首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
This study evaluated how differences in the surface properties of prefillable syringe barrels and in-solution sampling methods affect micron aggregates and protein adsorption levels. Three syringe types (glass barrel with silicone oil coating [GLS/SO+], glass barrel without silicone oil coating [GLS/SO?], and cyclo-olefin polymer [COP] barrel syringes) were tested with 3 therapeutic proteins (adalimumab, etanercept, and infliximab) using 2 sampling methods (aspiration or ejection). After quiescent incubation, solutions sampled by aspiration exhibited no significant change in micron aggregate concentration in any syringes, whereas those sampled by ejection exhibited increased micron aggregates in both GLS syringe types. Micron aggregate concentration in ejected solutions generally increased with increasing density of adsorbed proteins. Notably, COP syringes contained the lowest micron aggregate concentrations, which were independent of the sampling method. Correspondingly, the adsorbed protein density on COP syringes was the lowest at 1-2 mg/m2, which was much less compared with that on GLS syringes and was calculated to be equivalent to only 1–2 protein layers, as visually confirmed by high-speed atomic force microscopy. These data indicate that low-adsorption prefillable syringes should be used for therapeutic proteins because protein aggregate concentration in the ejected solution is elevated by increased protein adsorption to the syringe surface.  相似文献   

2.
Characterizing protein aggregates in the presence of silicone oil is a long standing challenge for the pharmaceutical industry. Silicone oil is often used as a lubricant in devices that deliver and store therapeutic protein products and has been linked to protein aggregation, which can compromise a drug’s effectiveness or cause autoimmune responses in patients. Most traditional technologies cannot quantitatively distinguish protein aggregates and silicone oil in their native formulations for sizes less than 5 μm. We use holographic video microscopy to study protein aggregation to demonstrate its capability to quantitatively distinguish protein aggregates and silicone oil in the presence of varying amounts of the surfactants SDS and polysorbate 80 in the size range of 0.5-10 μm without the need for dilution or special sample preparation. We show that SDS denatures proteins and stabilizes silicone oil. We also show that polysorbate 80 may limit protein aggregate formation if it is added to an IgG solution before introducing silicone oil.  相似文献   

3.
Silicone oil, used as a lubricating coating in pharmaceutical containers, has been implicated as a cause of therapeutic protein aggregation. After adsorbing to silicone oil-water interfaces, proteins may form interfacial gels, which can be transported into solution as insoluble aggregates if the interfaces are perturbed. Mechanical interfacial perturbation of both monomeric recombinant human interleukin-1 receptor antagonist (rhIL-1ra) and PEGylated rhIL-1ra (PEG rhIL-1ra) in siliconized syringes resulted in losses of soluble monomeric protein. However, the loss of rhIL-1ra was twice that for PEG rhIL-1ra; even though in solution, PEG rhIL-1ra had a lower ΔGunf and exhibited a more perturbed tertiary structure at the interface. Net protein-protein interactions in solution for rhIL-1ra were attractive but increased steric repulsion because of PEGylation led to net repulsive interactions for PEG rhIL-1ra. Attractive interactions for rhIL-1ra were associated with increases in intermolecular β-sheet content at the interface, whereas no intermolecular β-sheet structures were observed for adsorbed PEG rhIL-1ra. rhIL-1ra formed interfacial gels that were 5 times stronger than those formed by PEG rhIL-1ra. Thus, the steric repulsion contributed by the PEGylation resulted in decreased interfacial gelation and in the reduction of aggregation, in spite of the destabilizing effects of PEGylation on the protein’s conformational stability.  相似文献   

4.
Purpose. We studied the feasibility of using the Kohlrausch-Williams-Watts stretched exponential function (KWW equation) to describe protein aggregation in lyophilized formulations during storage. Parameters representing mean aggregation time (a) and stretched exponential constant (a) were calculated according to the KWW equation by assuming that the time required for protein molecules to aggregate () varies because of the fact that protein aggregation occurs at a rate that depends on the degree of protein deformation resulting from stresses created during freeze-drying. The temperature dependence of the parameters near the glass transition temperature was examined to discuss the possibility of predicting protein aggregation by accelerated testing. Methods. Protein aggregation in lyophilized bovine serum -globulin (BGG) formulations containing dextran or methylcellulose, at temperatures ranging from 10 to 80°C, was followed by size-exclusion chromatography. Results. Non-exponential BGG aggregation in lyophilized formulations could be described by the KWW equation. The a and a parameters changed abruptly around the NMR relaxation-based critical mobility temperature for formulations containing dextran and methylcellulose. In the glassy state, in contrast, the a parameter of these formulations exhibited continuous temperature dependence. The parameter , as calculated from a and a, reflected differences in values between the two excipients. Conclusions. The results indicate that the parameter a is reflective of physical changes wihtin lyophilized formulations. Within the temperature range, during which no abrupt changes in a were observed, knowledge regarding the aand a parameters allows the rate of protein aggregation to be predicted. The parameter was found to be useful in comparing the protein aggregation behavior of formulations having different a and a values.  相似文献   

5.
This work compares the conformational stability, backbone flexibility, and aggregation propensity of monomer and dimer fractions of an IgG1 monoclonal antibody (mAb) generated on UVA light exposure for up to 72 h collected by preparative size-exclusion chromatography, compared with unstressed control. UVA light exposure induced covalent aggregation, and fragmentation as measured by size-exclusion chromatography, sodium dodecyl sulfate polyacrylamide gel electrophoresis, and extensive oxidation of specific methionine residues (Met 257, Met 433, and Met 109) in both size fractions identified by reverse phase chromatography coupled to mass spectrometry. Compared with unstressed mAb, both the monomer and dimer fractionated from 72 h UVA light–exposed mAb had decreased thermal melting temperatures (Tm1) by 1.4°C as measured by differential scanning calorimetry, minor changes in tertiary structure as measured by near-UV CD, increased monomer loss, and aggregation on accelerated storage at 35°C. Hydrogen/deuterium exchange mass spectrometry identified local segments with increased flexibility in CH2 and CH3 domains of both size fractions, and decreased flexibility in few segments of Fab and CH1 domains in the dimer fraction. Segment 247-256 in heavy chain, an established aggregation hotspot in IgG1 mAbs had large increase in flexibility in both size fractions compared with unstressed mAb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号