首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel type of self-fluorescent unimolecular micelle nanoparticle (NP) formed by multi-arm star amphiphilic block copolymer, Boltron® H40 (H40, a 4th generation hyperbranched polymer)-biodegradable photo-luminescent polymer (BPLP)-poly(ethylene glycol) (PEG) conjugated with cRGD peptide (i.e., H40-BPLP-PEG-cRGD) was designed, synthesized, and characterized. The hydrophobic BPLP segment was self-fluorescent, thereby making the unimolecular micelle NP self-fluorescent. cRGD peptides, which can effectively target αvβ3 integrin-expressing tumor neovasculature and tumor cells, were selectively conjugated onto the surface of the micelles to offer active tumor-targeting ability. This unique self-fluorescent unimolecular micelle exhibited excellent photostability and low cytotoxicity, making it an attractive bioimaging probe for NP tracking for a variety of microscopy techniques including fluorescent microscopy, confocal laser scanning microscopy (CLSM), and two-photon microscopy. Moreover, this self-fluorescent unimolecular micelle NP also demonstrated excellent stability in aqueous solutions due to its covalent nature, high drug loading level, pH-controlled drug release, and passive and active tumor-targeting abilities, thereby making it a promising nanoplatform for targeted cancer theranostics.  相似文献   

2.
Unimolecular micelles formed by dendritic amphiphilic block copolymers poly(amidoamine)–poly(l-lactide)-b-poly(ethylene glycol) conjugated with anti-CD105 monoclonal antibody (TRC105) and 1,4,7-triazacyclononane-N, N′, N-triacetic acid (NOTA, a macrocyclic chelator for 64Cu) (abbreviated as PAMAM–PLA-b-PEG–TRC105) were synthesized and characterized. Doxorubicin (DOX), a model anti-cancer drug, was loaded into the hydrophobic core of the unimolecular micelles formed by PAMAM and PLA via physical encapsulation. The unimolecular micelles exhibited a uniform size distribution and pH-sensitive drug release behavior. TRC105-conjugated unimolecular micelles showed a CD105-associated cellular uptake in human umbilical vein endothelial cells (HUVEC) compared with non-targeted unimolecular micelles, which was further validated by cellular uptake in CD105-negative MCF-7 cells. In 4T1 murine breast tumor-bearing mice, 64Cu-labeled targeted micelles exhibited a much higher level of tumor accumulation than 64Cu-labeled non-targeted micelles, measured by serial non-invasive positron emission tomography (PET) imaging and confirmed by biodistribution studies. These unimolecular micelles formed by dendritic amphiphilic block copolymers that synergistically integrate passive and active tumor-targeting abilities with pH-controlled drug release and PET imaging capabilities provide the basis for future cancer theranostics.  相似文献   

3.
Li X  Qian Y  Liu T  Hu X  Zhang G  You Y  Liu S 《Biomaterials》2011,32(27):6595-6605
We report on the fabrication of multifunctional polymeric unimolecular micelles as an integrated platform for cancer targeted drug delivery and magnetic resonance imaging (MRI) contrast enhancement under in vitro and in vivo conditions. Starting from a fractionated fourth-generation hyperbranched polyester (Boltorn H40), the ring-opening polymerization of ?-caprolactone (CL) from the periphery of H40 and subsequent terminal group esterification with 2-bromoisobutyryl bromide afforded star copolymer-based atom transfer radical polymerization (ATRP) macroinitiator, H40-PCL-Br. Well-defined multiarm star block copolymers, H40-PCL-b-P(OEGMA-co-AzPMA), were then synthesized by the ATRP of oligo(ethylene glycol) monomethyl ether methacrylate (OEGMA) and 3-azidopropyl methacrylate (AzPMA). This was followed by the click reaction of H40-PCL-b-P(OEGMA-co-AzPMA) with alkynyl-functionalized cancer cell-targeting moieties, alkynyl-folate, and T(1)-type MRI contrast agents, alkynyl-DOTA-Gd (DOTA is 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakisacetic acid), affording H40-PCL-b-P(OEGMA-Gd-FA). In aqueous solution, the amphiphilic multiarm star block copolymer exists as structurally stable unimolecular micelles possessing a hyperbranched polyester core, a hydrophobic PCL inner layer, and a hydrophilic P(OEGMA-Gd-FA) outer corona. H40-PCL-b-P(OEGMA-Gd-FA) unimolecular micelles are capable of encapsulating paclitaxel, a well-known hydrophobic anticancer drug, with a loading content of 6.67 w/w% and exhibiting controlled release of up to 80% loaded drug over a time period of ~120 h. In vitro MRI experiments demonstrated considerably enhanced T(1) relaxivity (18.14 s(-1) mM(-1)) for unimolecular micelles compared to 3.12 s(-1) mM(-1) for that of the small molecule counterpart, alkynyl-DOTA-Gd. Further experiments of in vivo MR imaging in rats revealed good accumulation of unimolecular micelles within rat liver and kidney, prominent positive contrast enhancement, and relatively long duration of blood circulation. The reported unimolecular micelles-based structurally stable nanocarriers synergistically integrated with cancer targeted drug delivery and controlled release and MR imaging functions augur well for their potential applications as theranostic systems.  相似文献   

4.
Liu Q  Chen M  Sun Y  Chen G  Yang T  Gao Y  Zhang X  Li F 《Biomaterials》2011,32(32):8243-8253
Rare-earth upconversion nanoparticles (UCNP) which can absorb low-energy photons and emit high energy photons have attracted great interest not only because of their unique application in upconversion luminescence imaging, but also because they can be used as ideal building blocks for multimodal bioimaging probes. Improving the water-solubility of UCNP and functionalizing them are as yet unresolved problems. In this present study, a general strategy was developed to achieve these two aims by converting hydrophobic upconversion nanoparticles into hydrophilic ones. This was based on the self-assembly between oleic acid, which is a capping ligand, as the guest molecule, and alpha-cyclodextrin, as the host molecule, no matter what the particle size was (10-400?nm) or what synthesis method (thermal decomposition, hydrothermal, solvothermal) was used. The synthesized hydrophilic nanoparticles can further load hydrophobic molecule, e.g. Os(II) complex. The process of self-assembly and loading was confirmed by transmission electron microscopy, X-ray powder diffraction, (1)H-nuclear magnetic resonance, Fourier transform-infrared and thermogravimetric analysis, upconversion luminescence and fluorescence spectra. Further bioapplication has also been investigated, including cell-labeling, in?vivo lymphatic imaging, upconversion luminescence and positron emission tomography imaging of whole-body Kunming mice. The results indicate that this method is a potential candidate for the preparation of hydrophilic UCNP as a multimodal nanoprobe.  相似文献   

5.
Glial cells play an essential part in the neuron system. They can not only serve as structural blocks in the human brain but also participate in many biological processes. Extensive studies have shown that astrocytes and microglia play an important role in neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease,Huntington’s disease, as well as glioma, epilepsy, ischemic stroke, and infections. Positron emission tomography is a functional imaging technique providing molecular...  相似文献   

6.
Positron emission tomography (PET) is a nuclear imaging modality that relies on visualization of molecular targets in tissues, which is nowadays combined with a structural imaging modality such as computed tomography (CT) or Magnetic Resonance Imaging (MRI) and referred to as hybrid PET imaging. This technique allows to image specific immunological targets in rheumatoid arthritis (RA). Moreover, quantification of the PET signal enables highly sensitive monitoring of therapeutic effects on the molecular target. PET may also aid in stratification of the immuno-phenotype at baseline in order to develop personalized therapy. In this systematic review we will provide an overview of novel PET tracers, investigated in the context of RA, either pre-clinically, or clinically, that specifically visualize immune cells or stromal cells, as well as other factors and processes that contribute to pathology. The potential of these tracers in RA diagnosis, disease monitoring, and prediction of treatment outcome will be discussed. In addition, novel PET tracers established within the field of oncology that may be of use in RA will also be reviewed in order to expand the future opportunities of PET imaging in RA.  相似文献   

7.
The labeling of probes with fluorine-18 [(18)F, β(+); 96.7%] continues to play a considerably important role in the development of positron emission tomography (PET) as a modality for both clinical research and clinical diagnoses. This review summarizes the strategies and recent developments in the fluorine-18 labeling of probes for PET imaging. Problems and issues relating to the practical production of fluorine-18 currently in widespread use are also discussed.  相似文献   

8.
9.
Li X  Li H  Liu G  Deng Z  Wu S  Li P  Xu Z  Xu H  Chu PK 《Biomaterials》2012,33(10):3013-3024
Magnetite (Fe3O4) - loaded polymer micelles (denoted as “magnetomicelles”) are produced by self-assembly of fluorine-containing amphiphilic poly(HFMA-g-PEGMA) copolymers with oleic acid modified Fe3O4 nanoparticles in an aqueous medium. The oleic acid modified Fe3O4 nanoparticles form small clusters in the poly(HFMA-g-PEGMA) micelles with a mean diameter of 100 nm and the magnetomicelles show high stability in an aqueous medium due to the high hydrophobic fluorine segments in graft copolymers enhance the stability of the micelles. The magnetomicelles also show good cytocompatibility based on the MTT cytotoxicity assay and possess paramagnetic properties with saturation magnetization of 17.14 emu/g.Their good stability, cytocompatibility, and paramagnetic properties render the materials attractive in drug delivery and in vivo magnetic resonance imaging (MRI) applications. Controlled release of hydrophobic drug-5-fluorouracil is achieved from the magnetomicelles with a loading efficiency of 20.94 wt%. The magnetomicelles have transverse relaxivity rates (r2) of 134.27 mM−1 s−1 and exhibit high efficacy as a negative MRI agent in T2-weighted imaging. In vivo MRI studies demonstrate that the contrast between liver and spleen is enhanced by the magnetomicelles. These favorable properties suggest clinical use as nanocarriers in drug delivery applications and contrast agents in MRI.  相似文献   

10.
Summary: Non-invasive monitoring of adaptive immunity in infection, cancer, and autoimmunity remains a major challenge. Current techniques to monitor lymphocytes involve numeric and functional determinations of immune cells isolated from the peripheral blood (most often) and tissue (rarely). Invasive measurements are prone to sampling errors and are poorly reflective of the dynamic changes in the location, number, and movement of lymphoid cells. These limitations indicate the need for non-invasive whole-body imaging methodologies that allow longitudinal, quantitative, and functional analyses of the immune system in vivo . Positron emission tomography (PET), a clinically based whole-body imaging modality, has the potential to revolutionize diagnostics and therapeutic monitoring in both clinical and pre-clinical settings. This review discusses studies using PET to image adaptive immune responses in small animal models. We address the challenges inherent in assessing whole-body immunity with PET and recent developments that can improve its performance. Finally, we discuss work to translate PET immune imaging into clinical practice.  相似文献   

11.
This research aims to develop and investigate a multifunctional implantable system capable of biosensing, drug delivery and magnetic resonance imaging (MRI) for continuous monitoring, controlled anti-inflammatory drug delivery and imaging, respectively. A glucose biosensor, diclofenac sodium (Diclo) and magnetic nanoparticles (MNP) were used as the biosensor component, anti-inflammatory agent and MRI contrast agent, respectively. MNP were synthesized by the co-precipitation technique and loaded with the sensor and drug components into alginate microspheres using a commercial droplet generator. The multifunctional system was then characterized using optical microscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, vibrating sample magnetometry (VSM) and MRI. The MNP were found to be in the size range of 5-15 nm. The final system, comprising the biosensor, drug and MNP loaded inside alginate microspheres, was found to be in the size range of 10-60 μm. Biosensing studies indicated an excellent glucose response curve, with a regression coefficient of 0.974 (0-10mM of glucose, response time: 4 min). In vitro Diclo release shows that MNP loading in alginate microspheres increases the burst release percentage by 11-12% in both 60 and 10 μm particles. However, the duration of release for 85% drug release decreases with MNP loading by 7 and 6 days for 39 the 60 and 10 μm particles, respectively. Super-paramagnetism was confirmed by VSM, with 2.09 and 1.368 emu g(-1), respectively, for the 60 and 10 μm particles, with no hysteresis. MRI showed significant contrast for both sizes. The particles showed an excellent biocompatibility (>80%) for all combinations of formulations. The system shows a great potential for biosensing with concurrent drug delivery and visualization for biomedical applications.  相似文献   

12.
Institute of Theoretical and Experimental Physics, Moscow. Translated from Meditsinskaya Tekhnika, No. 6, p. 47, November–December, 1992.  相似文献   

13.
Simultaneous positron emission tomography (PET) and fluorescence tomography (FT) for in vivo imaging of small animals is proposed by a dual-modality system. This system combines a charge-coupled device-based near-infrared fluorescence imaging with a planar detector pair-based PET. With [(18)F]-2-fluoro-2-deoxy-d-glucose radioactive tracer and the protease activated fluorescence probe, on the one hand, the simultaneous metabolic activity and protease activity in tumor region are revealed by the PET and FT, respectively. On the other hand, the protease activity both on the surface layer and the deep tissue of the tumor is provided by the fluorescence reflection imaging and FT, respectively.  相似文献   

14.
We have developed a highly efficient method for utilizing liposomes as imaging agents for positron emission tomography (PET) giving high resolution images and allowing direct quantification of tissue distribution and blood clearance. Our approach is based on remote loading of a copper-radionuclide ((64)Cu) using a new ionophore, 2-hydroxyquinoline, to carry (64)Cu(II) across the membrane of preformed liposomes and deliver it to an encapsulated copper-chelator. Using this ionophore we achieved very efficient loading (95.5?±?1.6%) and retention stability (>99%), which makes the (64)Cu-liposomes highly applicable as PET imaging agents. We show the utility of the (64)Cu-liposomes for quantitative in vivo imaging of healthy and tumor-bearing mice using PET. This remote loading method is a powerful tool for characterizing the in vivo performance of liposome based nanomedicine, and has great potential in diagnostic and therapeutic applications.  相似文献   

15.
New magnetic-based core-shell particles (MBCSPs) were developed to target skin cancer cells while delivering chemotherapeutic drugs in a controlled fashion. MBCSPs consist of a thermo-responsive shell of poly(N-isopropylacrylamide-acrylamide-allylamine) and a core of poly(lactic-co-glycolic acid) (PLGA) embedded with magnetite nanoparticles. To target melanoma cancer cells, MBCSPs were conjugated with Gly-Arg-Gly-Asp-Ser (GRGDS) peptides that specifically bind to the α(5)β(3) receptors of melanoma cells. MBCSPs consist of unique multifunctional and controlled drug delivery characteristics. Specially, they can provide dual drug release mechanisms (a sustained release of drugs through degradation of PLGA core and a controlled release in response to changes in temperature via thermo-responsive polymer shell), and dual targeting mechanisms (magnetic localization and receptor-mediated targeting). Results from in vitro studies indicate that GRGDS-conjugated MBCSPs have an average diameter of 296 nm and exhibit no cytotoxicity towards human dermal fibroblasts up to 500 μg ml(-1). Further, a sustained release of curcumin from the core and a temperature-dependent release of doxorubicin from the shell of MBCSPs were observed. The particles also produced a dark contrast signal in magnetic resonance imaging. Finally, the particles were accumulated at the tumor site in a B16F10 melanoma orthotopic mouse model, especially in the presence of a magnet. Results indicate great potential of MBCSPs as a platform technology to target, treat and monitor melanoma for targeted drug delivery to reduce side effects of chemotherapeutic reagents.  相似文献   

16.
The positron emitting isotope (89)Zr is an ideal radionuclide for use in positron emission tomography (PET) imaging with monoclonal antibodies (mAbs). This article reviews the cyclotron physics of (89)Zr production, and the chemical separation methods for isolating it from yttrium target material. (89)Zr coordination with the bifunctional chelate desferrioxamine B is discussed, along with the common procedures for attaching the chelate to mAbs. The review is intended to detail the procedure for creating (89)Zr labeled mAbs, going from cyclotron to PET.  相似文献   

17.
The paper describes an investigation in which it is shown that small positive voltage pulses applied to an external conductor placed against the photocathode of a photomultiplier tube can be used to switch the photocathode completely off for the duration of the pulses. This suggests that a photomultiplier tube with a multisegment photocathode can be constructed, the individual cathode segments of which can be switched off independently by means of such pulses. A theoretical explanation for the effect is provided with the aid of a simple circuit model for the photocathode. Analysis of the model also shows that it is possible to identify the particular cathode segment in which a photon is detected when a pulse is recorded at the phototube's anode. A phototube with these characteristics can have important implications for positron emission tomography, as it can provide improved spatial resolution, simultaneous multislice capability and the ability to eliminate distortion due to dead-time effects at high count rates.  相似文献   

18.

Erratum

Improved photomultiplier tube for positron emission tomography  相似文献   

19.
 Human memory is composed of several independent but interacting systems. These include a system for remembering general knowledge, semantic memory, and a system for recollection of personal events, episodic memory. The results of positron emission tomography (PET) studies of regional cerebral blood flow indicate that networks of distributed brain regions subserve episodic and semantic memory. Some networks seem to be generally engaged in memory processes whereas the involvement of others is specific to factors such as the type of information to be remembered or the level of retrieval success. The PET findings help to understand memory dysfunction (a) by showing that multiple brain regions are involved in different memory processes and (b) by sharpening the interpretation of the functional role of different brain regions. Received: 31 January 1997 / Accepted: 28 May 1997  相似文献   

20.
It has been well recognized that, in comparison with the conventional positron emission tomography (PET), the differential-time measurements made available in time-of-flight (TOF) PET imaging can reduce the propagation of data noise in reconstruction and lead to images having better statistical quality. This observation has been the motivation driving the interest in developing TOF-PET systems. In this paper, we make new observations that can extend the use of TOF-PET. We develop a new mathematical formulation showing that the TOF information can be utilized to achieve new modes of reconstruction. In particular, it enables windowed and regions-of-interest reconstructions by use of TOF-PET measurements having a restricted coverage in the TOF or transverse direction, or both. A class of analytic algorithms is developed to perform such reconstructions. We employ computer-simulated TOF-PET data containing Poisson noise to validate the developed algorithms and evaluate their response to data noise with respect to a confidence-weighting analytic TOF-PET reconstruction method. We also demonstrate that in certain situations, the new reconstruction algorithms can generate images having improved statistics by recruiting suitable subsets of the TOF-PET data to minimize the use of deteriorating measurements in reconstruction. Potential implications of the new reconstruction approach to PET imaging are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号