首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the management of diabetes, accuracy of devices used for self-monitoring of blood glucose (SMBG) is critical because SMBG results can affect patient diabetes-related health outcomes. A new blood glucose monitoring system (BGMS) platform has been developed that is based on the new CONTOUR® NEXT (CN) test strip. This BGMS platform uses a proprietary electron mediator and algorithm to minimize errors at different steps in the testing process, thus minimizing outliers and significantly improving accuracy from prior-generation blood glucose meter systems. As demonstrated by questionnaire results from clinical studies with the new BGMS platform, accuracy and ease of use are important considerations for people with diabetes and their health care professionals when selecting an SMBG device. This article provides an overview of laboratory studies and clinical trials in the hands of lay users involving the performance of the portfolio of blood glucose meters that uses the new test strip. Each BGMS in the platform, which includes the CONTOUR XT (CONTOUR NEXT EZ in the United States), CONTOUR NEXT LINK, CONTOUR NEXT USB, and CN systems, demonstrated advanced accuracy both in the laboratory and in the hands of subjects (people with diabetes) and trained health care professionals. All systems met and exceeded International Organization for Standardization accuracy criteria (both ISO 15197:2003 and ISO 15197:2013). Each system in the new BGMS platform delivers advanced accuracy, which is essential to people who utilize SMBG for improved management.  相似文献   

2.
Control of blood glucose (BG) in an acceptable range is a major therapy target for diabetes patients in both the hospital and outpatient environments. This review focuses on the state of point-of-care (POC) glucose monitoring and the accuracy of the measurement devices. The accuracy of the POC glucose monitor depends on device methodology and other factors, including sample source and collection and patient characteristics. Patient parameters capable of influencing measurements include variations in pH, blood oxygen, hematocrit, changes in microcirculation, and vasopressor therapy. These elements alone or when combined can significantly impact BG measurement accuracy with POC glucose monitoring devices (POCGMDs). In general, currently available POCGMDs exhibit the greatest accuracy within the range of physiological glucose levels but become less reliable at the lower and higher ranges of BG levels. This issue raises serious safety concerns and the importance of understanding the limitations of POCGMDs. This review will discuss potential interferences and shortcomings of the current POCGMDs and stress when these may impact the reliability of POCGMDs for clinical decision-making.  相似文献   

3.
Continuous glucose monitoring (CGM) devices are being increasingly used to monitor glycemia in people with diabetes. One advantage with CGM is the ability to monitor the trend of sensor glucose (SG) over time. However, there are few metrics available for assessing the trend accuracy of CGM devices. The aim of this study was to develop an easy to interpret tool for assessing trend accuracy of CGM data. SG data from CGM were compared to hourly blood glucose (BG) measurements and trend accuracy was quantified using the dot product. Trend accuracy results are displayed on the Trend Compass, which depicts trend accuracy as a function of BG. A trend performance table and Trend Index (TI) metric are also proposed. The Trend Compass was tested using simulated CGM data with varying levels of error and variability, as well as real clinical CGM data. The results show that the Trend Compass is an effective tool for differentiating good trend accuracy from poor trend accuracy, independent of glycemic variability. Furthermore, the real clinical data show that the Trend Compass assesses trend accuracy independent of point bias error. Finally, the importance of assessing trend accuracy as a function of BG level is highlighted in a case example of low and falling BG data, with corresponding rising SG data. This study developed a simple to use tool for quantifying trend accuracy. The resulting trend accuracy is easily interpreted on the Trend Compass plot, and if required, performance table and TI metric.  相似文献   

4.
In this issue of Journal of Diabetes Science and Technology, Davey and coauthors present encouraging data that even short-term use of a real-time continuous glucose monitor can lead to marked reduction in hypoglycemia exposure. In this analysis, two particular issues will be discussed: the distinction between short- and long-term experiences with sensors and the use of standardized diabetes treatment algorithms for use with continuous glucose monitoring (CGM) devices. An understanding of both of these aspects of CGM devices is necessary for placing clinical diabetes technology products into the context of how they will be used in "real life."  相似文献   

5.
Accurate monitoring of glucose in the perioperative environment has become increasingly important over the last few years. Because of increased cost, turnaround time, and sample volume, the use of central laboratory devices for glucose measurement has been somewhat supplanted by point-of-care (POC) glucose devices. The trade-off in moving to these POC systems has been a reduction in accuracy, especially in the hypoglycemic range. Furthermore, many of these POC devices were originally developed, marketed, and received Food and Drug Administration regulatory clearance as home use devices for patients with diabetes. Without further review, many of these POC glucose measurement devices have found their way into the hospital environment and are used frequently for measurement during intense insulin therapy, where accurate measurements are critical. This review covers the technology behind glucose measurement and the evidence questioning the use of many POC devices for perioperative glucose management.  相似文献   

6.
Devices for continuous glucose monitoring (CGM) are currently a major focus of research in the area of diabetes management. It is envisioned that such devices will have the ability to alert a diabetes patient (or the parent or medical care giver of a diabetes patient) of impending hypoglycemic/hyperglycemic events and thereby enable the patient to avoid extreme hypoglycemic/hyperglycemic excursions as well as minimize deviations outside the normal glucose range, thus preventing both life-threatening events and the debilitating complications associated with diabetes. It is anticipated that CGM devices will utilize constant feedback of analytical information from a glucose sensor to activate an insulin delivery pump, thereby ultimately realizing the concept of an artificial pancreas. Depending on whether the CGM device penetrates/breaks the skin and/or the sample is measured extracorporeally, these devices can be categorized as totally invasive, minimally invasive, and noninvasive. In addition, CGM devices are further classified according to the transduction mechanisms used for glucose sensing (i.e., electrochemical, optical, and piezoelectric). However, at present, most of these technologies are plagued by a variety of issues that affect their accuracy and long-term performance. This article presents a critical comparison of existing CGM technologies, highlighting critical issues of device accuracy, foreign body response, calibration, and miniaturization. An outlook on future developments with an emphasis on long-term reliability and performance is also presented.  相似文献   

7.
A widely used method in monitoring glycemic status of ICU patients is point-of-care (POC) monitoring devices. A possible limitation to this method is altered peripheral blood flow in patients in shock, which may result in over/underestimations of their true glycemic status. This study aims to determine the accuracy of blood glucose measurements with a POC meter compared to laboratory methods in critically ill patients in shock. POC blood glucose was measured with a glucose-1-dehydrogenase-based reflectometric meter. The reference method was venous plasma glucose measured by a clinical chemistry analyzer (glucose oxidase-based). Outcomes assessed were concordance to ISO 15197:2003 minimum accuracy criteria for glucose meters, bias in glucose measurements obtained by the 2 methods using Bland–Altman analysis, and clinical accuracy through modified error grid analysis. A total of 186 paired glucose measurements were obtained. ISO 2003 accuracy criteria were met in 95.7% and 79.8% of POC glucose values in the normotensive and hypotensive group, respectively. Mean bias for the normotensive group was –12.4 mg/dL, while mean bias in the hypotensive group was –34.9 mg/dL. POC glucose measurements within the target zone for clinical accuracy were 90.2% and 79.8% for the normotensive and hypotensive group, respectively. POC blood glucose measurements were significantly less accurate in the hypotensive subgroup of ICU patients compared to the normotensive group. We recommend a lower threshold in confirming POC blood glucose with a central laboratory method if clinically incompatible. In light of recently updated accuracy standards, we also recommend alternative methods of glucose monitoring for the ICU population as a whole regardless of blood pressure status.  相似文献   

8.
Regulatory interest has focused on the accuracy of blood glucose monitoring systems. Currently, almost all systems meet the International Organization for Standardization (ISO) 15197 clinical standard (≥95% of the values within 20% of the reference for values above 75 mg/dl and within 15 mg/dl below that level). Should the systems have to meet one of the extended ISO standards of 15%, 10%, or even 5%? There is a wide variety of people with diabetes doing glucose monitoring, and the majority do not need better accuracy. Indeed, when selecting an insulin dose, the inaccuracy of the glucose reading has little effect compared with the inaccuracy in counting carbohydrates and the variability in insulin absorption. It might be far better to evaluate the accuracy in a standard method and provide the accuracy values on a standard label. Patients and health care providers could then select the monitoring system that best meets their needs.  相似文献   

9.

Background

Studies have shown that controlling blood glucose can reduce the onset and progression of the long-term microvascular and neuropathic complications associated with the chronic course of diabetes mellitus. Improved glycemic control can be achieved by frequent testing combined with changes in medication, exercise, and diet. Technological advancements have enabled improvements in analytical accuracy of meters, and this paper explores two such parameters to which that accuracy can be attributed.

Methods

Four blood glucose monitoring systems (with or without dynamic electrochemistry algorithms, codeless or requiring coding prior to testing) were evaluated and compared with respect to their accuracy.

Results

Altogether, 108 blood glucose values were obtained for each system from 54 study participants and compared with the reference values. The analysis depicted in the International Organization for Standardization table format indicates that the devices with dynamic electrochemistry and the codeless feature had the highest proportion of acceptable results overall (System A, 101/103). Results were significant when compared at the 10% bias level with meters that were codeless and utilized static electrochemistry (p = .017) or systems that had static electrochemistry but needed coding (p = .008).

Conclusions

Analytical performance of these blood glucose meters differed significantly depending on their technologic features. Meters that utilized dynamic electrochemistry and did not require coding were more accurate than meters that used static electrochemistry or required coding.  相似文献   

10.
Continuous glucose sensors (CGS) offer the potential to greatly change the lives of people with diabetes. Even though two of these systems (Guardian RT, Medtronic, Northridge, CA, and DexCom STS, DexCom, San Diego, CA) have been approved by the Food and Drug Administration for use as adjuncts to self-blood glucose monitoring (SBGM), questions remain concerning the accuracy of these devices. When considering accuracy, two distinct approaches should be emphasized: (1) numerical and (2) clinical. Because CGS data are a process in time, each of these two approaches includes two subtypes of accuracy: point and rate. Conventional statistics such as correlation coefficients, mean and median relative absolute differences, and International Standards Organization criteria are measures of numerical point accuracy. A new measure, the R deviation, is introduced to quantify numerical rate accuracy. Error-grid analysis (Clarke EGA) measures clinical point accuracy. The only measure of both clinical point accuracy and rate accuracy is continuous glucose error-grid analysis. This analysis is a combination of two components, P-EGA measuring point accuracy and R-EGA measuring rate accuracy, which are designed to assess the information that distinguishes continuous glucose measurements from intermittent SBGM determinations. Further, a better understanding of the source of the error associated with time lag and its effect on CGS readings may improve sensor output. Finally, the reliability of the CGS sensors, in terms of initial calibration and long-term application, needs to be assessed carefully if current CGS systems are to be used as hypoglycemia monitors or incorporated in the future design of closed loop (artificial pancreas) systems.  相似文献   

11.
The utility of continuous glucose monitoring devices remains limited by an obstinate foreign body response (FBR) that degrades the analytical performance of the in vivo sensor. A number of novel materials that resist or delay the FBR have been proposed as outer, tissue-contacting glucose sensor membranes as a strategy to improve sensor accuracy. Traditionally, researchers have examined the ability of a material to minimize the host response by assessing adsorbed cell morphology and tissue histology. However, these techniques do not adequately predict in vivo glucose sensor function, necessitating sensor performance evaluation in a relevant animal model prior to human testing. Herein, the effects of critical experimental parameters, including the animal model and data processing methods, on the reliability and usefulness of preclinical sensor performance data are considered.  相似文献   

12.
Glucose monitoring has become an integral part of diabetes care but has some limitations in accuracy. Accuracy may be limited due to strip manufacturing variances, strip storage, and aging. They may also be due to limitations on the environment such as temperature or altitude or to patient factors such as improper coding, incorrect hand washing, altered hematocrit, or naturally occurring interfering substances. Finally, exogenous interfering substances may contribute errors to the system evaluation of blood glucose.In this review, I discuss the measurement of error in blood glucose, the sources of error, and their mechanism and potential solutions to improve accuracy in the hands of the patient. I also discuss the clinical measurement of system accuracy and methods of judging the suitability of clinical trials and finally some methods of overcoming the inaccuracies. I have included comments about additional information or education that could be done today by manufacturers in the appropriate sections. Areas that require additional work are discussed in the final section.  相似文献   

13.
The advent of devices that can track interstitial glucose levels, which are closely related to blood glucose levels, on a near continuous basis, has facilitated better insights into patterns of glycaemia. Continuous glucose monitoring (CGM) therefore allows for more intensive monitoring of blood glucose levels and potentially improved glycaemic control. In the context of the announcement on 1 April 2017 that the Australian Government will fund CGM monitoring for people with type 1 diabetes under the age of 21 years, this paper provides a review of the evidence for CGM and some of the ongoing challenges. There is evidence that real‐time CGM in type 1 diabetes improves HbA1c and hypoglycaemia, while in type 2 diabetes, the evidence is less robust. Initial barriers to widespread implementation of CGM included issues with accuracy and user friendliness; however, as the technology has evolved, these issues have largely improved. Ongoing barriers include cost, and weaker evidence for their benefit in certain populations such as those with type 2 diabetes and less glycaemic variability. CGM has the potential to reduce healthcare costs, although real‐world studies, including cost‐effectiveness analyses, are needed in this area.  相似文献   

14.
Introduction:Self-monitoring of blood glucose (BG) is important in diabetes management, allowing people with diabetes (PWD) to assess responses to diabetes therapy and to inform if they are attaining their glycemic targets. This study assessed the accuracy and user performance (UP) of a new blood glucose monitoring system (BGMS), CONTOUR®PLUS ELITE, according to International Organization for Standardization (ISO) 15197:2013 criteria and also more stringent criteria.Methods:In laboratory Study 1, capillary fingertip blood samples from 100 PWD were evaluated using the new BGMS. In clinical Study 2, 130 PWD had Yellow Springs Instrument (YSI) analyzer reference measurements against subject-obtained fingertip and palm blood, and trial staff-obtained venous blood. The new BGMS was tested with test strips from three different lots. A UP questionnaire assessed ease of use.Results:Study 1: 100% of combined accuracy results fulfilled ISO criteria (±15 mg/dL at BG <100 mg/dL; ±15% at BG ≥100 mg/dL); 99.8% fulfilled more stringent criteria (±10 mg/dL at BG <100 mg/dL; ±10% at BG ≥100 mg/dL). Error grid analysis showed that 100% of results were within zone A. Study 2: >98% of subject- and 100% of trial staff-obtained performance results met ISO criteria. Most subjects (>96%) found the BGMS easy to use.Conclusion:The new BGMS exceeded minimum ISO 15197:2013-specified standards for both accuracy and UP criteria, along with the more stringent accuracy criteria. These data show that this new BGMS can be a useful tool in managing glycemic control for PWD.  相似文献   

15.
Recent technological advancements in insulin administration and glucose monitoring have allowed patients with diabetes to become increasingly involved in their own care. Devices replacing the traditional vial and syringe, such as insulin pens, are gaining popularity and offer simple and convenient insulin administration. Pen devices are associated with improved dose accuracy, reducing the risk of hypo- or hyperglycemia, and are continually being updated with new safety features in order to optimize their performance. In patients for whom glucose variability remains a problem, continuous subcutaneous insulin infusion via an implanted canula or continuous intraperitoneal insulin infusion via an implanted pump is safe and effective when used correctly, although cost can be a limitation. More accurate retrospective and real-time continuous monitoring devices, which can better detect blood glucose excursions, have become standard components of modern-day diabetes management. The most recent devices have sensor-signaling capabilities with wireless data transmission, leading to reduced time delay and more accurate alerts. Ultimately, though, while self-management remains a critical factor in improving glycemic control at present, human error may undermine even the most accurate treatment interventions. A key long-term goal in diabetes management is, therefore, to develop an automated and accurate closed-loop system for blood glucose monitoring and insulin delivery to better reflect the physiological mechanisms of glucose homeostasis and remove the "human" element. This "artificial pancreas" would offer the most innovative intervention for diabetes management and has the potential to considerably reduce the patient's burden of self-care.  相似文献   

16.
The understanding that hemoglobin A1c (HbA1c) represents the average blood glucose level of patients over the previous 120 days underlies the current management of diabetes. Even in making such a statement, we speak of “average blood glucose” as though “blood glucose” were itself a simple idea. When we consider all the blood glucose forms—arterial versus venous versus capillary, whole blood versus serum versus fluoride-preserved plasma, fasting versus nonfasting—we can start to see that this is not a simple issue.Nevertheless, it seems as though HbA1c correlates to any single glucose measurement. Having more than one measurement and taking those measurements in the preceding month improves the correlation further. In particular, by having glucose measurements that reflect both the relatively lower overnight glucose levels and measurements that reflect the postprandial peaks improves not only our ability to manage diabetes patients, but also our understanding of how HbA1c levels are determined. Modern continuous glucose monitoring (CGM) devices may take thousands of glucose results over a week. Several studies have shown that CGM glucose averages account for the vast proportion of the variation of HbA1c.The ability to relate HbA1c to average glucose may become a popular method for reporting HbA1c, eliminating current concerns regarding differences in HbA1c standardization. Hemoglobin A1c expressed as an average glucose may be more understandable to patients and improve not only their understanding, but also their ability to improve their diabetes management.  相似文献   

17.
The continuous glucose monitoring system (CGM) has been used for constant checking of glucose level by measuring interstitial glucose concentrations, since the early days of the 21st century. It can potentially improve diabetes care if used carefully with the understanding of the characteristics of this system. Although there is a time lag of approximately 5–15 min between blood and interstitial glucose levels, the system is considered the most suitable device for meticulous glucose control and prevention of hypoglycemia. A large number of studies have examined its accuracy, safety and clinical effectiveness. The continuous glucose‐error grid analysis (CG‐EGA), designed by WL Clarke, evaluates the clinical accuracy of CGM. It examines ‘temporal’ characteristics of the data, analyzing pairs of reference and sensor readings as a process in time represented by a ‘bidimensional’ time series and taking into account inherent physiological time lags. Investment in CG‐EGA is clearly meaningful, even though there are other methodologies for evaluation. The use of each method complementarily is the most effective way to prove the accuracy of the device. The device has improved gradually, and real‐time CGM, which allows real‐time monitoring of blood glucose level, is already available commercially. The use of real‐time CGM could potentially lead to over‐ or undertreatment with insulin. Patient education through proper and effective handling of the new device is essential to improve diabetes care. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2012.00197.x, 2012)  相似文献   

18.
Continuous glucose monitoring (CGM) devices have now been added to the repertoire of technological devices useful in the management of patients with diabetes. In this issue, Schiaffini and colleagues confirm and extend published data describing the benefits of CGM in diabetic children. Specifically, such monitoring enables clinicians to detect occult hypoglycemia not otherwise discernable with intermittent testing of blood glucose. Although results of monitoring are not yet available in real time, the data can be used to adjust insulin regimens to allow more effective glycemic control. This is especially important in the pediatric population for whom strict glycemic control has traditionally been limited owing to concerns about the negative effects of hypoglycemia on the developing central nervous system. Additionally, postprandial hyperglycemia can be more readily detected and controlled. CGM provides new and important information not necessarily provided by measurement of HbA1c, and will likely prove an indispensable adjunct to diabetes care. Finally, this procedure has potential applications in the diagnosis and management of patients with other metabolic disorders.  相似文献   

19.
Glucose monitoring technology has been used in the management of diabetes for three decades. Traditional devices use enzymatic methods to measure glucose concentration and provide point sample information. More recently continuous glucose monitoring devices have become available providing more detailed data on glucose excursions. In future applications the continuous glucose sensor may become a critical component of the closed loop insulin delivery system and, as such, must be selective, rapid, predictable and acceptable for continuous patient use. Many potential sensing modalities are being pursued including optical and transdermal techniques. This review aims to summarize existing technology, the methods for assessing glucose sensing devices and provide an overview of emergent sensing modalities.  相似文献   

20.
All medical devices used for self-monitoring of blood glucose (BG), insulin injection, continuous subcutaneous insulin infusion, and continuous glucose monitoring in the European Union (EU) must have a Communauté Européenne (CE) mark. However, the approval process for obtaining this mark is different from that used by the European Medicines Agency in the EU for drugs or by the Food and Drug Administration in the United States for such medical and in vitro diagnostic devices. The notified bodies involved in the CE mark process perform this evaluation in cooperation with the manufacturers. They have only limited diabetes know-how; they have to handle all kinds of medical devices. There are devices for therapy on the market in the EU (i.e., they have market approval) that do not fulfill quality requirements, as indicated, for example, in the international norm ISO 15197 for BG test systems. Evaluation of the performance of such systems is usually provided by the manufacturers. What is missing in the EU is an independent institution that performs regular and critical evaluation of the quality of devices used for diabetes therapy before and also after their market approval. The work of such an institution would focus on BG test systems (these represent two-thirds of the market of medical devices for diabetes treatment) but would also evaluate the performance of other devices. It has to be clarified what legal framework is required for such an institution and how it can be financed; probably this can be done in a shared manner by the manufacturers of such devices and the health insurance companies. Positive evaluation results should be a prerequisite prior to any reimbursement for such devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号