首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report cytogenetic and molecular findings in a family in which Pelizaeus-Merzbacher disease has arisen by a sub-microscopic duplication of the proteolipid protein (PLP1) gene involving the insertion of approximately 600 kb from Xq22 into Xq26.3. The duplication arose in an asymptomatic mother on a paternally derived X chromosome and was inherited by her son, the proband, who is affected with Pelizaeus-Merzbacher disease. The mother also carries a large interstitial deletion of approximately 70 Mb extending from Xq21.1 to Xq27.3, which is present in a mosaic form. In lymphocytes, the mother has no normal cells, having one population with three copies of the PLP1gene (one normal X and one duplication X chromosome) and the other population having only one copy of the PLP1 gene (one normal X and one deleted X chromosome). Her karyotype is 46,XX.ish dup (X) (Xpter --> Xq26.3::Xq22 --> Xq22::Xq26.3 --> Xqter)(PLP++)/46,X,del(X)(q21.1q27.3).ish del(X)(q21.1q27.3)(PLP-). Both ends of the deletion have been mapped by fluorescence in situ hybridization using selected DNA clones and neither involves the PLP1 gene or are in the vicinity of the duplication breakpoints. Prenatal diagnosis was carried out in a recent pregnancy and the complex counseling issues associated with these chromosomal rearrangements are discussed.  相似文献   

2.
3.
Multicolor fluorescence in situ hybridization (M-FISH) experiments were performed to determine the composition of abnormal complex karyotypes in 15 cases of hematological malignancy. Four cases were found to have unsuspected unbalanced X chromosome translocations, which resulted in the presence of extra X chromosome material. We determined the identity of the duplicated chromosome regions using the multicolor banding (mBAND) technique. Xq27-qter was duplicated in three of the four male cases with an X chromosome abnormality (i.e., in one third of male cases and one fifth of all cases). These preliminary results may point to the existence of a recurrent chromosome abnormality, either translocation at a specific Xq27 locus or duplication of Xq27-qter.  相似文献   

4.
5.
We report on the clinical phenotype of an infant with a duplication of the terminal portion of the long arm of chromosome 3(q26.3-qter) and a deletion of the terminal portion of the short arm of chromosome 4(p16.3) with multiple hemangiomas and a hamartoma. Patients with deletions of distal 4p have the characteristic features of Wolf-Hirschhorn syndrome (WHS); whereas those with the distal duplication of 3q have a well recognized syndrome with some features resembling Cornelia-de Lange syndrome (CdLS). Neither of these recognized chromosomal anomalies has been reported previously to be associated with multiple hemangiomas or other vascular malformations.  相似文献   

6.
We describe the clinical phenotype in four males from three families with duplication (X)(qter→q27::p22.3→qter). This is an unusual duplication of the distal long arm segment, Xq27-qter, onto the distal short arm of the X chromosome at Xp22.3, as shown by fluorescent in situ hybridization analysis with multiple X-specific probes. The patients are young male offspring of three unrelated, phenotypically normal carrier women. The affected males have similar clinical manifestations including severe growth retardation and developmental delay, severe axial hypotonia, and minor anomalies. Such clinical similarity in three unrelated families demonstrates that this chromosome abnormality results in a new and distinct clinical phenotype. Replication studies, performed on two of the mothers, provided evidence that inactivation of the abnormal X chromosome permitted the structural abnormality to persist in these families for a generation or more in females without phenotypic expression. Am. J. Med. Genet. 80:377–384, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
We report the case of a female patient exhibiting multiple congenital malformations including diaphragmatic hernia and heart defect. Cytogenetic studies (including karyotype, FISH and array-CGH) showed a de novo terminal deletion (6.9 Mb) on chromosome 15 in association with a recombinant X chromosome bearing a 9-Mb Xp duplication and a 46-Mb Xq deletion distal to XIST. The recombinant X chromosome was caused by a maternal inv(X)(p22.31q22.3). The X chromosome inactivation pattern was skewed in the patient suggesting a possible inactivation of the recombinant X chromosome. Considering these results, the phenotype was linked to the de novo terminal 15q deletion. These results strengthen the assumption that array-CGH should be applied to each fetus/newborn with multiple congenital malformations.  相似文献   

8.
We have used a gamma-irradiation (2.5–25 krads) cell fusion procedure to generate human-hamster somatic cell hybrids (IHB, irradiated human fragments in B14–150 cells), retaining small fragments derived from human chromosomes 3 and X. By using Alu-element mediated PCR amplification and dot-blot hybridization with human alphoid or total human DNA as probes, 86 positive hybrids were identified and selected for further analysis. Nonisotopic fluorescence in situ hybridization (FISH) with human DNA in a set of eight hybrids demonstrated the presence of from one to eight human fragments per cell independent of irradiation dose. In contrast, a significant dose-dependent variation of fragment sizes was shown in the analysis of the 86 hybrids with markers previously mapped to 3p (seven markers) and to Xq (21 markers). Using the Xq27–28 region as a model, 40% of the hybrids generated at 5 krads or less were found to have retained fragments in the range of 3–30 Mb, 10% retained the whole chromosome arm, and the remaining 50% retained fragments of less than 2–3 Mb. The proportion of fragments of 3 Mb or larger decreased rapidly at higher irradiation doses and was very low (less than 6%) in hybrids generated at 25 krads. Upon further characterization, the 86 hybrids analyzed here will provide a mapping panel for the entire chromosomes 3 and X with an estimated resolution in the range of 1–2 Mb on average, a size range amenable to PFGE and YAC contig mapping.  相似文献   

9.
10.
11.
A 5-year-old girl with developmental and growth retardation is reported with complex chromosome rearrangements consisting of a partial Xq deletion and an abnormal chromosome 3 with multiple breakpoints. GTG-banding, and multiplex and conventional FISH studies showed that a 6.6-Mb Xq22-q23 segment was inserted into 3q, in addition to three intrachromosomal insertions in chromosome 3. Her karyotype was thus interpreted as 46,X,der(X)(Xpter-->Xq22::Xq23-->Xqter),der(3)(3pter-->3p26::3p12-->3q25.3::3p12-->3p26::Xq22-->Xq23::3q25.3-->3qter). Replication R-banding study showed that the der(X) was inactivated in all blood lymphocytes analyzed. Methylation-specific PCR at the androgen receptor gene (HUMARA) locus at Xq11-q12 showed a skewed inactivation pattern with the active/inactive X chromosome ratio of 92/8. These data indicated the presence, in the majority of cells, of a functioning Xq22-q23 segment in both the normal X and the der(3) chromosomes. Her growth retardation, developmental delay, and other minor anomalies were most likely caused by dosage effects of the genes in the functionally disomic Xq22-q23 region. Despite the presence of two active copies of the proteolipid protein 1 gene (PLP1), she did not show the symptoms of Pelizaeus-Merzbacher disease, a subset of which has been known to be caused by the duplication of PLP1.  相似文献   

12.
Deletions of the terminal Xp regions, including the short-stature homeobox (SHOX) gene, were described in families with hereditary Turner syndrome and Léri-Weill syndrome. We report on a 10-2/12-year-old girl and her 37-year-old mother with short stature and no other phenotypic symptoms. In the daugther, additional chromosome material was detected in the pseudoautosomal region of one X chromosome (46,X,add(Xp.22.3)) by chromosome banding analysis. The elongation of the X chromosome consisted of Giemsa dark and bright bands with a length one-fifth of the size of Xp. The karyotype of the mother demonstrated chromosome mosaicism with three cell lines (46,X,add(X)(p22.3) [89]; 45,X [8]; and 47,X,add(X)(p22.3), add(X)(p22.3) [2]). In both daughter and mother, fluorescence in situ hybridization (FISH), together with data from G banding, identified the breakpoints in Xp22.1-3 and Xq26, resulting in a partial trisomy of the terminal region of Xq (Xq26-qter) and a monosomy of the pseudoautosomal region (Xp22.3) with the SHOX gene and the proximal region Xp22.1-3, including the steroidsulfatase gene (STS) and the Kallmann syndrome region. The derivative X chromosome was defined as ish.der(X)t(X;X)(p22.1-3;q26)(yWXD2540-, F20cos-, STS-, 60C10-, 959D10-, 2771+, cos9++). In daughter and mother, the monosomy of region Xp22.1-3 is compatible with fertility and does not cause any other somatic stigmata of the Turner syndrome or Léri-Weill syndrome, except for short stature due to monosomy of the SHOX gene.  相似文献   

13.
A four-year-old boy with severe psychomotor retardation, facial appearance consistent with the fragile X syndrome, hypotonia, and overgrowth was found to have a deletion including the fragile X gene (FMR1). The breakpoints of the deletion were established between CDR1 and sWXD2905 (approximately 200 kb apart) at Xq27.1 (centromeric) and between DXS8318 (612-1078L) and DXS7847 (576-291L) (approximately 250 kb apart) at Xq28, about 500 kb telomeric to the FMR1 gene. The total length of the deletion is approximately 8.5 Mb. The propositus's mother, who was found to be a carrier of the deletion, showed very mild mental impairment. Except for mental retardation, which is a common finding in all cases reported with similar deletions of chromosome Xq, this patient had generalized overgrowth, exceeding the 97th centile for height and weight. Obesity and increased growth parameters have been reported in other patients with deletions either overlapping or within a distance of 0.5 Mb from the deletion in the present patient. Thus, it is suggested that a deletion of the 8-Mb fragment centromeric to the FMR1 gene might have an effect on growth.  相似文献   

14.
A maternally transmitted Xp+ chromosome was associated with an abnormal phenotype, including developmental delay and short stature, in two male cousins and their 12 year old aunt. The respective mothers were not mentally impaired but had short stature. The G banding pattern identified the extra chromosome segment as a repeat of Xq26.3-->qter attached to an apparently intact Xp22.3 sub-band, so the Xp+ chromosome may be described as rea(X)(Xqter-->p22.3::Xq26.3-->Xqter). The rearranged chromosome was late replicating in 97 to 100% of the metaphases in the mothers but it was early replicating in 43% of the lymphocytes in the mentally defective female (n = 100 cells/subject). Fluorescence in situ hybridisation using X and Y chromosome paints, as well as cosmids A and 1A1 specific for loci within Xq28, confirmed both the identity of the extra segment and the entirety of the Xp pseudoautosomal region. Therefore, the phenotypic consequences in this family can be related to the Xq26.3-->qter functional disomy allowing for the effects of X inactivation in the female carriers.  相似文献   

15.
Linkage studies and deletion screening in choroideremia.   总被引:1,自引:0,他引:1       下载免费PDF全文
Fourteen families with choroideremia (TCD) have been examined for linkage to nine genetic markers located on the proximal long arm of the X chromosome. Linkage to three markers (DXYS1, DXS72, DXS3) located in Xq21 was found with a four point lod score of 8.25. No evidence of submicroscopic deletions was observed using DXS233 and DXS232, both thought to lie within about 1 Mb of the TCD gene.  相似文献   

16.
We report here a child with a ring chromosome 5 (r(5)) associated with facial dysmorphology and multiple congenital abnormalities. Fluorescent in situ hybridization (FISH) using bacterial artificial chromosome (BAC) clones was performed to determine the breakpoints involved in the r(5). The 5p deletion extended from 5p13.2-3 to 5pter and measured 34.61 Mb (range: 33.7-35.52 Mb) while the 5q deletion extended from 5q35.3 to 5qter and measured 2.44 Mb (range: 2.31-2.57 Mb). The patient presented signs such as microcephaly, hypertelorism, micrognathia and epicanthal folds, partially recalling those of a deletion of the short arm of chromosome 5 and the "cri-du-chat" syndrome. The most striking phenotypic features were the congenital heart abnormalities which have been frequently reported in deletions of the distal part of the long arm of chromosome 5 and in rings leading to a 5q35-5qter deletion. However, the NKX2-5 gene, which has been related to congenital heart defects, was not deleted in our patient, nor presumably to some other patients with 5q35.3-5qter deletion. We propose that VEGFR3, deleted in our patient, could be a candidate gene for the congenital heart abnormalities observed.  相似文献   

17.
Males with duplications within the long arm of the X chromosome are rare and most cases are inherited from a maternal heterozygote. We report a male with a de novo Xq duplication and review of the literature. The proband was ascertained prenatally after an abnormal expanded alpha-fetoprotein (AFP) screen and abnormal ultrasound findings. Chromosome analysis on amniocyte and subsequent peripheral blood lymphocyte cultures showed a male karyotype containing additional material on the long arm of the X chromosome. Fluorescence in situ hybridization with an X chromosome whole chromosome paint probe showed that the additional material was derived from the X chromosome, interpreted as a dup(X)(q13.3q24). Further characterization of the duplication by array CGH showed a duplication size between 30-44 Mb as determined by the map position of the flanking clones on the array, and refined the breakpoints of the duplicated region to Xq21.32 --> Xq25. At birth, the proband had multiple craniofacial abnormalities, musculoskeletal anomalies, bilateral cryptorchidism with scrotal hypoplasia, conductive hearing loss, and profound generalized hypotonia despite normal birthweight, length, and head circumference. Although data regarding Xq duplications in males are limited, a clear pattern of characteristic features can be discerned as illustrated in the present case and confirmed in our literature review. Mental, psychomotor and growth retardation, as well as, craniofacial anomalies, muscle hypotonia, hypoplastic genitalia, cryptorchidism, feeding difficulties, and endocrine dysfunction are all significant issues in these individuals.  相似文献   

18.
A 15-year-old girl had exertion dyspnea, focal nodular hyperplasia of the liver, portal vein hypoplasia, portopulmonary hypertension, mental retardation, and minor facial abnormalities. Cytogenetic analysis demonstrated an abnormal chromosome 8 with 8p22-pter duplication and 8q24.3-qter deletion, with the duplicated 8p segment attached to band 8q24.3. Her mother had a pericentric inversion of chromosome 8, inv(8)(p22q24.3). Therefore, the girl's abnormal chromosome 8 was a recombinant of maternal inversion chromosome: 46,XX,rec(8)dup(8p)inv(8)(p22q24.3)mat. Further characterization of the recombinant chromosome, using array CGH and regional FISH analyses, defined 15 Mb distal 8p duplication and 0.5 Mb 8q deletion. Possible correlation of the recombinant chromosome and hepatic focal nodular hyperplasia in the patient is discussed.  相似文献   

19.
Gain of chromosome arm 17q and adverse outcome in patients with neuroblastoma.   总被引:12,自引:0,他引:12  
BACKGROUND: Gain of genetic material from chromosome arm 17q (gain of segment 17q21-qter) is the most frequent cytogenetic abnormality of neuroblastoma cells. This gain has been associated with advanced disease, patients who are > or =1 year old, deletion of chromosome arm 1p, and amplification of the N-myc oncogene, all of which predict an adverse outcome. We investigated these associations and evaluated the prognostic importance of the status of chromosome 17. METHODS: We compiled molecular cytogenetic analyses of chromosome 17 in primary neuroblastomas in 313 patients at six European centers. Clinical and survival information were collected, along with data on 1p, N-myc, and ploidy. RESULTS: Unbalanced gain of segment 17q21-qter was found in 53.7 percent of the tumors, whereas the chromosome was normal in 46.3 percent. The gain of 17q was characteristic of advanced tumors and of tumors in children > or =1 year of age and was strongly associated with the deletion of 1p and amplification of N-myc. No tumor showed amplification of N-myc in the absence of either deletion of 1p or gain of 17q. Gain of 17q was a significant predictive factor for adverse outcome in univariate analysis. Among the patients with this abnormality, overall survival at five years was 30.6 percent (95 percent confidence interval, 21 to 40 percent), as compared with 86.0 percent (95 percent confidence interval, 78 to 91 percent) among those with normal 17q status. in multivariate analysis, gain of 17q was the most powerful prognostic factor, followed by the presence of stage 4 disease and deletion of 1p (hazard ratios, 3.4, 2.3, and 1.9, respectively). CONCLUSIONS: Gain of chromosome segment 17q21-qter is an important prognostic factor in children with neuroblastoma.  相似文献   

20.
Translocations involving the short arms of the X and Y chromosomes are rare and can result in a functional disomy of the short arm of the X chromosome, including the dosage-sensitive sex reversal (DSS) locus. A result of such imbalance may be sex reversal with multiple congenital anomalies. We present the clinical and cytogenetic evaluation of a newborn infant with DSS and additional clinical findings of minor facial anomalies, left abdominal mass, 5th finger clinodactyly, and mild hypotonia. The external genitalia appeared to be normal female. The infant had bilateral corneal opacities and findings suggestive of anterior segment dysgenesis. Ultrasonography showed a small uterus with undetectable ovaries, and a left multicystic dysplastic kidney. High-resolution chromosome analysis identified the presence of a derivative Y chromosome, 47,XY, +der(Y)t(X;Y)(p21.1;p11.2), which was confirmed by fluorescence in situ hybridization studies. Array CGH showed a 35.1 Mb copy number gain of chromosome region Xp22.33-p21.1 and a 52.2 Mb copy number gain of Yp11.2-qter, in addition to the intact X and Y chromosomes. Previously reported patients with XY sex reversal have not had DSS with corneal opacities, dysgenesis of the anterior segment of the eye, and unilateral multicystic dysplastic kidney. These findings represent a new form of XY sex reversal due to an Xp duplication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号