首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patients managed in the intensive care units (ICUs) and general wards of the hospital experience a high incidence of hyperglycemia, hypoglycemia, and glycemic variability, despite significant hospital resources devoted to glucose control. Optimized glucose meters and monitoring systems are required to improve the safety and efficacy of insulin delivery and glucose control in the hospital. Safe insulin dosing requires timely and accurate glucose measurements, especially during dynamic changes in nutrition, insulin sensitivity, and physiological stress. In the current issue of Journal of Diabetes Science and Technology, Mitsios and coauthors describe the analytical accuracy of the new Accu-Check® Inform II blood glucose (BG) monitoring system commercialized by F. Hofmann-La Roche Ltd. The point-of-care glucose meter achieved the desired degree of accuracy and precision, as defined by Clinical and Laboratory Standards Institute POCT12-A3 guidelines when evaluated using venous blood from 600 critically ill patients from multiple ICUs at two medical centers. Venous whole blood samples were used to obtain glucose meter results in duplicate. The remaining blood sample was centrifuged to obtain plasma for central hospital laboratory testing using the hexokinase method within 5 min of meter testing. A total of 98.8% of the 1200 Accu-Check Inform II meter’s glucose values were within ±12.5% (±12 mg/dl) of the mean laboratory glucose value, and 99.8% were within ±20% (±20 mg/dl), thus meeting the Clinical and Laboratory Standards Institute criteria. Future studies are required to evaluate the clinical performance of the new BG monitoring system in the intended-use patient populations and critical care environments, using arterial, peripheral venous, central venous, and capillary blood samples.  相似文献   

2.

Background

Blood glucose (BG) meters used for assisted monitoring of blood glucose (AMBG) require different attributes compared with meters designed for home use. These include safety considerations (i.e., minimized risk of blood-borne pathogen transmission), capability for testing multiple blood sample types, and enhanced performance specifications. The OneTouch® Verio™Pro+ BG meter is designed to incorporate all of these attributes.

Methods

Meter accuracy was assessed in clinical studies with arterial, venous, and capillary blood samples with a hematocrit range of 22.9–59.8%. The effect of interferents, including anticoagulants, on accuracy was evaluated. The meter disinfection protocol was validated, and instructions for use and user acceptance of the system were assessed.

Results

A total of 97% (549/566) of BG measures from all blood sample types and 95.5% (191/200) of arterial blood samples were within ±12 mg/dl or 12.5% of reference measurements. The system was unaffected by 4 anticoagulants and 57 of 59 endogenous and exogenous compounds; it was affected by 2 compounds: pralidoxime iodide and xylose. Bleach wipes were sufficient to disinfect the meter. Users felt that the meter''s quality control (QC) prompts would help them to comply with regulatory requirements.

Conclusions

The meter provided accurate measurements of different blood samples over a wide hematocrit range and was not affected by 57 physiologic and therapeutic compounds. The QC prompts and specific infection-mitigating design further aid to make this meter system practical for AMBG in care facilities.  相似文献   

3.

Background

Point-of-care (POC) blood glucose (BG) measurement is currently not recommended in the treatment of patients presenting with diabetic ketoacidosis (DKA) or hyperglycemic hyperosmolar syndrome (HHS).

Methods

We prospectively evaluated and compared capillary and venous POC BG values with laboratory venous glucose in patients with DKA or HHS admitted to one critical care unit over 8 months.

Results

Venous laboratory glucose was strongly correlated with venous (r = 0.98) and capillary (r = 0.96) POC glucose values, though POC glucose values were higher than venous laboratory values (venous POC 21 ± 3 mg/dl, capillary POC 30 ± 4 mg/dl; both p < .001). Increased plasma osmolality had no effect on glucose meter error, while acidemia (pH < 7.3) was associated with greater glucose meter error (p = .04) independent of glucose levels. Comparing hypothetical insulin infusion rates based on laboratory venous glucose to actual infusion rates based on POC glucose values showed that 33/61 insulin infusion rates would have been unchanged, while 28 out of 61 rates were on average 7% ± 2% higher. There were no instances of hypoglycemia in any of the patients.

Conclusions

Overall, both venous and capillary POC BG values were safe for the purpose of titrating insulin infusions in patients with severe hyperglycemia. Acidemia, but not hyperosmolality, increased POC BG value errors.  相似文献   

4.
A widely used method in monitoring glycemic status of ICU patients is point-of-care (POC) monitoring devices. A possible limitation to this method is altered peripheral blood flow in patients in shock, which may result in over/underestimations of their true glycemic status. This study aims to determine the accuracy of blood glucose measurements with a POC meter compared to laboratory methods in critically ill patients in shock. POC blood glucose was measured with a glucose-1-dehydrogenase-based reflectometric meter. The reference method was venous plasma glucose measured by a clinical chemistry analyzer (glucose oxidase-based). Outcomes assessed were concordance to ISO 15197:2003 minimum accuracy criteria for glucose meters, bias in glucose measurements obtained by the 2 methods using Bland–Altman analysis, and clinical accuracy through modified error grid analysis. A total of 186 paired glucose measurements were obtained. ISO 2003 accuracy criteria were met in 95.7% and 79.8% of POC glucose values in the normotensive and hypotensive group, respectively. Mean bias for the normotensive group was –12.4 mg/dL, while mean bias in the hypotensive group was –34.9 mg/dL. POC glucose measurements within the target zone for clinical accuracy were 90.2% and 79.8% for the normotensive and hypotensive group, respectively. POC blood glucose measurements were significantly less accurate in the hypotensive subgroup of ICU patients compared to the normotensive group. We recommend a lower threshold in confirming POC blood glucose with a central laboratory method if clinically incompatible. In light of recently updated accuracy standards, we also recommend alternative methods of glucose monitoring for the ICU population as a whole regardless of blood pressure status.  相似文献   

5.

Background

The ability to measure patient blood glucose levels at bedside in hospitalized patients and to transmit those values to a central database enables and facilitates glucose control and follow-up and is an integral component in the care of the hospitalized diabetic patient.

Objective

The goal of this study was to evaluate the performance of an institutional glucometer employed in the framework of the Program for the Treatment of the Hospitalized Diabetic Patient (PTHDP) at E. Wolfson Medical Center, Holon, Israel.

Methods

As part of the program to facilitate glucose control in hospitalized diabetic patients, an institutional glucometer was employed that permits uploading of data from stands located in each inpatient department and downloading of that data to a central hospital-wide database. Blood glucose values from hospitalized diabetic patients were collected from August 2007 to October 2008. The inpatient glucose control program was introduced gradually beginning January 2008.

Results

During the follow-up period, more than 150,000 blood glucose measures were taken. Mean glucose was 195.7 ± 99.12 mg/dl during the follow-up period. Blood glucose values declined from 206 ± 105 prior to PTHDP (August 2007–December 2007) to 186 ± 92 after its inception (January 2008–October 2008). The decline was associated significantly with time (r = 0.11, p < 0.0001). The prevalence of blood glucose values lower than 60 mg/dl was 1.48% [95% confidence interval (CI) 0.36%] prior to vs 1.55% (95% CI 0.37%) following implementation of the PTHDP. Concomitantly, a significant increase in the proportion of blood glucose values between 80 and 200 mg/dl was observed, from 55.5% prior to program initiation vs 61.6% after program initiation (p < 0.0001).

Conclusions

The present study was designed to observe changes in institution-wide glucose values following implementation of the PTHDP. Information was extracted from the glucometer system itself. Because the aforementioned study was not a clinical trial, we cannot rule out that factors other than introduction of the program could explain some of the variability observed. With these limitations in mind, it nevertheless appears that the PTHDP, of which the institutional glucometer is an integral, essential component, was associated with improved blood glucose values in the hospitalized diabetic patient.  相似文献   

6.
Self-monitoring of glucose is important for managing diabetes. Noninvasive glucose monitors are not yet available, but patients would benefit highly from such a device. We present results that may lead to a novel, point-of-care noninvasive system to measure blood glucose based on Raman spectroscopy. A hospitalized cohort of 111 subjects was measured using a custom-made Raman spectrometer system. Blood glucose reference samples were used to correlate Raman data to glucose levels, using advanced preprocessing and analysis algorithms. A correlation coefficient (R 2) of .83 was found correlating independent Raman-based predictions on reference blood glucose for the full cohort. Stratification of the cohort in gender-specific groups raised correlation levels to .88 (females) and .94 (males). Glucose could be measured noninvasively with average errors as low as 0.9 mM. We conclude that this novel system shows promising results for the advance of noninvasive, point-of-care glucose monitoring.  相似文献   

7.

Background

Clinical trials assessing the impact of errors in self-monitoring of blood glucose (SMBG) on the quality of glycemic control in diabetes are inherently difficult to execute. Consequently, the objectives of this study were to employ realistic computer simulation based on a validated model of the human metabolic system and to provide potentially valuable information about the relationships among SMBG errors, risk for hypoglycemia, glucose variability, and long-term glycemic control.

Methods

Sixteen thousand computer simulation trials were conducted using 100 simulated adults with type 1 diabetes. Each simulated subject was used in four simulation experiments aiming to assess the impact of SMBG errors on detection of hypoglycemia (experiment 1), risk for hypoglycemia (experiment 2), glucose variability (experiment 3), and long-term average glucose control, i.e., estimated hemoglobin A1c (HbA1c)(experiment 4). Each experiment was repeated 10 times at each of four increasing levels of SMBG errors: 5, 10, 15, and 20% deviation from the true blood glucose value.

Results

When the permitted SMBG error increased from 0 to 5–10% to 15–20%-the current level allowed by International Organization for Standardization 15197–(1) the probability for missing blood glucose readings of 60 mg/dl increased from 0 to 0–1% to 3.5–10%; (2) the incidence of hypoglycemia, defined as reference blood glucose ≤70 mg/dl, changed from 0 to 0–0% to 0.1–5.5%; (3) glucose variability increased as well, as indicated by control variability grid analysis; and (4) the incidence of hypoglycemia increased from 15.0 to 15.2–18.8% to 22–25.6%. When compensating for this increase, glycemic control deteriorated with HbA1c increasing gradually from 7.00 to 7.01–7.12% to 7.26–7.40%.

Conclusions

A number of parameters of glycemic control deteriorated substantially with the increase of permitted SMBG errors, as revealed by a series of computer simulations (e.g., in silico) experiments. A threshold effect apparent between 10 and 15% permitted SMBG error for most parameters, except for HbA1c, which appeared to be increasing relatively linearly with increasing SMBG error above 10%.  相似文献   

8.
Background Hyperglycemia is common among diabetic inpatients, and has been linked to adverse outcomes. However, antihyperglycemic treatment is seldom intensified in noncritical care patients, and the relationship between intensification frequency and glucose control is poorly understood. We evaluated the relationship between treatment intensification and changes in blood glucose in hospitalized diabetic patients. Design We retrospectively analyzed 3,613 hospitalized diabetic patients who were admitted to the hospital between January 2003 and August 2004, were not hospitalized in an ICU, were not prescribed IV insulin or total parenteral nutrition (TPN), had a length of stay of at least 3 days, and had at least one point-of-care blood glucose measurement. A linear model was used to assess the relationship between intensification of antihyperglycemic medications and the average daily change in point-of-care glucose measurements. Results Hyperglycemia (>180 mg/dL) was documented at least once for 82.5% of patient admissions. Antihyperglycemic treatment was intensified for 22.0% of days with hyperglycemia. Intensifications of scheduled and sliding scale insulin, but not oral medications, were associated with a 11.1 mg/dL (p < 0.0001) and 12.2 mg/dL (p < 0.0001) reduction in the average daily glucose, respectively. Hypoglycemia (<50 mg/dL) was documented on 2.2% of days after antihyperglycemic treatment intensification. Conclusion In this cohort, lack of treatment intensification in response to inpatient hyperglycemia was common. Antihyperglycemic treatment intensification was strongly associated with decrease in average daily glucose, while hypoglycemia was uncommon. This suggests that increasing the frequency of treatment intensifications could lead to improved glycemic control in inpatients with diabetes. Conference Abstract: American Diabetic Association 2007  相似文献   

9.
The increasing role for structured and personalized self-monitoring of blood glucose (SMBG) in management of type 2 diabetes has been underlined by randomized and prospective clinical trials. These include Structured Testing Program (or STeP), St. Carlos, Role of Self-Monitoring of Blood Glucose and Intensive Education in Patients with Type 2 Diabetes Not Receiving Insulin, and Retrolective Study Self-Monitoring of Blood Glucose and Outcome in Patients with Type 2 Diabetes (or ROSSO)-in-praxi follow-up. The evidence for the benefit of SMBG both in insulin-treated and non-insulin-treated patients with diabetes is also supported by published reviews, meta-analyses, and guidelines. A Cochrane review reported an overall effect of SMBG on glycemic control up to 6 months after initiation, which was considered to subside after 12 months. Particularly, the 12-month analysis has been criticized for the inclusion of a small number of studies and the conclusions drawn. The aim of this article is to review key publications on SMBG and also to put them into perspective with regard to results of the Cochrane review and current aspects of diabetes management.  相似文献   

10.
Evidence for the value of self-monitoring of blood glucose (SMBG) with regard to the achievement of treatment targets, detection of postprandial glucose excursions, and minimization of glycemic variability is increasing. In large clinical trials, SMBG is a key component for the optimization of diabetes treatment in insulin-treated diabetes. It also plays an essential role in outcome studies. However, details of SMBG use in both the methods and results sections of clinical articles are frequently scarce. Also, a discussion of the SMBG data and its impact on insulin therapy is valuable. In the recently completed Outcome Reduction with an Initial Glargine INtervention (ORIGIN) trial, SMBG was described in detail and insulin titration was largely driven by SMBG. Both aspects largely contributed to the fact that near-normal control was achieved over a long-term period.  相似文献   

11.
目的 探讨血糖控制对肝癌合并2型糖尿病患者术后恢复的临床疗效.方法 选取2019年1月—2020年1月来该院行部分肝切除术的肝癌合并2型糖尿病的患者65例,按随机分配原则分为对照组(32例)和观察组(33例).对照组实施常规的控制血糖护理,观察组实施个性化控制血糖护理,比较两组患者围术期的血糖控制所需时间和胰岛素用量,...  相似文献   

12.
目的:探讨初诊糖尿病和糖调节受损者糖代谢的特点、佩带动态血糖监测系统(CGMS)及毛细血管血糖2种检测方式间的相关性。方法:17例初诊糖尿病患者(DM组)和19例糖调节受损者(IGR组)均完成OGTT等检查,CGMS72h,其间医生每6h输入患者手指毛细血管血糖1次。结果:①DM组CGMS及毛细血管血糖平均值均高于IGR组(P<0.05);且DM组2种检测值有显著性差异(P<0.05),而IGR组无显著性差异(P>0.05)。②DM组2种检测漂移值均高于IGR组(P<0.05);且DM组2种检测漂移值有显著性差异(P<0.05),而IGR组无显著性差异。③两组最高血糖平均值有显著性差异(P<0.05),但最低血糖平均值无显著性差异(P>0.05)。④两组夜间0~3时均为血糖最低时段,血糖值无显著性差异(P>0.05),两组早餐后2h内均为血糖最高时段,血糖值呈显著性差异(P<0.05)。结论:初诊糖尿病和糖调节受损者有相似的血糖波动规律;但初诊糖尿病患者较糖调节受损者血糖波动更大,血糖漂移更明显;糖尿病患者需行CGMS,以反映体内真实血糖状态;糖调节受损者可行毛细血管血糖检测以替代CGMS检查。  相似文献   

13.
14.

Background

The clinical role and the potential benefit of self-measurement of blood glucose (SMBG) for patients with type 2 diabetes are still under discussion. Even less information is available on the cost-effectiveness of performing SMBG by this patient group. The goal of this study was to establish cost-effectiveness ratios of performing SMBG by patients afflicted by this disease.

Methods

We assessed the benefit and cost-effectiveness of SMBG in type 2 diabetes from a third-party payer perspective based on results of both a large epidemiologic cohort study reflecting the reality of care, and a Markov model calculation.

Results

Analysis of cohort study data revealed that total costs cumulated over the observation period of 8 years were lower in the SMBG group than in the non-SMBG group according to savings of € 1''714 [oral antidiabetic drugs (OAD) only] and € 13''815 (OAD + insulin) per patient. Several scenarios were considered in the model-based calculation. The cost-effectiveness ratio varied from € 20''768/life year gained to domination of SMBG use compared to nonusers in OAD treated patients and from € 59''057/life year gained to domination of SMBG use compared to nonusers in OAD + insulin treated patients.

Conclusion

Results indicate that SMBG in type 2 diabetes offers an excellent opportunity to get a high investment–outcome ratio in the treatment of this pandemic disease.  相似文献   

15.

Background

This study evaluated differences in accuracy between the CONTOUR® NEXT EZ (EZ) blood glucose monitoring system (BGMS) and four other BGMSs [ACCU-CHEK® Aviva (ACAP), FreeStyle Freedom Lite® (FFL), ONE TOUCH® Ultra®2 (OTU2), and TRUEtrack® (TT)].

Methods

Up to three capillary blood samples (N = 393) were collected from 146 subjects with and without diabetes. One sample per subject was tested with fresh (natural) blood; the other samples were glycolyzed to lower blood glucose to <70 mg/dl. Meter results were compared with results from plasma from the same sample tested on a Yellow Springs Instruments (YSI) 2300 STAT Plus™ glucose analyzer. Blood glucose monitoring system accuracy was compared using mean absolute relative difference (MARD; from laboratory reference method results) and other analyses. Separate analyses on fresh (natural) samples only were conducted to determine potential effects of glycolysis on MARD values of systems utilizing glucose-oxidase-based test strip chemistry.

Results

Across the tested glucose range, the EZ had the lowest MARD of 4.7%; the ACAP, FFL, OTU2, and TT had MARD values of 6.3%, 18.3%, 23.4%, and 26.2%, respectively. For samples with glucose concentrations <70 mg/dl, the EZ had the lowest MARD (0.65%), compared with the ACAP (2.5%), FFL (18.3%), OTU2 (22.4%), and TT (33.2%) systems.

Conclusions

The EZ had the lowest MARD across the tested glucose ranges when compared with four other BGMSs when all samples were analyzed as well as when natural samples only were analyzed.  相似文献   

16.
17.
18.
19.
目的 探究妊娠期糖尿病(GDM)患者血糖控制与妊娠结局的关系.方法 2017年12月—2019年12月间对该院65例GDM患者的病历资料做回顾性分析,并随机选取30名正常妊娠的孕妇作为健康对照组,GDM患者均给予常规治疗,依据血糖控制情况分为达标组及未达标组,血糖达标以美国糖尿病协会制定的血糖控制目标为标准,分别比较3...  相似文献   

20.
The objective was to assess the effects of short-term (≤1 hour) static high temperature and humidity stresses on the performance of point-of-care (POC) glucose test strips and meters. Glucose meters are used by medical responders and patients in a variety of settings including hospitals, clinics, homes, and the field. Reagent test strips and instruments are potentially exposed to austere environmental conditions. Glucose test strips and meters were exposed to a mean relative humidity of 83.0% (SD = 8.0%) and temperature of 42°C (107.6°F, SD = 3.2) in a Tenney BTRC environmental chamber. Stressed and unstressed glucose reagent strips and meters were tested with spiked blood samples (n = 40 measurements per time point for each of 4 trials) after 15, 30, 45, and 60 minutes of exposure. Wilcoxon’s signed rank test was applied to compare measurements test strip and meter measurements to isolate and characterize the magnitude of meter versus test strip effects individually. Stressed POC meters and test strips produced elevated glucose results, with stressed meter bias as high as 20 mg/dL (17.7% error), and stressed test strip bias as high as 13 mg/dL (12.2% error). The aggregate stress effect on meter and test strips yielded a positive bias as high as 33 mg/dL (30.1% error) after 15 minutes of exposure. Short-term exposure (15 minutes) to high temperature and humidity can significantly affect the performance of POC glucose test strips and meters, with measurement biases that potentially affect clinical decision making and patient safety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号