首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Background:Twenty-four hour fasting periods are being used to scrutinize basal insulin infusion rates for pump-treated patients with type 1 diabetes.Methods:Data from 339 consecutive in-patients with adult type 1 diabetes on insulin pump therapy undergoing a 24-hour fast as a basal rate test were retrospectively analyzed. Hourly programmed basal insulin infusion rates and plasma glucose concentrations within, below, or above arbitrarily defined target ranges were assessed for periods of the day of special interest (eg, 01:00-07:00 am, “dawn” period, 04:00-07:00 pm, and “dusk” period). Statistics: χ2-tests, paired t-tests were used.Results:Basal rates (mean: 0.90 ± 0.02 IU/h) showed circadian variations with peaks corresponding to “dawn” (1.07 ± 0.02 IU/h from 01:00 to 07:00 am) and, less prominently, “dusk” (0.95 ± 0.02 IU/h from 03:00 to 07:00 pm). Individual mean plasma glucose concentrations averaged 6.6 ± 0.1 mmol/L, with 53.1% in the predefined “strict” (4.4-7.2 mmol/L) target range. Interestingly, during the “dawn” period, plasma glucose was significantly higher (by 0.5 ± 0.1 mmol/L [95% confidence interval: 0.3-0.8 mmol/L; P < .0001]) and the odds ratio for hypoglycemia was significantly lower compared to the reference period.Interpretation:Twenty-four hour fasting periods as basal rate tests frequently unravel periods with inappropriate basal insulin infusion rates potentially responsible for fasting hyper- or hypoglycemia. Notably, the higher basal insulin infusion rate found during the “dawn” period seems to be justified and may need to be accentuated.  相似文献   

2.
3.
Current insulin pumps now feature advanced functions for calculating insulin dosages, delivering insulin and analyzing data, however, the perceived usefulness of these functions in clinical settings has not been well studied. We assessed the use and patient perceptions of an insulin delivery system (Accu-Chek® Combo, Roche Diagnostics, Mannheim, Germany) that combines an insulin pump and a handheld multifunctional blood glucose meter with integrated remote control functions. This prospective, observational, multicenter study enrolled 74 type 1 diabetes patients within 13 weeks after starting use of the pump system. At 4 to 24 weeks, investigators collected usage data from the latest 14-day period. Seventy-two patients completed the evaluation, aged 39 ± 15 years, diabetes duration 16 ± 13 years, HbA1c 8.3 ± 1.6%. At follow-up, 62 (86.1%) patients used the remote control for ≥50% of all boluses, 20 (27.8%) used the bolus advisor for ≥50% of all boluses, and 42 (58.3%) viewed at least 1 of the e-logbook reports. More than 95% of users appraised the functions as easy-to-use and useful; median scores from VAS (0 = useless to 100 = indispensable) ranged from 72 to 85. A high percentage of study patients used the system’s advanced features, especially the remote control feature for bolusing. Overall, patients assessed the functions as useful and easy to use. Results support the implementation of these smart capabilities in further insulin pump developments.  相似文献   

4.
5.
Background and aimsIn Colombia, the government established mandatory isolation after the first case of COVID-19 was reported. As a diabetes care center specialized in technology, we developed a virtual training program for patients with type 1 diabetes (T1D) who were upgrading to hybrid closed loop (HCL) system. The aim of this study is to describe the efficacy and safety outcomes of the virtual training program.Methodology: A prospective observational cohort study was performed, including patients with diagnosis of T1D previously treated with multiple doses of insulin (MDI) or sensor augmented pump therapy (SAP) who were updating to HCL system, from March to July 2020. Virtual training and follow-up were done through the Zoom video conferencing application and Medtronic Carelink System version 3.1 software. CGM data were analyzed to compare the time in range (TIR), time below range (TBR) and glycemic variability, during the first two weeks corresponding to manual mode with the final two weeks of follow-up in automatic mode.Results91 patients were included. Mean TIR achieved with manual mode was 77.3 ± 11.3, increasing to 81.6% ± 7.6 (p < 0.001) after two weeks of auto mode use. A significant reduction in TBR <70 mg/dL (2,7% ± 2,28 vs 1,83% ± 1,67, p < 0,001) and in glycemic variability (% coefficient of variation 32.4 vs 29.7, p < 0.001) was evident, independently of baseline therapy.ConclusionHCL systems allows T1D patients to improve TIR, TBR and glycemic variability independently of previous treatment. Virtual training can be used during situations that limit the access of patients to follow-up centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号