首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
OBJECTIVE: Review of the literature on the role of CD8+ T cell in the immune response against Leishmania species that cause cutaneous leishmaniasis. The role of macrophages, dendritic cells, CD4 T cells and NK cells has been extensively analyzed in leishmaniasis, yet very little knowledge has been gained on CD8+ T cells in this disease. Murine models of leishmaniasis suggest that CD8+ T cells participate through IFNg production, yet their cytotoxic capacity may also play a crucial role, as has been found in human disease. It is an enigma what mechanisms underlie the CD8+ T cell activation. It is possible that dendritic cells activate CD8+ T cells through mechanisms that include antigen traspresentation. A better understanding of CD8+ T cells in the immune response against Leishmania will undoubtedly provide new insights into the physiopathogenesis of the disease that could lead to new therapeutic approaches against leishmaniasis.  相似文献   

2.
CD8 cytotoxic T cells in cutaneous leishmaniasis   总被引:1,自引:0,他引:1  
CD8 T cells are essential in the defence against viruses, yet little is known of their participation in the host defence against parasites, such as Leishmania, which can cause a variety of clinical diseases, such as localized cutaneous, diffuse cutaneous, mucocutaneous and visceral leishmaniasis. Murine models of leishmaniasis suggest that CD8 T cells participate through IFN-gamma production, yet their cytotoxic capacity also plays an important role, as has been found in patients infected with various Leishmania strains, where CD8 T cell cytotoxicity and apoptosis of autologous Leishmania-infected macrophages correlate with cure. Yet the mechanisms underlying the CD8 T activation in patients with leishmaniasis remain an enigma. It is possible that dendritic cells activate CD8 T cells through mechanisms that include antigen cross-presentation. Here we summarize the recent findings of CD8 T cells in cutaneous leishmaniasis and discuss their significance in the control of the disease. Further knowledge in this field will undoubtedly improve the design of therapeutic and vaccine strategies.  相似文献   

3.
We screened the Neflaiprotein to identify new HLA-DR-restricted epitopes, because this small protein is expressed early during infection, and specific CD4(+) T cells are critical for effective immunity in HIV-1 infection. We synthesized a set of peptides that covers the sequence of the Nef protein, and performed binding assays using 10 common HLA-DR molecules. We defined four large regions in this protein able to bind very efficiently to eight HLADR molecules. We took advantage of healthy volunteers immunized with an HIV-1 lipopeptide vaccine that contains three of the four HLA DR-restricted regions to investigate their capacities to stimulate T cells. In 11 vaccinated volunteers, typed for their class II molecules, we were able to correlate sequences of the vaccine displaying binding activities to specific HLA-DR molecules and the induction of CD4(+) T cell proliferation. To identify potential HLA-DR epitopes, we synthesized 31 15-mer peptides and showed that 26 bound to one or more HLA-DR molecules. Interestingly, 12 of the 26 15-mer peptides identified are included in the sequence of lipopeptides. We used IFN-gamma ELISPOT and flow cytometer assays to investigate the capacity of these potential CD4(+) T cell epitopes to induce specific T cell responses. We showed that seven of these peptides were able to stimulate HIV-specific T cell responses in five of six tested volunteers. These cells are Nef-specific CD4(+) and CD4(+) CD8(+) T cells secreting IL-2/INF-gamma or IL-2 alone. To conclude, these 26 Nef HLA-DR-restricted peptides could be helpful to better evaluate CD4(+) deficiencies in HIV infection and, for new vaccine designs.  相似文献   

4.
Although the precise host‐defence mechanisms are not completely understood, T‐cell‐mediated immune responses are believed to play a pivotal role in controlling parasite infection. In this study, the potential HLA*A2 restricted peptides were predicted and the ability of peptides to bind HLA‐A*02 was confirmed by a MHC stabilization assay. Two of the peptides tested stabilized HLA‐A*02: (a) LLATTVSGL (P1) and (b) LMTNGPLEV (P3). The potential of the peptides to generate protective immune response was evaluated in patients with treated visceral leishmaniasis as well as in healthy control subjects. Our data suggest that CD8+ T‐cell proliferation against the selected peptide was significantly higher compared to unstimulated culture conditions. The stimulation of peripheral blood mononuclear cells with epitopes individually or as a cocktail upregulated IFN‐γ production, which indicates its pivotal role in protective immune response. The IFN‐γ production was mainly in a CD8+ T‐cells‐dependent manner, which suggested that these epitopes had an immunoprophylactic potential in a MHC class I‐dependent manner. Moreover, no role of the CD3+ T cell was observed in the IL‐10 production against the selected peptides, and no role was found in disease pathogenesis. Further studies on the role of these synthetic peptides may contribute significantly to developing a polytope vaccine idea towards leishmaniasis.  相似文献   

5.
Recently, a prominent role for CD8(+) T cells in immunity against pathogens has emerged. The mode of action of CD8(+) T cells in murine visceral leishmaniasis and their contribution to the clearance of the parasite has been addressed in the present study. We showed that during the course of experimental infection cytotoxic clones specific for Leishmania infantum antigens developed in the spleen of susceptible BALB/c mice, showed an activated phenotype and became susceptible to apoptotic cell death late in the course of the disease. CD8(+) T cells exhibited considerable cytotoxic activity against cells expressing Leishmania antigens. This activity was mediated by both the perforin and the Fas/FasL pathway, as judged from in vitro and in vivo assays. The CD8(+) T cells also up-regulated mRNAs for cytokines (IFN-gamma and TNF-alpha) and C-C chemokines (RANTES and MIP-1alpha), which have a major role in immunity against the pathogen. CD8(+) T-cells thus displayed a Tc1 pattern of differentiation. In conclusion, CD8(+) T cells appear to play multiple roles in an experimental model of visceral leishmaniasis comprising both cytotoxic activity and secretion of cytokines and chemokines.  相似文献   

6.
NY-ESO-1 is a germ cell antigen aberrantly expressed in different tumor types that elicits strong humoral and cellular immune responses in cancer patients. Monitoring spontaneous CD8(+) T cell responses against NY-ESO-1 peptides 157-165 (S9C) and 157-167 (S11L) in a series of HLA-A2(+) cancer patients showed that these two peptides had overlapping antigenic profiles and were equally immunogenic. However, discrepancies between S9C and S11L reactivities were observed upon vaccination with both peptides to generate or boost T cell responses to NY-ESO-1 in cancer patients. We here analyze the fine specificity of these responses and describe an HLA-A2-restricted epitope, NY-ESO-1 peptide 159-167 (L9L), which is strongly recognized by CD8(+) T cells as a result of peptide vaccination of cancer patients. Responses to L9L were stimulated by S11L and appeared early in the course of vaccination, independently of S9C responses. However, L9L-specific CD8(+) T cells failed to recognize tumor cells naturally expressing NY-ESO-1 or B lymphoblastoid cells transduced with NY-ESO-1. Processing of L9L could be rescued after IFN-gamma treatment of tumor cells or by dendritic cells pulsed with NY-ESO-1 protein/antibody immune complexes. The present results demonstrate a dual specificity within peptide S11L, with S9C as the natural antigenic tumor epitope, and L9L as a cryptic epitope with dominant immunogenicity upon vaccination that diverts the immune response from tumor recognition. These unanticipated findings raise questions about the use of S11L in the clinic and emphasize the importance of analyzing the fine specificity of vaccine-induced T cell responses in patients as a basis for constructing effective cancer vaccines.  相似文献   

7.
There is evidence that the limited immunogenicity of plasmid DNA vaccines is the result, at least in part, of the rapid clearance of vaccine antigen expression by antigen-specific immune responses. However, the cell types responsible for the clearance of plasmid DNA vaccine antigens are not known. Here we demonstrate that macrophages, NK cells, and CD8(+) T cells did not significantly contribute to the DNA antigen clearance but CD4(+) T cells played the crucial role in attenuating plasmid DNA vaccine antigen expression. Adoptive transfer experiments demonstrate that CD4(+) T cells facilitated DNA vaccine antigen clearance in a Fas/FasL-dependent manner. Furthermore, we show that depletion of CD4(+) T cells prevented the clearance of vaccine antigen and the appearance of a CD8(+) T-cell immune response. Inoculation of major histocompatibility complex class II KO mice with the plasmid DNA led to persistent antigen expression and abolition of a CD8(+) T-cell immune response. Importantly, the prolongation of antigen expression by disrupting the CD4(+) T-cell Fas/FasL myocytes signaling led to a 3- to 5-fold increase of antigen-specific CD8(+) T-cell responses. These data demonstrate a dominant role of CD4(+) T cell-mediated cytotoxicity in plasmid DNA vaccine antigen clearance.  相似文献   

8.
BACKGROUND: Since cytomegalovirus (CMV) infection can cause serious clinical complications in immunocompromised individuals, we assessed cellular immune requirements for protection against CMV end-organ disease (CMV-EOD) in human immunodeficiency virus type 1 (HIV-1) infection. METHODS: Longitudinal samples from HIV-1-infected patients in the Amsterdam cohort were analyzed. Dynamics of CMV-specific CD8(+) and CD4(+) T cell responses were analyzed by 4-color fluorescence analysis using major histocompatibility class I CMV peptide-tetramers and by intracellular staining for perforin, granzyme B, and interferon (IFN)- gamma after stimulation with CMV-specific stimuli. CMV load was measured in parallel. RESULTS: In individuals progressing to acquired immunodeficiency syndrome with CMV-EOD, CMV-specific IFN- gamma -producing CD4(+) T cells disappeared during the year before onset of CMV-EOD. This disappearance was accompanied by a sharp increase in CMV load before onset of disease. Despite increasing CMV-specific CD8(+) T cell counts, decreasing CMV-specific IFN- gamma -producing CD8(+) T cell counts were found over time. In contrast, the percentage of CMV-specific perforin- and granzyme B-expressing CD8(+) T cells increased. CONCLUSIONS: Our data indicate that insufficient help of CD4(+) T cells may cause loss of IFN- gamma -producing CD8(+) T cells and loss of control of CMV dissemination. Increasing CMV-infected cell counts in the face of high CMV-specific perforin- and granzyme B-expressing CD8(+) T cell counts may explain the immune pathological characteristics of CMV disease.  相似文献   

9.
One of the main challenges in cancer research is the development of vaccines that induce effective and long-lived protective immunity against tumors. Significant progress has been made in identifying members of the cancer testis antigen family as potential vaccine candidates. However, an ideal form for antigen delivery that induces robust and sustainable antigen-specific T-cell responses, and in particular of CD8(+) T lymphocytes, remains to be developed. Here we report the use of a recombinant nonpathogenic clone of Trypanosoma cruzi as a vaccine vector to induce vigorous and long-term T cell-mediated immunity. The rationale for using the highly attenuated T. cruzi clone was (i) the ability of the parasite to persist in host tissues and therefore to induce a long-term antigen-specific immune response; (ii) the existence of intrinsic parasite agonists for Toll-like receptors and consequent induction of highly polarized T helper cell type 1 responses; and (iii) the parasite replication in the host cell cytoplasm, leading to direct antigen presentation through the endogenous pathway and consequent induction of antigen-specific CD8(+) T cells. Importantly, we found that parasites expressing a cancer testis antigen (NY-ESO-1) were able to elicit human antigen-specific T-cell responses in vitro and solid protection against melanoma in a mouse model. Furthermore, in a therapeutic protocol, the parasites expressing NY-ESO-1 delayed the rate of tumor development in mice. We conclude that the T. cruzi vector is highly efficient in inducing T cell-mediated immunity and protection against cancer cells. More broadly, this strategy could be used to elicit a long-term T cell-mediated immunity and used for prophylaxis or therapy of chronic infectious diseases.  相似文献   

10.
Sato K  Torimoto Y  Tamura Y  Shindo M  Shinzaki H  Hirai K  Kohgo Y 《Blood》2001,98(6):1852-1857
Heat-shock proteins (HSPs) act as molecular chaperones binding endogenous antigenic peptides and transporting them to major histocompatibility complexes. HSPs chaperone a broad repertoire of endogenous peptides including tumor antigens. For the immunotherapy of tumors, a strategy using HSPs may be more advantageous than other procedures because the identification of each tumor-specific antigen is not necessary. In this study, the efficacy of immunotherapy against minimal residual leukemia cells using HSP preparations was evaluated. HSP70 and GP96 were purified from syngeneic leukemia cell line A20 and immunized into BALB/c mice during the reconstitution period of the immune system after syngeneic bone marrow transplantation. In this procedure, all mice not immunized were dead within 60 days of A20 inoculation, whereas the survival times of HSP-immunized mice were significantly prolonged. In addition, the depletion of either CD4(+) or CD8(+) T lymphocyte significantly abrogated this efficacy, indicating that both CD4(+) and CD8(+) T lymphocytes were required for tumor cell rejection. Moreover, the vaccination of HSPs elicited a specific response of potent CD8(+) T lymphocytes cytotoxic against A20 in vitro. These observations suggest that immunization of the complex of HSPs and peptides derived from leukemia cells leads to immune responses. These immune responses are sufficient to reject minimal amounts of leukemia cells for relatively immunocompromised mice after syngeneic bone marrow transplantation.  相似文献   

11.
Hepatitis C virus (HCV) is a blood borne disease estimated to chronically infect 3% of the worlds' population causing significant morbidity and mortality. Current medical therapy is curative in approximately 50% of patients. While recent treatment advances of genotype 1 infection using directly acting antiviral agents (DAAs) are encouraging, there is still a need to develop vaccine strategies capable of preventing infection. Moreover, vaccines may also be used in future in combination with DAAs enabling interferon-free treatment regimens. Viral and host specific factors contribute to viral evasion and present important impediments to vaccine development. Both, innate and adaptive immune responses are of major importance for the control of HCV infection. However, HCV has evolved ways of evading the host's immune response in order to establish persistent infection. For example, HCV inhibits intracellular interferon signalling pathways, impairs the activation of dendritic cells, CD8(+) and CD4(+) T cell responses, induces a state of T-cell exhaustion and selects escape variants with mutations CD8(+) T cell epitopes. An effective vaccine will need to produce strong and broadly cross-reactive CD4(+), CD8(+) T cell and neutralising antibody (NAb) responses to be successful in preventing or clearing HCV. Vaccines in clinical trials now include recombinant proteins, synthetic peptides, virosome based vaccines, tarmogens, modified vaccinia Ankara based vaccines, and DNA based vaccines. Several preclinical vaccine strategies are also under development and include recombinant adenoviral vaccines, virus like particles, and synthetic peptide vaccines. This paper will review the vaccines strategies employed, their success to date and future directions of vaccine design.  相似文献   

12.
The rational design of new therapies against HIV-1 necessitates an improved understanding of the mechanisms underlying the production of ineffective immune responses to HIV-1 in most infected individuals. This report shows that the CD8(+) T cell responses to gp120 were greatly diminished in mice vaccinated with a bicistronic gp120-Tat DNA vaccine, compared with those induced by a DNA vaccine encoding gp120 alone. The CD8(+) T cell responses induced by the latter included strong gp120-specific IFN-gamma secretion and protective antiviral immunity against challenge by a vaccinia-env pseudotype. The degree to which Tat influenced CD8(+) T cell responses depended on the bioactivity of Tat. Thus, a bicistronic DNA vaccine that expresses gp120 and a truncated Tat defective for LTR activation elicited strong IFN-gamma -secreting CD8(+) T cell responses to gp120 but conferred only marginal protection against the vaccinia-env challenge. The effect of Tat was completely blocked, however, by immunization with inactivated Tat protein before vaccination with the bicistronic gp120-Tat DNA vaccine.  相似文献   

13.
East Coast fever, caused by the tick-borne intracellular apicomplexan parasite Theileria parva, is a highly fatal lymphoproliferative disease of cattle. The pathogenic schizont-induced lymphocyte transformation is a unique cancer-like condition that is reversible with parasite removal. Schizont-infected cell-directed CD8(+) cytotoxic T lymphocytes (CTL) constitute the dominant protective bovine immune response after a single exposure to infection. However, the schizont antigens targeted by T. parva-specific CTL are undefined. Here we show the identification of five candidate vaccine antigens that are the targets of MHC class I-restricted CD8(+) CTL from immune cattle. CD8(+) T cell responses to these antigens were boosted in T. parva-immune cattle resolving a challenge infection and, when used to immunize na?ve cattle, induced CTL responses that significantly correlated with survival from a lethal parasite challenge. These data provide a basis for developing a CTL-targeted anti-East Coast fever subunit vaccine. In addition, orthologs of these antigens may be vaccine targets for other apicomplexan parasites.  相似文献   

14.
Herath S  Kropf P  Müller I 《Parasite immunology》2003,25(11-12):559-567
Although the importance of CD8(+) T cells for vaccination and immunity to reinfection with Leishmania parasites is well established, their role in primary infections is disputed. In the present study we further characterized the role of CD8(+) T cells in primary L. major infections. We used two groups of L. major infected BALB/c mice: both groups were immunomanipulated to heal and in one group CD8(+) T cells were depleted throughout the course of infection. Our results show that the reversal of healing caused by the absence of CD8(+) T cells did not alter the proliferation of CD4(+) T cells, however, the frequency of CD4(+) T cells expressing IFN-gamma as well as the levels of this cytokine were clearly reduced. These lower levels of IFN-gamma correlated with a higher parasite load. Our results show that transient depletion of CD4(+) T cells allows the establishment of an equilibrium between CD4(+) and CD8(+) T cells and allows CD8(+) T cell activation and effector functions to develop. In addition, our results suggest that cross-talk between CD4(+) and CD8(+) T cells is crucial for the host defence against L. major.  相似文献   

15.
The role of dogs as the main reservoir of visceral leishmaniasis has led to an increased interest in the immune responses and in Leishmania antigens implicated in protective cellular immunity in canine visceral leishmaniasis. The primary goal is to control the prevalence of human disease. Immune responses in canine visceral leishmaniasis are reviewed. Cellular immune responses toward a Th1 subset mediated by IFN-gamma and TNF-alpha predominate in asymptomatic dogs exhibiting apparent resistance to visceral leishmaniasis. On the other hand, while the role of Th2 cytokines, such as IL-4 and IL-10, in symptomatic animals is still controversial, there is increasing evidence for a correlation of these cytokines with progressive disease. CD8+ cytotoxic T cells seem also likely to be involved in resistance to visceral leishmaniasis. Several Leishmania antigens implicated in protective immune responses are described and some pivotal points for development of an effective vaccine against canine visceral leishmaniasis are discussed.  相似文献   

16.
Donor lymphocyte infusions have been effective in patients with chronic myeloid leukemia (CML) relapsing after allogeneic stem cell transplantation, but their use is associated with the risk of graft-versus-host disease. We investigated the effects of prophylactic infusion of in vitro-generated donor T cells reactive against peptides derived from CML-associated antigens. Fourteen CML patients received conditioning therapy followed by CD34(+)-selected peripheral blood stem cells from matched siblings (n = 7) or unrelated (n = 7) donors. Donor-derived mature dendritic cells generated in vitro from CD14(+) monocytes were loaded with human leukocyte Ag-restricted peptides derived from PR1, WT1, and/or B-cell receptor-ABL and used to repetitively stimulate donor CD8(+) T cells in the presence of IL-2 and IL-7. Stimulated T cells were infused 28, 56, and 112 days after transplantation. Thirteen patients are alive and 7 remain in molecular remission (median follow-up, 45 months). Interestingly, all 4 patients receiving CD8(+) T cells displaying marked cytotoxic activity in vitro and detectable peptide-reactive CD8(+) T cells during follow-up have not experienced graft-versus-host disease or relapse. Our study reveals that prophylactic infusion of allogeneic CD8(+) T cells reactive against peptides derived from CML-associated antigens is a safe and promising therapeutic strategy. This trial was registered at www.clinicaltrials.gov as #NCT00460629.  相似文献   

17.
The development of an immunotherapeutic strategy targeting CD138 antigen could potentially represent a new treatment option for multiple myeloma (MM). This study evaluated the immune function of CD138 peptide-specific cytotoxic T lymphocytes (CTL), generated ex vivo using an HLA-A2-specific CD138 epitope against MM cells. A novel immunogenic HLA-A2-specific CD138(260-268) (GLVGLIFAV) peptide was identified from the full-length protein sequence of the CD138 antigen, which induced CTL specific to primary CD138(+) MM cells. The peptide-induced CD138-CTL contained a high percentage of CD8(+) activated/memory T cells with a low percentage of CD4(+) T cell and naive CD8(+) T cell subsets. The CTL displayed HLA-A2-restricted and CD138 antigen-specific cytotoxicity against MM cell lines. In addition, CD138-CTL demonstrated increased degranulation, proliferation and γ-interferon secretion to HLA-A2(+) /CD138(+) myeloma cells, but not HLA-A2(-) /CD138(+) or HLA-A2(+) /CD138(-) cells. The immune functional properties of the CD138-CTL were also demonstrated using primary HLA-A2(+) /CD138(+) cells isolated from myeloma patients. In conclusion, a novel immunogenic CD138(260-268) (GLVGLIFAV) peptide can induce antigen-specific CTL, which might be useful for the treatment of MM patients with peptide-based vaccine or cellular immunotherapy strategies.  相似文献   

18.
During infection with Chlamydia trachomatis, CD8(+) T cells are primed, even though the bacteria remain confined to a host cell vacuole throughout their developmental cycle. Because CD8(+) T cells recognize antigens processed from cytosolic proteins, the Chlamydia antigens recognized by these CD8(+) T cells very likely have access to the host cell cytoplasm during infection. The identity of these C. trachomatis proteins has remained elusive, even though their localization suggests they may play important roles in the biology of the organism. Here we use a retroviral expression system to identify Cap1, a 31-kDa protein from C. trachomatis recognized by protective CD8(+) T cells. Cap1 contains no strong homology to any known protein. Immunofluorescence microscopy by using Cap1-specific antibody demonstrates that this protein is localized to the vacuolar membrane. Cap1 is virtually identical among the human C. trachomatis serovars, suggesting that a vaccine incorporating Cap1 might enable the vaccine to protect against all C. trachomatis serovars. The identification of proteins such as Cap1 that associate with the inclusion membrane will be required to fully understand the interaction of C. trachomatis with its host cell.  相似文献   

19.
DNA vaccines express antigens intracellularly and effectively induce cellular immune responses. Because only chimpanzees can be used to model human hepatitis C virus (HCV) infections, we developed a small-animal model using HLA-A2.1-transgenic mice to test induction of HLA-A2.1-restricted cytotoxic T lymphocytes (CTLs) and protection against recombinant vaccinia expressing HCV-core. A plasmid encoding the HCV-core antigen induced CD8(+) CTLs specific for three conserved endogenously expressed core peptides presented by human HLA-A2.1. When challenged, DNA-immunized mice showed a substantial (5-12 log(10)) reduction in vaccinia virus titer compared with mock-immunized controls. This protection, lasting at least 14 mo, was shown to be mediated by CD8(+) cells. Thus, a DNA vaccine expressing HCV-core is a potential candidate for a prophylactic vaccine for HLA-A2.1(+) humans.  相似文献   

20.
We assessed immunogenicity of a malaria DNA vaccine administered by needle i.m. or needleless jet injection [i.m. or i.m./intradermally (i.d.)] in 14 volunteers. Antigen-specific IFN-gamma responses were detected by enzyme-linked immunospot (ELISPOT) assays in all subjects to multiple 9- to 23-aa peptides containing class I and/or class II restricted epitopes, and were dependent on both CD8(+) and CD4(+) T cells. Overall, frequency of response was significantly greater after i.m. jet injection. CD8(+)-dependent cytotoxic T lymphocytes (CTL) were detected in 8/14 volunteers. Demonstration in humans of elicitation of the class I restricted IFN-gamma responses we believe necessary for protection against the liver stage of malaria parasites brings us closer to an effective malaria vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号