossa potentials, but distinct conduction defects in the large fiber sensory system rostral to the lower spinal cord. Brainstem electrophysiological measures revealed functional auditory afferent tracts and nuclei, in the absence of cortical influence, suggesting intact unilateral auditory function, which would support clinical observations of behavioral auditory responses in hydranencephaly.  相似文献   

6.
Ototoxic drugs can be used to produce a loss of cochlear hair cells to create animal models of deafness. However, to the best of our knowledge, there is no report on the establishment of a rat deafness model through the combined application of aminoglycosides and loop diuretics. The aim of this study was to use single or combined administration of furosemide and kanamycin sulfate to establish rat models of deafness. The rats received intravenous injections of different doses of furosemide and/or intramuscular injections of kanamycin sulfate. The auditory brainstem response was measured to determine the hearing threshold after drug application. Immunocytochemistry and confocal microscopy were performed to evaluate inner ear morphology. In the group receiving combined administration of furosemide and kanamycin, the auditory brainstem response threshold showed significant elevation 3 days after administration, higher than that produced by furosemide or kanamycin alone. The hair cells showed varying degrees of injury, from the apical turn to the basal turn of the cochlea and from the outer hair cells to the inner hair cells. The spiral ganglion cells maintained a normal morphology during the first week after the hair cells completely disappeared, and then gradually degenerated. After 2 months, the majority of spiral ganglion cells disappeared, but a few remained. These findings demonstrate that the combined administration of furosemide and kanamycin has a synergistic ototoxic effect, and that these drugs can produce hair cell loss and hearing loss in rats. These findings suggest that even in patients with severe deafness, electronic cochlear implants may partially restore hearing.  相似文献   

7.
The medial superior olive (MSO) is a key auditory brainstem structure that receives binaural inputs and is implicated in processing interaural time disparities used for sound localization. The deaf white cat, a proven model of congenital deafness, was used to examine how deafness and cochlear implantation affected the synaptic organization at this binaural center in the ascending auditory pathway. The patterns of axosomatic and axodendritic organization were determined for principal neurons from the MSO of hearing, deaf, and deaf cats with cochlear implants. The nature of the synapses was evaluated through electron microscopy, ultrastructure analysis of the synaptic vesicles, and immunohistochemistry. The results show that the proportion of inhibitory axosomatic terminals was significantly smaller in deaf animals when compared with hearing animals. However, after a period of electrical stimulation via cochlear implants the proportion of inhibitory inputs resembled that of hearing animals. Additionally, the excitatory axodendritic boutons of hearing cats were found to be significantly larger than those of deaf cats. Boutons of stimulated cats were significantly larger than the boutons in deaf cats, although not as large as in the hearing cats, indicating a partial recovery of excitatory inputs to MSO dendrites after stimulation. These results exemplify dynamic plasticity in the auditory brainstem and reveal that electrical stimulation through cochlear implants has a restorative effect on synaptic organization in the MSO.  相似文献   

8.
The cochleotopic organization of the primary auditory cortex (AI) was investigated by means of focal potentials evoked by direct electrical stimulation of the cochlea in cats under nembutal anesthesia. Two foci of maximal activity (dorsal and ventral) which were more prominent in the rostral and medial parts of AI appeared in 85% of animals in response to local stimulation of different cochlear regions. The analysis of the projectional maps shows that different cochlear regions are represented in AI nonproportionally. The basal region is projected to a larger cortical area than both the middle and apical ones. Significant variability was found for cochlear representation in the auditory cortex of different cats.  相似文献   

9.
Cochlear implants and multichannel auditory brainstem implants enable patients with bilateral total or profound hearing loss to receive at least acoustic information. Both types of prosthesis are based on electrical stimulation of the auditory pathway. Different speech coding strategies and the number of electrodes used may influence the postoperative results. The preoperative evaluation of patients is of utmost importance. The cochlear implant is suitable for patients with hearing loss due to inner ear disorders, but who have functioning hearing nerve. Patients with a defect of the hearing nerve can be provided with an auditory brainstem implant.  相似文献   

10.
N P Verma  S Kapen  S D King  G J Koshorek 《Neurology》1987,37(6):1036-1039
Previous electrophysiologic studies in the sleep apnea syndrome (SAS) have used only a single modality (brainstem auditory evoked responses [BAERs]) and yielded conflicting, inconsistent, and inconclusive results. We utilized both BAERs and somatosensory evoked responses in 12 patients with SAS and found normal central conduction times in all patients. These data argue against a significant structural alteration in both rostral and caudal brainstem, insofar as the auditory and somatosensory pathways are concerned, in patients with SAS.  相似文献   

11.
OBJECTIVE: The purpose of this study is to expand our understanding of how the human auditory brainstem encodes temporal and spectral acoustic cues in voiced stop consonant-vowel syllables. METHODS: Auditory evoked potentials measuring activity from the brainstem of 22 normal learning children were recorded to the voiced stop consonant syllables [ga], [da], and [ba]. Spectrotemporal information distinguishing these voiced consonant-vowel syllables is contained within the first few milliseconds of the burst and the formant transition to the vowel. Responses were compared across stimuli with respect to their temporal and spectral content. RESULTS: Brainstem response latencies change in a predictable manner in response to systematic alterations in a speech syllable indicating that the distinguishing acoustic cues are represented by neural response timing (synchrony). Spectral analyses of the responses show frequency distribution differences across stimuli (some of which appear to represent acoustic characteristics created by difference tones of the stimulus formants) indicating that neural phase-locking is also important for encoding these acoustic elements. CONCLUSIONS: Considered within the context of existing knowledge of brainstem encoding of speech-sound structure, these data are the beginning of a comprehensive delineation of how the human auditory brainstem encodes perceptually critical features of speech. SIGNIFICANCE: The results of this study could be used to determine how neural encoding is disrupted in the clinical populations for whom stop consonants pose particular perceptual challenges (e.g., hearing impaired individuals and poor readers).  相似文献   

12.
Hearing loss in early infancy affects maturation of the auditory pathway   总被引:1,自引:0,他引:1  
The influence of early cochlear hearing loss on maturation of the auditory pathway was studied by measuring auditory brainstem responses (ABR). In a retrospective study, 85 children with normal hearing (46 males, 39 females; age range 2 months to 14 years) and 165 children with binaural cochlear hearing impairment (89 males, 76 females; age range 1 month to 16 years) were examined. A significant positive correlation (p<0.001) between the degree of hearing loss and interpeak latencies I-V (IPL(I-V)) of the ABR was observed. No significant correlation (p=0.85) was found between hearing loss and interpeak latencies I-III (IPL(I-III)). These findings can be interpreted as indicating a marked delay in maturation of higher brainstem structures due to reduced auditory input during infancy. The correlation differs notably from results of comparable studies of adults published in recent literature. This leads to the assumption that the developing human brain is particularly sensitive to auditory deprivation. Thus, our results indicate the importance of a normal acoustic environment during sensitive periods in early childhood to ensure normal hearing and speech development.  相似文献   

13.
Delayed visual maturation is a term used to describe infants who initially seem blind but subsequently have a marked improvement. The mechanism of visual loss and the subsequent improvement remains unknown. Auditory neuropathy/dyssynchrony is a condition of hearing impairment associated with absent or severely abnormal brainstem auditory evoked potentials but normal cochlear functions as measured by otoacoustic emissions. In this report, a 9-month-old infant who had no visual fixation for the first 3 months of life and congenital hearing impairment is described. Her brainstem auditory evoked potential study at 2.5 months of age showed no response to click stimuli presented at 90 dB nHL, whereas her otoacoustic emissions were normal. Subsequently, her vision and hearing improved. A brainstem auditory evoked potential study at 9 months of age showed reproducible waveforms. This case suggests the need for a detailed hearing evaluation of children with delayed visual maturation. Furthermore, this case highlights the need for follow-up brainstem auditory evoked potential testing prior to pursuing any audiologic intervention.  相似文献   

14.
Congenital deafness results in synaptic abnormalities in auditory nerve endings. These abnormalities are most prominent in terminals called endbulbs of Held, which are large, axosomatic synaptic endings whose size and evolutionary conservation emphasize their importance. Transmission jitter, delay, or failures, which would corrupt the processing of timing information, are possible consequences of the perturbations at this synaptic junction. We sought to determine whether electrical stimulation of the congenitally deaf auditory system via cochlear implants would restore the endbulb synapses to their normal morphology. Three and 6‐month‐old congenitally deaf cats received unilateral cochlear implants and were stimulated for a period of 10–19 weeks by using human speech processors. Implanted cats exhibited acoustic startle responses and were trained to approach their food dish in response to a specific acoustic stimulus. Endbulb synapses were examined by using serial section electron microscopy from cohorts of cats with normal hearing, congenital deafness, or congenital deafness with a cochlear implant. Synapse restoration was evident in endbulb synapses on the stimulated side of cats implanted at 3 months of age but not at 6 months. In the young implanted cats, postsynaptic densities exhibited normal size, shape, and distribution, and synaptic vesicles had density values typical of hearing cats. Synapses of the contralateral auditory nerve in early implanted cats also exhibited synapses with more normal structural features. These results demonstrate that electrical stimulation with a cochlear implant can help preserve central auditory synapses through direct and indirect pathways in an age‐dependent fashion. J. Comp. Neurol. 518:2382–2404, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
OBJECTIVE: To compare two methods of minimizing cochlear implant artifact in cortical auditory evoked potential (CAEP) recordings. METHODS: Two experiments were conducted. In the first, we assessed the use of independent component analysis (ICA) as a pre-processing filter. In the second, we explored the use of an optimized differential reference (ODR) for minimizing artifacts. RESULTS: Both ICA and the ODR can minimize the artifact and allow measurement of CAEP responses. CONCLUSIONS: When using a large number of recording electrodes ICA can be used to minimize the implant artifact. When using a single electrode montage an optimized differential reference is adequate to minimize the artifact. SIGNIFICANCE: The use of an optimized differential reference could allow cortical evoked potentials to be used in routine clinical assessment of auditory pathway development in children and adults fit with cochlear implants.  相似文献   

16.
Members of a Roma (Gypsy) family with hereditary motor and sensory peripheral neuropathy (HMSN) and concomitant auditory and vestibular cranial neuropathies were identified in Kocevje, Slovenia. The illness begins in childhood with a severe and progressive motor disability and the deafness is delayed until the second decade. There are no symptoms of vestibular dysfunction. The family structure is consistent with an autosomal recessive pattern of inheritance and the genetic locus for the disorder is linked to the same region of chromosome 8q24 as other Roma families with HMSN and deafness from Lom, Bulgaria (HMSN-Lom). The present study shows that the deafness is caused by a neuropathy of the auditory nerve with preserved measures of cochlear outer hair cell function (otoacoustic emissions and cochlear microphonics) but absent neural components of auditory brainstem potentials. The hearing loss affects speech comprehension out of proportion to the pure tone loss. Vestibular testing showed absence of caloric responses. Physiological and neuropathological studies of peripheral nerves were compatible with the nerve disorder contemporaneously affecting Schwann cells and axons resulting in both slowed nerve conduction and axonal loss. Genetic linkage studies suggest a refinement of the 8q24 critical region containing the HMSN-Lom locus that affects peripheral motor and sensory nerves as well as the cranial auditory and vestibular nerves.  相似文献   

17.
Delayed auditory brainstem responses in diabetes mellitus   总被引:2,自引:0,他引:2       下载免费PDF全文
Diabetic patients have longer interpeak latencies in the brainstem auditory evoked responses than age-matched controls. The delay is not related to clinical hearing loss or blood glucose level at time of testing. Since waves I and II are normal in latency, the conduction velocity of the eighth nerve is not involved. The delay occurs between waves II and V, which would reflect altered transmission times in auditory brainstem and midbrain structures, and suggests the presence of a central neuropathy in patients with diabetes.  相似文献   

18.
Today a cochlear implant (CI) may significantly restore auditory function, even for people with a profound hearing loss. Because the efficacy of a CI is believed to depend mainly on the remaining population of spiral ganglion neurons (SGNs), it is important to understand the timeline of the degenerative process of the auditory neurons following deafness. Guinea pigs were transtympanically deafened with neomycin, verified by recording auditory brainstem responses (ABRs), and then sacrificed at different time points. Loss of SGNs as well as changes in cell body and nuclear volume were estimated. To study the effect of delayed treatment, a group of animals that had been deaf for 12 weeks was implanted with a stimulus electrode mimicking a CI, after which they received a 4‐week treatment with glial cell‐derived neurotrophic factor (GDNF). The electrical responsiveness of the SGNs was measured by recording electrically evoked ABRs. There was a rapid degeneration during the first 7 weeks, shown as a significant reduction of the SGN population. The degenerative process then slowed, and there was no difference in the amount of remaining neurons between weeks 7 and 18. © 2016 The Authors Journal of Neuroscience Research Published by Wiley Periodicals, Inc.  相似文献   

19.
It has been shown that visual stimulation can activate cortical regions normally devoted to auditory processing in deaf individuals. This neural activity can persist even when audition is restored through the implantation of a cochlear implant, raising the possibility that cross-modal plasticity can be detrimental to auditory performance in cochlear implant users. To determine the influence of visual information on auditory performance after restoration of hearing in deaf individuals, the ability to segregate conflicting auditory and visual information was assessed in fourteen cochlear implant users with varied degree of expertise and an equal number of participants with normal-hearing matched for gender, age and hearing performance. An auditory speech recognition task was administered in the presence of three incongruent visual stimuli (color-shift, random-dot motion and lip movement). For proficient cochlear implant users, auditory performance was equal to that of controls in the three experimental conditions where visual stimuli were presented simultaneously with auditory information. For non-proficient cochlear implant users, performance did not differ from that of matched controls when the auditory stimulus was paired with a visual stimulus that was color-shifted. However, significant differences were observed between the non-proficient cochlear implant users and their matched controls when the accompanying visual stimuli consisted of a moving random-dot pattern or incongruent lip movements. These findings raise several questions with regards to the rehabilitation of cochlear implant users.  相似文献   

20.
The effects of deafness on brain structure and function have been studied using animal models of congenital deafness that include surgical ablation of the organ of Corti, acoustic trauma, ototoxic drugs, and hereditary deafness. This report describes the morphologic plasticity of auditory nerve synapses in response to ototoxic deafening and chronic electrical stimulation of the auditory nerve. Normal kittens were deafened by neonatal administration of neomycin that eliminated auditory receptor cells. Some of these cats were raised deaf, whereas others were chronically implanted with cochlear electrodes at 2 months of age and electrically stimulated for up to 12 months. The large endings of the auditory nerve, endbulbs of Held, were studied because they hold a key position in the timing pathway for sound localization, are readily identifiable, and exhibit deafness‐associated abnormalities. Compared with those of normal hearing cats, synapses of ototoxically deafened cats displayed expanded postsynaptic densities, a 35.4% decrease in synaptic vesicle (SV) density, and a reduction in the somatic size of spherical bushy cells (SBCs). In comparison with normal hearing cats, ototoxically deafened cats that received cochlear stimulation had endbulbs that expressed postsynaptic densities (PSDs) that were statistically identical in size, showed a 48.1% reduction in SV density, and whose target SBCs had a 25.5% reduction in soma area. These results demonstrate that electrical stimulation via a cochlear implant in chemically deafened cats preserves PSD size but not other aspects of synapse morphology. This determination further suggests that the effects of ototoxic deafness are not identical to those of hereditary deafness. J. Comp. Neurol. 518:1046–1063, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号