首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Voltage-gated sodium (Na(+)) channels typically contain a pore-forming alpha subunit and one or two auxiliary beta subunits. Although initial characterization of known alpha and beta subunits has been facilitated by expression in heterologous cells, to understand fully the differences between individual subunits and the functional consequences of selective subunit expression, there is a need to acutely manipulate expression in cells that endogenously express Na(+) channels. To this end, we have constructed a recombinant adenovirus containing a cDNA for a mouse Na(+) channel beta1 subunit with a yellow fluorescent protein fused to its C-terminus (Ad-beta1-EYFP), and with fluorescence microscopy detected beta1-EYFP expression in primary cerebellar neurons and Chinese hamster ovary (CHO) cells upon transduction with this adenovirus, including expression in the plasma membrane. Consistent with this, patch clamp recordings confirmed that Na(+) currents in CHO cells expressing mouse Na(v)1.4 alpha subunits were appropriately modified by the viral-mediated expression of beta1-EYFP subunits. The results demonstrate that adenoviral-mediated gene delivery can be used effectively to express epitope-tagged Na(+) channel subunits with properties similar to wild-type subunits, and suggest that Ad-beta1-EYFP will be a useful reagent for investigating Na(+) channels in a variety of excitable cell types, including neurons.  相似文献   

2.
Results of recent studies on the batrachotoxin (BTX) effect on the properties of voltage-operated sodium channels in excitable membranes are summarized in the review. The following problems are considered: allosteric interaction of the BTX receptor with structural entities of the sodium channel responsible for its activation, inactivation, ion selectivity, binding of polypeptide (scorpion and anemone) toxins, local anesthetics and many blocking drugs; relationship between BTX-induced changes in the sodium conductance and intramembrane charge movement; relationship between ion selectivity and effective pK of the selectivity filter acid group of sodium channels modified by BTX or aconitine; effects of BTX on the behaviour and conductance (gamma) of single sodium channels. The problem of the BTX receptor location and possible mechanism of the sodium channel modification by BTX are discussed.  相似文献   

3.
Brain sodium channels are complexes of a pore-forming alpha subunit with auxiliary beta subunits, which are transmembrane proteins that modulate alpha subunit function. The newly cloned beta3 subunit is shown to be expressed broadly in neurons in the central and peripheral nervous systems, but not in glia and most nonneuronal cells. Beta1, beta2, and beta3 subunits are coexpressed in many neuronal cell types, but are differentially expressed in ventromedial nucleus of the thalamus, brain stem nuclei, cerebellar Purkinje cells, and dorsal root ganglion cells. Coexpression of beta1, beta2, and beta3 subunits with Na(v)1.2a alpha subunits in the tsA-201 subclone of HEK293 cells shifts sodium channel activation and inactivation to more positive membrane potentials. However, beta3 is unique in causing increased persistent sodium currents. Because persistent sodium currents are thought to amplify summation of synaptic inputs, expression of this subunit would increase the excitability of specific groups of neurons to all of their inputs.  相似文献   

4.
The fast inactivation of voltage-dependent Ca(2+) channels is a key mechanism that contributes to the precise control of Ca(2+) entry into excitable cells. Recent advances have revealed that multiple structural elements contribute to the intrinsic inactivation properties of the alpha(1) subunit, including its cytoplasmic and transmembrane regions. Another major determinant of Ca(2+) channel inactivation is the association with one of four types of ancillary beta subunits that differentially modulate the intrinsic inactivation properties of the alpha(1) subunit. This could occur partly via interactions with the N-terminal region of the alpha(1) subunit and through lipid modification of the beta subunit. However, the latest findings suggest a mechanism in which fast Ca(2+) channel inactivation could occur through physical occlusion of the pore of the channel in a manner reminiscent of Na(+) and K(+) channel inactivation.  相似文献   

5.
Pyrethroid insecticides disrupt nerve function by modifying the gating kinetics of transitions between the conducting and nonconducting states of voltage-gated sodium channels. Pyrethroids modify rat Na(v)1.6+β1+β2 channels expressed in Xenopus oocytes in both the resting state and in one or more states that require channel activation by repeated depolarization. The state dependence of modification depends on the pyrethroid examined: deltamethrin modification requires repeated channel activation, tefluthrin modification is significantly enhanced by repeated channel activation, and S-bioallethrin modification is unaffected by repeated activation. Use-dependent modification by deltamethrin and tefluthrin implies that these compounds bind preferentially to open channels. We constructed the rat Na(v)1.6Q3 cDNA, which contained the IFM/QQQ mutation in the inactivation gate domain that prevents fast inactivation and results in a persistently open channel. We expressed Na(v)1.6Q3+β1+β2 sodium channels in Xenopus oocytes and assessed the modification of open channels by pyrethroids by determining the effect of depolarizing pulse length on the normalized conductance of the pyrethroid-induced sodium tail current. Deltamethrin caused little modification of Na(v)1.6Q3 following short (10ms) depolarizations, but prolonged depolarizations (up to 150ms) caused a progressive increase in channel modification measured as an increase in the conductance of the pyrethroid-induced sodium tail current. Modification by tefluthrin was clearly detectable following short depolarizations and was increased by long depolarizations. By contrast modification by S-bioallethrin following short depolarizations was not altered by prolonged depolarization. These studies provide direct evidence for the preferential binding of deltamethrin and tefluthrin (but not S-bioallethrin) to Na(v)1.6Q3 channels in the open state and imply that the pyrethroid receptor of resting and open channels occupies different conformations that exhibit distinct structure-activity relationships.  相似文献   

6.
Peripheral tissue injury-induced central sensitization may result from the altered biochemical properties of spinal dorsal horn. However, peripheral nerve injury-induced modification of genes in the dorsal horn remains largely unknown. Here we identified strong changes of 14 channels, 25 receptors and 42 signal transduction related molecules in Sprague-Dawley rat dorsal spinal cord 14 days after peripheral axotomy by cDNA microarray. Twenty-nine genes were further confirmed by semiquantitative RT-PCR, Northern blotting, in situ hybridization and immunohistochemistry. These regulated genes included Ca2+ channel alpha1E and alpha2/delta1 subunits, alpha subunits for Na+ channel 1 and 6, Na+ channel beta subunit, AMAP receptor GluR3 and 4, GABAA receptor alpha5 subunit, nicotinic acetylcholine receptor alpha5 and beta2 subunits, PKC alpha, betaI and delta isozymes, JNK1-3, ERK2-3, p38 MAPK and BatK and Lyn tyrosine-protein kinases, indicating that several signal transduction pathways were activated in dorsal spinal cord by peripheral nerve injury. These results demonstrate that peripheral nerve injury causes phenotypic changes in spinal dorsal horn. Increases in Ca2+ channel alpha2/delta1 subunit, GABAA receptor alpha5 subunit, Na+ channels and nicotinic acetylcholine receptors in both dorsal spinal cord and dorsal root ganglia indicate their potential roles in neuropathic pain control.  相似文献   

7.
alpha-Like toxins, a unique group designated among the scorpion alpha-toxin class that inhibit sodium channel inactivation, are highly toxic to mice but do not compete for alpha-toxin binding to receptor site 3 on rat brain sodium channels. We analysed the sequence of a new alpha-like toxin, which was also highly active on insects, and studied its action and binding on both mammalian and insect sodium channels. Action of the alpha-like toxin on isolated cockroach axon is similar to that of an alpha-toxin, and the radioactive toxin binds with a high affinity to insect sodium channels. Other sodium channel neurotoxins interact competitively or allosterically with the insect alpha-like toxin receptor site, similarly to alpha-toxins, suggesting that the alpha-like toxin receptor site is closely related to receptor site 3. Conversely, on rat brain sodium channels, specific binding of 125I-alpha-like toxin could not be detected, although at high concentration it inhibits sodium current inactivation on rat brain sodium channels. The difficulty in measuring binding to rat brain channels may be attributed to low-affinity binding due to the acidic properties of the alpha-like toxins that also impair the interaction with receptor site 3. The results suggest that alpha-like toxins bind to a distinct receptor site on sodium channels that is differentially related to receptor site 3 on mammalian and insect sodium channels.  相似文献   

8.
Ion channels are integral membrane proteins that enable the passive flow of inorganic ions by forming hydrated pores across biological membranes. Their pore-forming alpha subunits determine ion permeation and provide the machinery for gating. In addition, channel class specific accessory proteins termed beta, gamma and delta subunits have been found that modulate or even determine key properties like channel gating (e.g. activation, inactivation properties), surface expression, targeting and stability. Moreover, some of these subunits constitute binding sites for toxins as well as for therapeutic drugs. With the development of more powerful proteomic and molecular biology-based methods, a vastly increasing number of proteins interacting with ion channels has recently been described. These results are providing novel insight into ion channel function and at the same time challenging classical concepts of beta subunits and ion channel drug targets. They are also raising questions about functional validation and reliability of these methods. This review focuses on the potentials and limitations of modern "-omic" protein-protein interaction analyses and their application to ion channels. After recapitulating fundamental thermodynamic and biochemical principles underlying protein-protein interactions, current methods for their systematic identification are critically reviewed. Selected examples of newly characterized ion channel complexes will then be discussed to illustrate the implications for molecular understanding as well as for the effective selection and screening of ion channel drug targets.  相似文献   

9.
In a previous analysis of existing antiseizure compounds, we suggested that a common diphenylureido moiety was responsible for the activity-dependent, Na(+) channel blocking actions of these drugs (L. D. Snell et al., 2000, J. Pharmacol. Exp. Ther. 292: 215-227). Thus the novel diphenylureido compound [N,N-(diphenyl)-4-ureido-5,7-dichloro-2-carboxyquinoline] DCUKA was developed to incorporate the diphenylureido pharmacophore into a structure that also acted as an NMDA receptor antagonist. DCUKA has previously been shown to have antiepileptic properties in animals, and in the present study the actions of DCUKA on Na(+) currents were characterized using transfected cells that stably expressed the rat brain Na(v)1.2 channel isoform. In whole-cell voltage-clamp recordings, DCUKA reduced Na(+) currents in a dose- and membrane potential-dependent fashion, with an apparent 1:1 stoichiometry of drug:channel interaction. Characterization of the effects of DCUKA on Na(+) channel function strongly suggested that DCUKA acts by enhancing Na(+) channel inactivation. Thus in the presence of DCUKA, Na(v)1.2 channels showed reduced availability in steady-state inactivation protocols, displayed use-dependent inhibition, and were slower to recover from inactivation than untreated channels, while DCUKA showed no significant interaction with the open state of the channel. As previously postulated for the anticonvulsants carbamazepine and phenytoin, these results could be well explained by a model in which the drug preferentially interacts with the fast inactivated state of the channel. Finally, DCUKA was generally more efficacious than carbamazepine in modifying sodium channel behavior. Thus the diphenylureido moiety identified by a structural analysis of classic anticonvulsants appears to be important to the inactivation-specific Na(+) channel inhibition by this class of antiseizure agents.  相似文献   

10.
Pyrazoline-type insecticides (PTIs) selectively block sodium channels at membrane potentials that promote slow sodium channel inactivation and are proposed to interact with a site that overlaps the local anesthetic (LA) receptor site. Mutagenesis studies identified two amino acid residues in the S6 segment of homology domain IV (Phe-1579 and Tyr-1586 in the rat Na(v)1.4 sodium channel) as principal elements of the LA receptor. To test the hypothesis that PTIs bind to the LA receptor, we constructed mutated Na(v)1.4/F1579A and Na(v)1.4/Y1586A cDNAs, expressed native and mutated channels in Xenopus oocytes, and examined the effects of these mutations on channel block by three PTIs (indoxacarb, its bioactivation product DCJW, and RH3421) by two-electrode voltage clamp. DCJW and RH3421 had no effect on Na(v)1.4 channels held at -120mV but caused a slowly developing block upon depolarization to -30mV. Estimated IC(50) values following 15min of exposure were 1 and 4muM for DCJW and RH3421, respectively. Indoxacarb failed to block Na(v)1.4 channels under all experimental conditions. Sensitivity to block by DCJW and RH3421 at -30mV was significantly reduced in Na(v)1.4/F1579A channels, a finding that is consistent with the impact of this mutation on drug binding. In contrast to its effect on drug binding, the Y1586A mutation increased the sensitivity of Na(v)1.4 channels held at -30mV to all three compounds, conferring modest sensitivity to indoxacarb and increasing sensitivity to DCJW and RH3421 by 58- and 16-fold, respectively. These results provide direct evidence for the action of PTIs at the LA receptor.  相似文献   

11.
The antiepileptic drug phenytoin inhibits voltage-gated sodium channels. Phenytoin block is enhanced at depolarized membrane potentials and during high frequency channel activation. These properties, which are important for the clinical efficacy of the drug, depend on voltage-dependent channel gating. In this study, we examined the action of phenytoin on sodium channels, comprising a mutant auxiliary beta1 subunit (mutation C121Wbeta1), which causes the inherited epilepsy syndrome, generalized epilepsy with febrile seizures plus (GEFS+). Whole cell sodium currents in Chinese hamster ovary (CHO) cells coexpressing human Na(v)1.3 sodium channels and C121Wbeta1 exhibited altered gating properties, compared to currents in cells coexpressing Na(v)1.3 and wild type beta1. In addition mutant channels were less sensitive to inhibition by phenytoin, showing reduced tonic block at -70mV (EC(50)=26microM for C121Wbeta1 versus 11microM for wild type beta1) and less frequency-dependent inhibition in response to a 20Hz pulse train ( approximately 40% inhibition for C121Wbeta1 versus approximately 70% inhibition for wild type beta1, with 50microM phenytoin). Mutant and wild type channels did not differ in inactivated state affinity for phenytoin, suggesting that their pharmacological differences were secondary to their differences in voltage-dependent gating, rather than being caused by direct effects of the mutation on the drug receptor. Together, these data show that a sodium channel mutation responsible for epilepsy can also alter channel response to antiepileptic drugs.  相似文献   

12.
The effect of antiarrhythmic drug ethmozine on sodium channels in Ranvier node was studied by the voltage clamp technique. Both outside and inside application of ethmozine induced a decrease of sodium current I Na, the time course of I Na and the sodium inactivation being unchanged. The ethmozine-induced Na channel blockade induced tonic (stationary) and phasic (transient stimulus-dependent) components. The tonic blockade of I Na developed slowly and could be accelerated by frequent electric stimulation of the membrane. The phase dependent blockade became more profound with an increase in the pulse rate or amplitude of depolarizing pulses. The prolonged (1 s) membrane depolarization did not bring about an additional blockade of I Na. It is concluded that the phasic blockade is due to the interaction of ethmozine with open Na channels. The noninactivating batrachotoxin-modified Na channels were insensitive to ethmozine. It is found that the increase in outside potassium concentration from 2.5 to 20mM induced both a decrease of the tonic blockade and an increase of the phasic one. The possible nature of the ionic blockade is discussed. The effect of ethmozine is compared with that of tertiary and quaternary local anesthetics.  相似文献   

13.
Summary: Clinically available antiepileptic drugs (AEDs) decrease membrane excitability by interacting with neurotransmitter receptors or ion channels. AEDs developed before 1980 appear to act on sodium (Na) channels, -y-aminobutyric acidA (GABAA) receptors, or calcium (Ca) channels. Benzodiazepines and barbiturates enhance GABAA-receptor-mediated inhibition. Phenytoin, car-bamazepine and, possibly, valproate (VPA) decrease high-frequency repetitive firing of action potentials by enhancing Na channel inactivation. Ethosuximide and VPA reduce a low threshold (T-type) Ca-channel current. The mechanisms of action of recently developed AEDs are less clear. Lamotrigine may decrease sustained high-frequency repetitive firing of voltage-dependent Na action potentials, and gabapentin (GBP) appears to bind to a specific binding site in the CNS with a restricted regional distribution. However, the identity of the binding site and the mechanism of action of GBP remain uncertain. The antiepileptic effect of felbamate may involve interaction at the strychnine-insensitive glycine site of the Af-methyl-D-aspartate receptor, but the mechanism of action is not yet proven.  相似文献   

14.
Voltage-gated sodium (Na(v)) channels accumulate at the axon initial segment (IS), where their high density supports spike initiation. Maintenance of this high density of Na(v) channels involves a macromolecular complex that includes the cytoskeletal linker protein ankyrin-G, the only protein known to bind Na(v) channels and localize them at the IS. We found previously that Na(v)1.6 is the predominant Na(v) channel isoform at IS of adult rodent retinal ganglion cells. However, here we report that Na(v)1.6 immunostaining is consistently reduced or absent in short regions of the IS proximal to the soma, although both ankyrin-G and pan-Na(v) antibodies stain this region. We show that this proximal IS subregion is a unique axonal microdomain, containing an accumulation of Na(v)1.1 channels that are spatially segregated from the Na(v)1.6 channels of the distal IS. Additionally, we find that axonal K(v)1.2 potassium channels are present within the distal IS, but are also excluded from the Na(v)1.1-enriched proximal IS microdomain. Because ankyrin-G was prominent in both proximal and distal subcompartments of the IS, where it colocalized with either Na(v)1.1 or Na(v)1.6, respectively, mechanisms other than association with ankyrin-G must mediate differential targeting of Na(v) channel subtypes to achieve the spatial precision observed within the IS. This precise arrangement of ion channels within the axon initial segment is likely an important determinant of the firing properties of ganglion cells and other mammalian neurons.  相似文献   

15.
Homomeric glutamate receptor (GluR) channels become spontaneously active when the last alanine residue within the invariant SYTANLAAF-motif in the third membrane segment is substituted by threonine. The same mutation in the orphan GluRdelta2 channel is responsible for neurodegeneration in "Lurcher" (Lc) mice. Since most native GluRs are composed of different subunits, we investigated the effect of an Lc-mutated subunit in heteromeric kainate and AMPA receptors expressed in HEK293 cells. Kainate receptor KA2 subunits, either wild type or carrying the Lc mutation (KA2(Lc)), are retained inside the cell but are surface-expressed when assembled with GluR6 subunits. Importantly, KA2(Lc) dominates the gating of KA2(Lc)/GluR6(WT) channels, as revealed by spontaneous activation and by slowed desensitization and deactivation kinetics of ligand-activated whole-cell currents. Moreover, the AMPA receptor subunit GluR-B(Lc)(Q) which forms spontaneously active homomeric channels with rectifying current-voltage relationships, dominates the gating of heteromeric GluR-B(Lc)(Q)/GluR-A(R) channels. The spontaneous currents of these heteromeric AMPAR channels show linear current-voltage relationships, and the ligand-activated whole-cell currents display slower deactivation and desensitization kinetics than the respective wild-type channels. For heteromeric Lc-mutated kainate and AMPA receptors, the effects on kinetics were reduced relative to the homomeric Lc-mutated forms. Thus, an Lc-mutated subunit can potentially influence heteromeric channel function in vivo, and the severity of the phenotype will critically depend on the levels of homomeric GluR(Lc) and heteromeric GluR(Lc)/GluR(WT) channels.  相似文献   

16.
Measurement of neurotoxin binding in rat brain membranes and neurotoxin-activated 22Na+ influx in neuroblastoma cells were used to define the site and mechanism of action of pyrethroids and DDT on sodium channels. A highly potent pyrethroid, RU 39568, alone enhanced the binding of [3H]batrachotoxinin A 20-alpha-benzoate up to 30 times. This effect was amplified by the action of neurotoxins such as sea anemone toxins and brevetoxin acting at different sites of the sodium channel protein in brain membranes. The ability of various pyrethroids and DDT to enhance batrachotoxin binding was related to their capacity to activate tetrodotoxin sensitive 22Na+ uptake. These results point to an allosteric mechanism of pyrethroids and DDT action involving preferential binding to active states of sodium channels which have high affinity for neurotoxins, causing persistent activation of sodium channels. Pyrethroids do not block [3H]tetrodotoxin binding, 125I-Anemonia sulcata toxin 2 binding, 125I-Tityus serrulatus toxin gamma binding at neurotoxin receptor sites 1, 3 and 4 respectively. Pyrethroids appear to act at a new neurotoxin receptor site on the sodium channel. The distribution of pyrethroid binding sites in rat brain was determined by quantitative autoradiographic procedures using the property of pyrethroids to reveal binding sites for [3H]batrachotoxinin A 20-alpha-benzoate.  相似文献   

17.
A radioiodinated alpha-scorpion toxin (toxin II from Androctonus australis Hector) (alpha ScTx) was used as a probe for EM autoradiography to study the distribution of voltage-dependent sodium channels (Na+ channel) on the postsynaptic side of the mouse neuromuscular junction. Silver grain distribution was analyzed by the cross-fire method to assess the relative Na+ channel density in each membrane domain measured by stereology. This analysis showed that the maximum Na+ channel density was located on the edge of the synaptic gutter, where it reached about twice the mean density in the postsynaptic fold membrane. Na+ channel densities have been calculated using ACh receptor (AChR) density in fold crests as reference. Sodium channel density on the edge of the synaptic gutter was estimated at about 5000/microns 2. Sodium channel distribution in the postsynaptic folds was compared to AChR distribution using density distribution analysis (Fertuck and Salpeter, 1976). The results confirmed that, as already observed by immunogold labeling (Flucher and Daniels, 1989), there are no Na+ channels on fold crests. Na+ channels are located in the rest of the fold membrane (bottom) and may be distributed according to two possible models. In the first, density would be uniformly high, although lower than on the gutter edge. In the second, density would decrease from the crest border, where the value was that of the gutter edge, to the fold end, where the value would be 50% lower. Based on the latter model, which was the "best-fit model," we propose that the postsynaptic membrane includes two domains. The first is the fold crest, which contains almost exclusively AChRs. This domain is devoted to reception-transduction of the chemical signal. The second includes both the fold bottom membrane and the perisynaptic membrane. Sodium channel density is highest along the crest border and decreases moving away. Its functions are the integration of postsynaptic potentials and generation-conduction of the muscle action potential.  相似文献   

18.
Scorpion alpha-toxins from Leiurus quinquestriatus hebraeus, LqhII and LqhIII, are similarly toxic to mice when administered by a subcutaneous route, but in mouse brain LqhII is 25-fold more toxic. Examination of the two toxins effects in central nervous system (CNS), peripheral preparations and expressed sodium channels revealed the basis for their differential toxicity. In rat brain synaptosomes, LqhII binds with high affinity, whereas LqhIII competes only at high concentration for LqhII-binding sites in a voltage-dependent manner. LqhII strongly inhibits sodium current inactivation of brain rBII subtype expressed in HEK293 cells, whereas LqhIII is weakly active at 2 microM, suggesting that LqhIII affects sodium channel subtypes other than rBII in the brain. In the periphery, both toxins inhibit tetrodotoxin-sensitive sodium current inactivation in dorsal root ganglion neurons, and are strongly active directly on the muscle and on expressed muI channels. Only LqhII, however, induced repetitive end-plate potentials in mouse phrenic nerve-hemidiaphragm muscle preparation by direct effect on the motor nerve. Thus, rBII and sodium channel subtypes expressed in peripheral nervous system (PNS) serve as the main targets for LqhII but are mostly not sensitive to LqhIII. Toxicity of both toxins in periphery may be attributed to the direct effect on muscle. Our data elucidate, for the first time, how different toxins affect mammalian central and peripheral excitable cells, and reveal unexpected subtype specificity of toxins that interact with receptor site 3.  相似文献   

19.
Here we investigate differences in the temporal and spatial patterning, and subunit interactions of two of the major Na(+) channel alpha-subunit isoforms in mammalian brain, the type I and type II Na(+) channels. By using subtype-specific antibodies, we find that both isoforms are abundant in adult rat brain, where both interact with the covalently bound beta2 auxiliary subunit. Immunoblot analysis reveals complementary levels of type I and type II in different brain regions, with the highest levels of type I in brainstem, cortex, substantia nigra, and caudate, where it is found predominantly on the soma of neurons, and the highest levels of type II in globus pallidus, hippocampus and thalamus, where it is preferentially localized to axons. Developmentally, type I Na(+) channel polypeptide expression in brain increases dramatically during the third postnatal week, peaks at the end of the first postnatal month, and then decreases such that adult levels are approximately 50% of those at peak. Type II Na(+) channel polypeptide expression in brain also undergoes large increases in the third postnatal week, but levels continue to increase such that peak expression levels are maintained in adult animals. Type I Na(+) channels are found associated with the auxiliary beta2 subunit at all ages, whereas free type II Na(+) channels exist during the first two postnatal weeks. Thus, although expression of these two Na(+) channel alpha subunits in heterologous systems yields currents with very similar electrophysiological and pharmacological properties, their distinct spatial and temporal patterning, and association with auxiliary subunits in brain, suggest that they perform distinct, nonoverlapping functions in situ.  相似文献   

20.
The PC12 clone is a line of rat pheochromocytoma cells that undergoes neuronal differentiation in the presence of NGF protein. In the absence of NGF, PC12 cells are electrically inexcitable, while after several weeks of NGF treatment they develope Na+ action potentials. Past estimates made by measuring binding of 3H-saxitoxin (STX) indicate that NGF treatment brings about a large increase in Na channel density that is of sufficient magnitude to account for the induction of excitability. We have now used 22Na uptake to measure the Na permeability of PC12 cells before and after long-term NGF treatment. Treatment with NGF does not change the resting Na+ permeability. The alkaloid toxins veratridine and batrachotoxin (BTX) and scorpion toxin were used to activate Na channels. Such studies demonstrate that these toxins induce TTX-sensitive Na uptake in both NGF-treated and untreated cells and reveal differences in functional Na channel numbers per cell and per unit of membrane area that are similar to those found in the STX binding studies. On the other hand, affinities for drugs that activate these channels are not affected by NGF treatment. We also find that NGF-treated PC12 cells contain a population of Na channels with low affinity for TTX. These channels account for 5-20% of total BTX or veratridine-stimulated flux. Thus, NGF has 2 effects regarding the Na channels of PC12 cells: it increases the number of functional Na channels that otherwise behave similarly to those present before NGF treatment, and it induces the presence of TTX-resistant Na channels. These findings indicate that the PC12 model system may serve to study the developmental regulation of Na channel expression and properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号