首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this report was to determine whether vaccenic acid (t11-18:1) is converted efficiently to conjugated linoleic acid (c9,t11-18:2, CLA) in rats via the Δ2-desaturase reaction and, if so, whether vaccenic acid could substitute for CLA as an anticancer agent. In Study 1, rats were fed 1%, 2%, or 3% vaccenic acid in their diet, and tissue levels of CLA and CLA metabolites were determined in liver and mammary gland. In general, concentrations of CLA and CLA metabolites increased proportionately with an increase in vaccenic acid intake, at least up to the 2% dose level. Beyond this dose, there was clearly a plateauing effect. Thus vaccenic acid concentration increased from an undetectable level in the control to 78.5 nmol/mg lipid in the liver of rats fed a 2% vaccenic acid diet. This was accompanied by an increase in CLA from 2.3 to 33.6 nmol/mg lipid. These changes were also mirrored in the mammary gland, where increases in vaccenic acid (from 27.5 to 163.2 nmol/mg lipid) and CLA (from 17.8 to 108.9 nmol/mg lipid) were similarly observed. Vaccenic acid at 2% produced a CLA concentration in the mammary gland that was historically associated with a positive response in tumor inhibition based on our past experience. This provided the basis for selecting 2% vaccenic acid in Study 2, which was designed to evaluate its efficacy in blocking the development of premalignant lesions in the rat mammary gland. In this experiment, formation of histologically identifiable pathology due to intraductal proliferation of terminal end bud cells of mammary epithelium was used as the end point of analysis at 6 wk after carcinogen administration. Treatment with vaccenic acid reduced the total number of these premalignant lesions by ~50%. We hypothesize that the anticancer response to vaccenic acid is likely to be mediated by its endogenous conversion to CLA via Δ2-desaturase.  相似文献   

2.
The present study was designed to determine whether the ability of vaccenic acid (trans-11 18:1; VA) to reduce the risk of chemically induced mammary carcinogenesis in rats is direct or is mediated via conversion to cis-9, trans-11 conjugated linoleic acid (CLA). We previously reported that dietary VA caused a dose-dependent increase in the accumulation of CLA in the mammary fat pad, which was accompanied by a parallel decrease in the risk of mammary tumorigenesis. Specifically, our objective was to determine whether inhibiting Delta9-desaturase with cyclopropenoic fatty acids, supplied by sterculic oil (SO), would reverse the cancer-protective effect observed with a dietary supplement of VA-enriched butter. Female Sprague-Dawley rats were injected with a single dose of carcinogen (methylnitrosourea) and were fed 1 of 4 diets: 1) low VA (0.13% of diet), 2) low VA + SO (0.4% of diet), 3) high VA (1.60% of diet), and 4) high VA + SO. After 6 wk, the mammary glands were evaluated histologically for the appearance of premalignant lesions and were stained with bromodeoxyuridine to determine the extent of cell proliferation, and fatty acids were analyzed in plasma, liver, and mammary fat pad. The VA-enriched diet increased the tissue content of CLA, reduced the risk of developing premalignant lesions, and decreased the proliferative activity of premalignant cells in the mammary gland. Treatment with SO reversed the effects of VA. The anticarcinogenic effect of VA is predominantly, perhaps exclusively, mediated through its conversion to cis-9, trans-11 CLA via Delta9-desaturase, and when this conversion is blocked by SO, the biological response to VA is attenuated.  相似文献   

3.
The utilization of (13)C-labeled vaccenic acid (VA) by lactating dairy cows to synthesize cis-9, trans-11 conjugated linoleic acid (CLA) was investigated. Primiparous ruminally cannulated Holstein cows (n = 3) were abomasally infused with 1.5 g of VA-1-(13)C. Blood and milk samples were taken frequently before and after VA infusion. Milk and plasma lipid were extracted using chloroform:methanol. Plasma lipid was separated into triacylglycerol (TG), cholesterol ester (CE), phospholipid (PL), nonesterified fatty acid (NEFA), and mono- and diacylglycerol (MDG) fractions. Lipid was methylated, converted to dimethyl disulfide and Diels-Alder adducts, and analyzed by GC-MS. Increased enrichment of (13)C was determined using a 2-sample t test for each sample time compared with -24 h, with significance declared at P < 0.05. Enrichment in milk fat VA was detected at 4 (3.0%), 8 (8.3%), 12 (4.1%), 16 (2.2%), and 20 h (0.8%). Enrichment in VA was also detected in plasma TG, NEFA, PL, and MDG. Enrichment in milk fat cis-9, trans-11 CLA, the Delta9-desaturase product of VA, was detected at 4 (2.6%), 8 (6.6%), 12 (3.4%), 16 (1.7%), and 24 h (0.7%). Enrichment was not detected in cis-9, trans-11 CLA for any plasma lipid fraction. Modeling of the data showed the exponential decay in (13)C enrichment over time for both VA and cis-9, trans-11 CLA in milk fat. Conversion of dietary VA to cis-9, trans-11 CLA endogenously was confirmed with the mammary gland being the primary site of Delta9-desaturase activity; approximately 80% of milk fat cis-9, trans-11 CLA originated from VA.  相似文献   

4.
Conjugated linoleic acid (CLA) is a potent cancer preventive agent in animal models. To date, all of the in vivo work with CLA has been done with a commercial free fatty acid preparation containing a mixture of c9,t11-, t10,c12- and c11,t13-isomers, although CLA in food is predominantly (80-90%) the c9,t11-isomer present in triacylglycerols. The objective of this study was to determine whether a high CLA butter fat has biological activities similar to those of the mixture of free fatty acid CLA isomers. The following four different endpoints were evaluated in rat mammary gland: 1) digitized image analysis of epithelial mass in mammary whole mount; 2) terminal end bud (TEB) density; 3) proliferative activity of TEB cells as determined by proliferating cell nuclear antigen immunohistochemistry; and 4) mammary cancer prevention bioassay in the methylnitrosourea model. It should be noted that TEB cells are the target cells for mammary chemical carcinogenesis. Feeding butter fat CLA to rats during the time of pubescent mammary gland development reduced mammary epithelial mass by 22%, decreased the size of the TEB population by 30%, suppressed the proliferation of TEB cells by 30% and inhibited mammary tumor yield by 53% (P < 0.05). Furthermore, all of the above variables responded with the same magnitude of change to both butter fat CLA and the mixture of CLA isomers at the level of CLA (0.8%) present in the diet. Interestingly, there appeared to be some selectivity in the uptake or incorporation of c9,t11-CLA over t10,c12-CLA in the tissues of rats given the mixture of CLA isomers. Rats consuming the CLA-enriched butter fat also consistently accumulated more total CLA in the mammary gland and other tissues (four- to sixfold increases) compared with those consuming free fatty acid CLA (threefold increases) at the same dietary level of intake. We hypothesize that the availability of vaccenic acid (t11-18:1) in butter fat may serve as the precursor for the endogenous synthesis of CLA via the Delta9-desaturase reaction. Further studies will be conducted to investigate other attributes of this novel dairy product.  相似文献   

5.
The present study was designed to examine the effects of increasing dietary levels of vaccenic acid (VA) and cis-9, trans-11 conjugated linoleic acid (CLA) on chemically induced mammary carcinogenesis in rats. Both fatty acids were provided as a natural component in butter fat. The conversion of VA to CLA by delta9-desaturase was documented previously in several species, including rats and humans. Specifically, our objective was to determine the relative contribution of dietary VA and CLA to the tissue concentration of CLA and its ability to inhibit the development of mammary carcinomas. A total of 7 diets were formulated with varying levels of CLA and VA. The overall dietary treatment scheme was designed to evaluate the modulation of mammary cancer risk by 1). small increases of CLA in the presence of a low level of VA and 2). more substantial increases of VA against a background of low levels of CLA. As expected, small increases in dietary CLA at the low end of the CLA dose-response range did not reduce tumorigenesis. In contrast, there was a distinct and marked inhibitory response to VA that was dose dependent. The effect of VA was magnified in this experiment because the dose range of VA tested was much broader than that of CLA. Fatty acid analysis showed that the conversion of dietary VA to CLA resulted in a dose-dependent increase in the accumulation of CLA in the mammary fat pad, which was accompanied by a parallel decrease in tumor formation in the mammary gland. The finding confirms that the conversion of VA to CLA is as important for cancer prevention as the dietary supply of CLA. Thus, VA is also anticarcinogenic, and VA and CLA represent functional food components that are present in ruminant fat.  相似文献   

6.
Conjugated linoleic acid isomers and mammary cancer prevention   总被引:10,自引:0,他引:10  
There is increasing evidence that individual isomers of conjugated linoleic acid (CLA) may have unique biological or biochemical effects. A primary objective of this study was to determine whether there might be differences in the anticancer activity of 9,11-CLA and 10,12-CLA. This was achieved by evaluating the reduction in premalignant lesions and carcinomas in the mammary gland of rats that had been treated with a single dose of methylnitrosourea and given 0.5% of either highly purified CLA isomer in the diet. Our results showed that the anticancer efficacies of the two isomers were very similar. At 6 wk after carcinogen administration, the total number of premalignant lesions was reduced by 33-36%. At 24 wk, the total number of mammary carcinomas was reduced by 35-40%. The concentration of each CLA isomer and its respective metabolites was analyzed in the mammary fat pad. Tissue level of 10,12-CLA was much lower than that of 9,11-CLA. The pool of metabolites from each isomer was very similar between the two groups and represented only a small fraction of total conjugated diene fatty acids. Feeding of 9,11-CLA resulted in minimal changes in other unsaturated fatty acids. In contrast, feeding of 10,12-CLA produced a wider spectrum of perturbations. Small but significant increases in 16:1 and 16:2 were detected; these were accompanied by decreases in 20:2, 20:3, 20:4, 22:4, and 22:6. The above observation suggests that 10,12-CLA might be more potent than 9,11-CLA in interfering with elongation and desaturation of linoleic and linolenic acids. In summary, our study showed that, at the 0.5% dose level, the anticancer activity of 9,11-CLA and 10,12-CLA was very similar, even though accumulation of 10,12-CLA in the mammary tissue was considerably less than that of 9,11-CLA. These confounding changes of the other unsaturated fatty acids in contributing to the effect of 10,12-CLA need to be clarified.  相似文献   

7.
Cis-9, trans-11, the major isomer of conjugated linoleic acid (CLA) in bovine milk fat, is derived from ruminal biohydrogenation of 18:2 (n-6) and endogenous conversion of trans-11 18:1 (vaccenic acid; VA) in the mammary gland. Most evidence to date suggests that endogenous synthesis is the major source of cis-9, trans-11 CLA, but the extent of VA desaturation is less well defined. Four lactating cows were used in consecutive 4 x 4 Latin squares to examine changes in milk fatty acid composition and secretion in response to abomasal infusions of lipid supplements enriched with cis-9, trans-11 CLA (88.8%) or VA (29.4%). Treatments were infused over 4-d, followed by a 3-d washout, during 7 d experimental periods and administered to deliver 0, 3, 6, and 12 g cis-9, trans-11 CLA/d (Expt. 1) or 0, 7.5, 15 and 30 g VA/d (Expt. 2). Infusions of cis-9, trans-11 CLA increased linearly milk cis-9, trans-11 CLA concentrations from 0.68 to 1.46 g/100 g fatty acids. Abomasal infusions of VA increased linearly milk VA and cis-9, trans-11 CLA content from 1.22 to 2.72 and 0.61 to 1.24 g/100 g fatty acids, respectively. Changes in milk fatty acid secretion indicated that 28.9% of VA was converted to cis-9, trans-11 CLA. Results provide evidence that conversion by Delta9-desaturase to cis-9, trans-11 CLA in the lactating cow is independent of postruminal VA supply. In conclusion, endogenous synthesis via VA was equivalent to approximately 21% of the response to increases in cis-9, trans-11 CLA available for absorption.  相似文献   

8.
Past research showed that mammary gland morphogenesis in the pubescent rat was retarded by the feeding of conjugated linoleic acid (CLA). A major objective of the present study was to examine the proliferative activity and the expression of cell cycle regulatory proteins in the developing mammary epithelium of rats fed a mixture of CLA isomers (primarily as free fatty acid c9, t11-CLA and t10,c12-CLA) or a highly enriched natural source of c9,t11-CLA (as triacylglycerol in butterfat). In both experiments, the diets, with or without CLA, were started at weaning and continued for four weeks. The two CLA preparations were equally effective in suppressing bromodeoxyuridine labeling and the expression of cyclin D1 and cyclin A (determined by immunohistochemistry) in the terminal end buds and alveolar clusters of the mammary epithelium while it undergoes extensive ductal branching during pubescence. There was a trend of an increase, although not statistically significant, in the proportion of cells expressing the p16 and p27 cdk inhibitors. A separate experiment was designed to evaluate the effect of c9,t11-CLA (as a free fatty acid of > 90% purity) treatment on the rate of proliferation of the mammary epithelium as the animal matured from weanling to adult. The bromodeoxyuridine labeling data indicated that the mammary epithelium appeared to lose its sensitivity to CLA control of proliferation as it completely filled the fat pad and became quiescent. These observations suggest that the responsiveness of mammary epithelial cells to CLA intervention may be dependent on their proliferative status.  相似文献   

9.
To investigate the effects of 2 conjugated linoleic acid (CLA) isomers and trans11-18:1 (TVA) on de novo lipogenesis and desaturation in liver and mammary gland, lactating mice were fed diets containing 3% canola oil (control) or 2% canola oil plus 1% stearic acid (SA), TVA, cis9,trans11 CLA (c9t11), or trans10,cis12 CLA (t10c12). In mammary tissue, TVA and CLA isomers reduced mRNA for acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) compared with control, but only c9t11 and t10c12 reduced mammary ACC activity. Of the 2 CLA isomers, t10c12 caused a greater reduction in mammary ACC activity. Hepatic ACC or FAS activity and mRNA abundance were not affected by dietary treatments. Feeding TVA, c9t11, or t10c12 reduced mammary stearoyl-CoA desaturase 1 (SCD) mRNA and activity. Reduction was greater due to feeding t10c12 compared with c9t11. Hepatic SCD mRNA was not affected by dietary treatments, but both CLA isomers depressed hepatic SCD activity. Results indicated that t10c12 is a more potent inhibitor of mammary lipogenesis and desaturation than is c9t11. A net gain of 77 and 1690 micro g of c9t11 in liver and mammary tissue, respectively, was found in the TVA-fed group over the control and SA-fed group. However, reduced mammary SCD mRNA or activity due to feeding TVA may indicate a limited capacity for desaturation of dietary TVA to c9t11 in vivo.  相似文献   

10.
Conjugated linoleic acid (CLA) and some trans fatty acids (FA) decrease tumor growth and alter tumor and host lipid uptake and storage. The goal of this study was to test the hypothesis that the acute inhibitory effects of CLA isomers and trans FAs on FA transport in tumors and white adipose tissue are mediated via an inhibitory G-protein coupled (GPC), FFA receptor (FFAR). Experiments were performed in hepatoma 7288CTC and inguinal fat pads in Buffalo rats during perfusion in situ. CLA isomers and trans FAs (0.03-0.4 mmol/L, in plasma) were added to the arterial blood, and FA uptake or release was measured by arterial minus venous difference. In hepatoma 7288CTC, the CLA isomers, t10,c12-CLA > (+/-)-9-HODE [13-(S)-hydroxyoctadecadienoic acid] > t9,t11-CLA, and the trans FAs, linolelaidic = vaccenic > elaidic, decreased cAMP content and inhibited FA uptake, 13(S)-HODE release, extracellular signal-regulated kinase p44/p42 phosphorylation, and [(3)H]thymidine incorporation. Other CLA isomers, c9,t11-CLA, 13-(S)-HODE, c9,c11-CLA, and c11,t13-CLA, had no effect. In inguinal fat pads, FA transport was inhibited by t10,c12-CLA = linolelaidic acid > trans vaccenic acid, whereas c9,t11-CLA had no effect. In both hepatoma 7288CTC and inguinal fat pad, addition of either pertussis toxin or 8-Br-cAMP to the arterial blood reversed the inhibitions of FA transport. These results support the idea that an inhibitory GPC FFAR reduces cAMP and controls FA transport by CLA isomers and trans FAs. Ligand activity is conferred by the presence of a trans double bond proximal to the carboxyl group.  相似文献   

11.
Cis 9, trans 11 (c 9, t11)-18:2 and trans 10, cis 12 (t10, c12)-18:2 are the major conjugated linoleic acid (CLA) isomers in dietary supplements which reduce milk fat content in nursing women. The present study evaluated the effects of each CLA isomer or vaccenic acid on body composition and tissue fatty acids during lactation in mice. Dams were fed 30 g rapeseed oil (control)/kg diet or 20 g control plus 10 g 18:0, trans 11-18:1 (t11-18:1), c 9, t11-18:2, or t10, c12-18:2. Dietary t10, c12-18:2 reduced food intake by 18 % and carcass fat weight of the dams by 49 % compared with the other treatments. Milk fat percentage ranked by treatment was 18:0>t11-18:1=c 9, t11-18:2>t10, c12-18:2. The sum of saturated 12:0 to 16:0 in milk fat was lower when c 9, t11-18:2 was fed compared with the control, 18:0, or t11-18:1 treatments. Dietary t10, c12-18:2 caused further reductions in milk fat 12:0 to 16:0. The proportion of CLA isomers was 3-fold greater in milk fat than in the carcasses of the dams. The pups nursing from the dams fed t10, c12-18:2 had the lowest body weights and carcass fat, protein, and ash contents. Nursing from the dams fed c 9, t11-18:2 also resulted in lower carcass fat compared with the 18:0 or t11-18:1 treatments. The ratios of cis 9-16:1:16:0 or cis 9-18:1:18:0, proxies for Delta(9)-desaturase activity, were markedly lower in the carcasses of the dams and pups fed t10, c12-18:2. The ratio of 20:4n-6:18 : 2n-6, a proxy for Delta(6)- and Delta(5)-desaturase and elongase activity, in the liver of the dams and pups fed t10, c12-18:2 also was lower. Dietary t11-18:1 enhanced the content of c 9, t11-18:2 in milk fat and carcasses. As in previous studies, the reduction in food intake by t10, c12-18:2 could not entirely account for the marked decrease in carcass fat content and milk fat concentration. T10, c12-18:2 probably had a negative effect on Delta(9)-desaturase and mammary de novo fatty acid synthesis. Although these effects need to be confirmed in lactating women, the results suggest that the consumption of supplements containing t10, c12-18:2 should be avoided during the nursing period.  相似文献   

12.
This study aimed to investigate the impact of management system and lactation stage on camel milk fatty acid (FA) composition, with emphasis on odd and branched-chain FA (OBCFA), conjugated linoleic acids (CLA), and trans-FA (TFA). Milk samples were collected from thirteen camels managed under intensive and semi-intensive systems at early, mid, and late lactation. Our results provided for the first time the OBCFA profile in camel milk. Eleven OBCFA were identified with a predominance of C15:0, anteiso-C15:0, anteiso-C17:0, and C17:0. The vaccenic acid (VA) was the predominant TFA; other isomers appeared in smaller amounts. The Δ9-desaturase activity measured as desaturation index of C14:0 was relatively high in the mammary gland of camel. Milk from the semi-intensive system was characterized by a higher nutritional value, due to the higher contents of total CLA, rumenic acid (RA), VA, linoleic, α-linolenic, and polyunsaturated FA compared with milk from the intensive system. Few differences were found in the OBCFA profile throughout lactation. Our study provided deeper information on FA composition, showing that camel milk is a good source of OBCFA, RA and VA. These results have to be taken into account in the investigation of the functional properties of camel milk fat as well as in the ongoing intensification of camel farming systems.  相似文献   

13.
Conjugated linoleic acid isomers and cancer   总被引:2,自引:0,他引:2  
We reviewed the literature regarding the effects of conjugated linoleic acid (CLA) preparations enriched in specific isomers, cis9, trans11-CLA (c9, t11-CLA) or trans10, cis12-CLA (t10, c12-CLA), on tumorigenesis in vivo and growth of tumor cell lines in vitro. We also examined the potential mechanisms by which CLA isomers may alter the incidence of cancer. We found no published reports that examined the effects of purified CLA isomers on human cancer in vivo. Incidence of rat mammary tumors induced by methylnitrosourea was decreased by c9, t11-CLA in all studies and by t10, c12-CLA in just a few that included it. Those 2 isomers decreased the incidence of forestomach tumors induced by benzo (a) pyrene in mice. Both isomers reduced breast and forestomach tumorigenesis. The c9, t11-CLA isomer did not affect the development of spontaneous tumors of the intestine or mammary gland, whereas t10, c12-CLA increased development of genetically induced mammary and intestinal tumors. In vitro, t10, c12-CLA inhibited the growth of mammary, colon, colorectal, gastric, prostate, and hepatoma cell lines. These 2 CLA isomers may regulate tumor growth through different mechanisms, because they have markedly different effects on lipid metabolism and regulation of oncogenes. In addition, c9, t11-CLA inhibited the cyclooxygenase-2 pathway and t10, c12-CLA inhibited the lipooxygenase pathway. The t10, c12-CLA isomer induced the expression of apoptotic genes, whereas c9, t11-CLA did not increase apoptosis in most of the studies that assessed it. Several minor isomers including t9, t11-CLA; c11, t13-CLA; c9, c11-CLA; and t7, c11-CLA were more effective than c9, t11-CLA or t10, c12-CLA in inhibiting cell growth in vitro. Additional studies with purified isomers are needed to establish the health benefit and risk ratios of each isomer in humans.  相似文献   

14.
To determine whether the purified 9c,11t conjugated linoleic acid (CLA) isomer, the main dietary isomer, is biologically active on mammary tumor growth, we carried out a dietary intervention study designed to compare its effects with those of a mixture of CLA isomers on the incidence and growth of autochthonous mammary tumors induced by methylnitrosourea in rats. After the initiation step, rats were fed a sunflower oil-based diet (5%) and separated into three experimental groups supplemented with either a 1% homemade synthesized 9c,11t isomer, a 1% CLA isomer mixture, or free fatty acids prepared from sunflower oil for the control group. We found that, in the two CLA groups compared with the control group, CLA levels were about 30 times higher in mammary fat pads and about 10 times higher in tumor tissues. Compared with the control group, there was a 44% and 45% decrease in tumor mass per rat in the CLA mixture and the 9c,11t groups, respectively, at 20 wk of diet (P < 0.05). There was a nonsignificant trend for a decrease multiplicity in CLA groups compared with the control group, with a 30% and 35% decrease in the CLA mixture and the 9c,11t groups, respectively. Incidence and latency were not significantly different between the dietary groups. Although the effect was specifically restricted in reduction in tumor mass, we concluded that the main CLA isomer found in human diet has anticarcinogenic properties in experimental mammary carcinogenesis.  相似文献   

15.
《Nutrition and cancer》2013,65(2):233-238
Past research showed that mammary gland morphogenesis in the pubescent rat was retarded by the feeding of conjugated linoleic acid (CLA). A major objective of the present study was to examine the proliferative activity and the expression of cell cycle regulatory proteins in the developing mammary epithelium of rats fed a mixture of CLA isomers (primarily as free fatty acid c9,t11-CLA and t10,c12-CLA) or a highly enriched natural source of c9,t11-CLA (as triacylglycerol in butterfat). In both experiments, the diets, with or without CLA, were started at weaning and continued for four weeks. The two CLA preparations were equally effective in suppressing bromodeoxyuridine labeling and the expression of cyclin D1 and cyclin A (determined by immunohistochemistry) in the terminal end buds and alveolar clusters of the mammary epithelium while it undergoes extensive ductal branching during pubescence. There was a trend of an increase, although not statistically significant, in the proportion of cells expressing the p16 and p27 cdk inhibitors. A separate experiment was designed to evaluate the effect of c9,t11-CLA (as a free fatty acid of >90% purity) treatment on the rate of proliferation of the mammary epithelium as the animal matured from weanling to adult. The bromodeoxyuridine labeling data indicated that the mammary epithelium appeared to lose its sensitivity to CLA control of proliferation as it completely filled the fat pad and became quiescent. These observations suggest that the responsiveness of mammary epithelial cells to CLA intervention may be dependent on their proliferative status.  相似文献   

16.
Conjugated linoleic acid (CLA) is composed of positional and stereoisomers of octadecadienoate (18:2); it is found in foods derived from ruminants (beef and lamb as well as dairy products from these sources). When a mixture of isomers is fed to experimental animals, chemically induced tumorigenesis of mammary, skin and colon is reduced. Importantly, many isomers of CLA are readily metabolized to desaturated/elongated products as well as beta-oxidized products, suggesting that these metabolites may be important anticancer compounds. Mechanisms of inhibition of carcinogenesis may include reduction of cell proliferation, alterations in the components of the cell cycle and induction of apoptosis. In addition, CLA modulates markers of immunity and eicosanoid formation in numerous species as well as lipid metabolism and gene expression. It is likely that CLA exerts inhibitory properties in carcinogenesis via one or more of these pathways with some tissue specificity. This review will explore recent advances in putative mechanisms of reduction of carcinogenesis by CLA.  相似文献   

17.
Conjugated linoleic acid (CLA) is a naturally occurring anticarcinogen found in milk fat and body fat of ruminants. Although CLA is an intermediate in ruminal biohydrogenation of linoleic acid, we hypothesized that its primary source was from endogenous synthesis. This would involve Delta(9)-desaturase and synthesis from trans-11 18:1, another intermediate in ruminal biohydrogenation. Our first experiment supplied lactating cows (n = 3) with trans-11 18:1 by abomasal infusion and examined the potential for endogenous synthesis by measuring changes in milk fat CLA. By d 3, infusion of trans-11 18:1 resulted in a 31% increase in concentration of cis-9, trans-11 CLA in milk fat, demonstrating that an active pathway for endogenous synthesis of CLA exists. Our second experiment examined the quantitative importance of endogenous synthesis of CLA in lactating cows (n = 3) by abomasally infusing a putative stimulator (retinol palmitate) or an inhibitor (sterculic oil) of Delta(9)-desaturase. Infusion of retinol palmitate had no influence on milk fatty acid desaturation, and yield of CLA in milk fat was not altered. However, sterculic oil infusion decreased the concentration of CLA in milk fat by 45%. Consistent with Delta(9)-desaturase inhibition, the sterculic oil treatment also altered the milk fat concentration of other Delta(9)-desaturase products as indicated by the two- to threefold increase in the ratios of 14:0 to 14:1(,) 16:0 to 16:1 and 18:0 to cis-18:1. Using changes in the ratio of 14:0 to 14:1 as an indication of the extent of Delta(9)-desaturase inhibition with the sterculic oil treatment, an estimated 64% of the CLA in milk fat was of endogenous origin. Overall, results demonstrate that endogenous synthesis of CLA from trans-11 18:1 represented the primary source of CLA in milk fat of lactating cows.  相似文献   

18.
Recent studies showed that conjugated linoleic acids (CLA) lower triacylglycerol concentrations in the milk of lactating animals. This study was performed to determine the reasons for this phenomenon; we also investigated whether there is a relation between altered lipid metabolism in the liver and the reduction in milk triacylglycerols in rats fed CLA. Two groups of female rats were fed diets containing 0 [sunflower oil (SFO) group] or 14.7 g/kg diet of a CLA mixture (CLA group) at the expense of sunflower oil during growth, pregnancy, and lactation. CLA-fed rats had 49 and 80% lower mRNA concentration and activity of fatty acid synthase, respectively, a 51% lower mRNA concentration of lipoprotein lipase (LPL) in their mammary glands at d 17 of lactation, and a 46% lower milk fat content than SFO rats (P < 0.05). Although CLA rats had lower concentrations of triacylglycerols in the liver than SFO rats (20.8 +/- 2.6 vs. 62.6 +/- 27.7 micromol/g, P < 0.05), concentrations of triglycerides in plasma, which are the substrates of LPL, did not differ between the groups. Moreover, the number of pups per litter, litter weights, and pup weights at d 17 of lactation were 41, 35, and 22% lower, respectively, in the CLA group than in the SFO group. In conclusion, the present study suggests that dietary CLA reduces triacylglycerol concentrations in the milk via reduced de novo fatty acid synthesis in the mammary gland and an impaired uptake of fatty acids from lipoproteins into the mammary gland. This might be the reason for reduced growth rates and an increased mortality of suckling pups.  相似文献   

19.
Antimutagenic and some other effects of conjugated linoleic acid   总被引:12,自引:0,他引:12  
Conjugated linoleic acid (CLA) is a collective term for positional and geometric isomers of octadecadienoic acid in which the double bonds are conjugated, i.e. contiguous. CLA was identified as a component of milk and dairy products over 20 years ago. It is formed as an intermediate in the course of the conversion of linoleic acid to oleic acid in the rumen. The predominant naturally occurring isomer is the cis-9, trans-11 modification. Treatment of linoleic acid-rich oils such as safflower oil, soybean oil, or maize oil with base and heat will result in the formation of CLA. Two isomers predominate in the synthetic preparation, c9,t11 and t10,c12. CLA has been shown to inhibit chemically-induced skin, stomach, mammary or colon tumours in mice and rats. The inhibition of mammary tumours in rats is effective regardless of type of carcinogen or type or amount of dietary fat. CLA has also been shown to inhibit cholesterol-induced atherosclerosis in rabbits. When young animals (mice, pigs) are placed on CLA-containing diets after weaning they accumulate more body protein and less fat. Since CLA is derived from the milk of ruminant animals and is found primarily in their meat and in products derived from their milk there is a concerted world-wide effort to increase CLA content of milk by dietary means. Its effect on growth (less fat, more protein) is also a subject of active research. The mechanisms underlying the effects of CLA are still moot.  相似文献   

20.
Conjugated linoleic acids (CLA) have been shown to decrease body fat content in pigs. It is possible that feeding pigs diets rich in CLA may increase carcass lipid CLA to levels that could provide health benefits when included as a part of a healthy diet. Therefore, the aim of the present study was to determine whether dietary CLA supplementation has any effect on the fatty acid composition of subcutaneous and intramuscular adipose tissue in pigs. Thirty-five female cross bred (Large White x Landrace) pigs (initial weight 57.2 kg and initial P2 back fat 11.5 mm) were used in the present study. Pigs were housed individually and randomly allocated to one of six dietary treatments (0.00, 1.25, 2.50, 5.00, 7.50 and 10.00 g CLA55 (55 g CLA isomers/100 g total fatty acids; Natural Lipids Ltd, Hovdebygda, Norway)/kg) and fed their respective diets for 8 weeks. Twelve CLA isomers in the diet and in pig tissue lipids were separated by Ag+-HPLC. CLA was incorporated at fivefold higher levels in subcutaneous fat as compared with intramuscular fat and in a dose-dependant manner. Overall, the transfer efficiency of CLA was maximized at 5.00 g CLA55/kg. However, there was clear selectivity in the uptake or incorporation of cis,trans-9,11 isomer over the trans,cis-10,12 isomer. In general, CLA supplementation produced significant changes in skeletal muscle and adipose tissue fatty acid composition, indicating that dietary CLA had a potent affect on lipid transport and metabolism in vivo. Significant increases in myristic, palmitic and palmitoleic acids and a reduction in arachidonic acid were observed, suggesting an alteration in activity of delta5-, delta6- and delta9-desaturases in pig adipose tissue. In conclusion, feeding pigs diets supplemented with CLA increases carcass lipid CLA, but also results in changes in the fatty acid profile in pig fat that could potentially outweigh the benefits of CLA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号