首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 600 毫秒
1.
Giebel B 《Cells, tissues, organs》2008,188(1-2):116-126
Like other somatic stem cells, hematopoietic stem cells (HSC) contain the capacity to self-renew and to give rise to committed progenitor cells that are able to replenish all hematopoietic cell types. To keep a constant level of HSC, the decision whether their progeny maintain the stem cell fate or become committed to differentiation needs to be highly controlled. In this context it became evident that HSC niches fulfill important functions in keeping the level of HSC more or less constant. Before discovering such niches, it was widely assumed that HSC divide asymmetrically to give birth to a daughter cell maintaining the stem cell fate and to another one which is committed to differentiation. Here, I summarize some of the experimental data being compatible with the model of asymmetric cell division and review some of our latest findings, which demonstrate the occurrence of asymmetric cell divisions within the HSC and hematopoietic progenitor cell compartment. Since cell polarity is an essential prerequisite for asymmetrically dividing as well as for migrating cells, I will also discuss some aspects of cell polarity of primitive hematopoietic cells.  相似文献   

2.
The CD34 surface antigen has been recognized as a marker of hematopoietic stem cells (HSCs) and is widely used for HSC selection as well as for quality control in HSC transplantation. CD34 has been implicated in cytoadhesion signaling, and its expression has been suggested to reflect the activation state of hematopoietic progenitor cells. However, the function of CD34 remains essentially unknown. Here we analyzed the effects of ectopic CD34 expression in vivo in a bone marrow transplantation model. We transduced murine bone marrow stem cells with retroviral vectors encoding either murine full-length or the alternative splice product truncated CD34. Transduced cells were transplanted into syngeneic, marrow ablated hosts. For comparison, "control" animals received either enhanced green fluorescent protein (eGFP)-transduced or mock-transduced cells. Six months post-transplantation, transduced differentiated blood cells ectopically expressing murine CD34 showed decreased migration from peripheral blood to both bone marrow and thymus, an effect that was more pronounced with full-length CD34 than with the truncated variant. In contrast, no influence of transgene expression on trafficking of differentiated blood cells was seen in the eGFP control group. Our data indicate that CD34 expression in mature blood cells has a suppressive effect on cellular trafficking to hematopoietic stroma organs, thereby supporting a modulating role of the CD34 molecule in cytoadhesion.  相似文献   

3.
造血干细胞的可塑性及临床应用   总被引:1,自引:2,他引:1       下载免费PDF全文
干细胞是一类具有自我复制和多分化潜能的细胞 ,根据其发育阶段不同 ,分为胚胎干细胞和成体干细胞。胚胎干细胞具有多分化潜能 ;而成体干细胞的分化潜能则较为局限 ,只能定向分化为特化细胞。但新近的研究表明 ,成体干细胞在一定条件下可分化为与其所在组织不同的其他组织类型细胞 ,这种干细胞的可塑性被称为成体干细胞的横向分化(transdifferentiation)。其中造血干细胞 (hematopoieticstemcells,HSC)作为人们认识最深入 ,其临床应用也最为广泛的一类成体干细胞 ,目前已成为成体干细胞可塑性…  相似文献   

4.
Hematopoietic Stem Cell Aging: Wrinkles In Stem Cell Potential   总被引:4,自引:0,他引:4  
Hematopoietic stem cells (HSC) continuously replenish the blood and immune systems. Their activity must be sustained throughout life to support optimal immune responses. It has been thought that stem cells may be somewhat protected from age because of their perpetual requirement to replenish the blood, however studies over the past 10 years have revealed dramatic changes in HSC function and phenotype with respect to age. When the number of HSC within murine bone marrow is measured, an increase in concentration and absolute number of HSC within the bone marrow is observed as the animal ages, paralleled with increased homogeneity of stem cell marker expression. Results from transplantation studies demonstrate that although there is a decline in hematopoietic output on a per-cell basis, the increase in number provides sufficient, yet abnormal, blood production throughout the lifespan of the animal. HSC may play a role in immunosenescence through cell-fate decisions leading to an overproduction of myeloid cells and an underproduction of lymphocytes. When examining gene expression of aged HSC, recent studies have highlighted several key factors contributing to increased inflammation, stress response and genomic instability. Here, we will review the general phenotype observed with aging of the hematopoietic system, focusing on the HSC, and compile recent expression profiling efforts that have examined HSC aging. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Under physiological conditions, the innate immune cells derived from myeloid lineage absolutely outnumber the lymphoid cells. At present, two theories are attributed to the maintenance of haemopoiesis: the asymmetric cell division and the bone marrow hematopoietic microenvironment or "niche". However, the former only explains the self-renewal of haemopoietic stem cell (HSC) and the start of haemopoietic differentiation but fails to address the inducers of cell fate decisions; the latter has to admit that the hematopoietic cytokines, despite their significance in the maintenance of haemopoiesis, have no specific effect on lineage commitment. Given these flaws, the advantageous mechanism of myeloid haemopoiesis has not yet been uncovered in the current theories. The discoveries that bacterial components (lipopolysaccharide, LPS) and intestinal decontamination affect the mobilization of HSC trigger the interest in normal flora, which together with their components may have an effect on haemopoiesis. In the experiments in dogs and mice, researchers documented that the generation of myeloid cells has undergone changes in the bone marrow and periphery when antibiotics are used to regulate the normal intestinal flora and the concentration of its components. However, the same changes are not involved in lymphoid cells. Therefore, we hypothesize that in human body normal flora and its components are a driving force to maintain myeloid haemopoiesis under physiological conditions. To account for the selectiveness in haemopoiesis, these facts should be taken into consideration, such as HSC and mesenchymal stem cells (MSC) functionally expressed pattern recognition receptors (PRR), and both of them can self-migrate or be recruited by normal flora or its components into periphery. Dynamically monitoring the myeloid haemopoiesis may provide an important complementary program that precludes the abuse of antibiotics, which prevents diseases triggered by the imbalance of normal flora. Meanwhile, the regulation of normal flora and the use of purified microecological modulator may serve as valuable auxiliary treatments to mobilize HSC prior to the HSC transplantation as well as to promote hematopoietic recovery after transplantation or chemotherapy in the blood diseases.  相似文献   

6.
Blood formation occurs throughout the life of an individual in a process driven by hematopoietic stem cells (HSCs). The ability of bone marrow (BM) and cord blood (CB) HSC to undergo self-renewal and develop into multiple blood lineages has made these cells an important clinical resource. Transplantation with BM- and CB-derived HSCs is now used extensively for treatment of hematological disorders, malignancies, and immunodeficiencies. An understanding of the embryonic origin of HSC and the factors regulating their generation and expansion in vivo will provide important information for the manipulation of these cells ex vivo. This is critical for the further development of CB transplantation, the potential of which is limited by small numbers of HSC in the donor population. Although the origins of HSCs have become clearer and progress has been made in identifying genes that are critical for the formation and maintenance of HSCs, less is known about the signals that commit specific populations of mesodermal precursors to hematopoietic cell fate. Critical signals acting on these precursor cells are likely to be derived from visceral endoderm in yolk sac and from underlying stroma in the aorta-gonad-mesonephros region. Here we summarize briefly the origin of yolk sac and embryonic HSCs before detailing evidence that bone morphogenic protein-4 (BMP4) has a crucial role in Xenopus and mammalian HSC development. We discuss evidence that BMP4 acts as a hematopoietic growth factor and review its potential to modulate HSC in ex vivo expansion cultures from cord blood.  相似文献   

7.
Hematopoietic stem cells (HSCs) are rare, largely dormant, long-lived cells that are capable of establishing and regenerating all mature blood cell lineages throughout the life of the host. Given their therapeutic importance, understanding factors that regulate HSC development and influence HSC proliferation and differentiation is of great interest. Exploring HSC biology through the lens of infection has altered our traditional view of the HSC. The HSC can now be considered a component of the immune response to infection. In response to inflammatory cytokine signaling, HSCs enhance their proliferative state and contribute to the production of in-demand blood cell lineages. Similar cytokine signaling pathways also participate during embryonic HSC production. With its highly conserved hematopoietic system and experimental tractability, the zebrafish model has made significant contributions to the hematopoietic field. In particular, the zebrafish system has been ideally suited to help reveal the molecular and cellular mechanisms underlying HSC development. This review highlights recent zebrafish studies that have uncovered new mechanistic insights into how inflammatory signaling pathways influence HSC behavior during infection and HSC production within the embryo.  相似文献   

8.
The Polycomb group (PcG) gene Bmi-1 has recently been implicated in the maintenance of hematopoietic stem cells (HSC) from loss-of-function analysis. Here, we demonstrate that increased expression of Bmi-1 promotes HSC self-renewal. Forced expression of Bmi-1 enhanced symmetrical cell division of HSCs and mediated a higher probability of inheritance of stemness through cell division. Correspondingly, forced expression of Bmi-1, but not the other PcG genes, led to a striking ex vivo expansion of multipotential progenitors and marked augmentation of HSC repopulating capacity in vivo. Loss-of-function analyses revealed that among PcG genes, absence of Bmi-1 is preferentially linked with a profound defect in HSC self-renewal. Our findings define Bmi-1 as a central player in HSC self-renewal and demonstrate that Bmi-1 is a target for therapeutic manipulation of HSCs.  相似文献   

9.
The hematopoietic stem cell (HSC) is able to give rise to all blood cell lineages in vertebrates. HSCs are generated in the early embryo after two precedent waves of primitive hematopoiesis. Canonical Notch signaling is at the center of the complex mechanism that controls the development of the definitive HSC. The successful in vitro generation of hematopoietic cells from pluripotent stem cells with the capacity for multilineage hematopoietic reconstitution after transplantation requires the recapitulation of the most important process that takes place in the hemogenic endothelium during definitive hematopoiesis, that is the endothelial-to-hematopoietic transition (EHT). To meet this challenge, it is necessary to thoroughly understand the molecular mechanisms that modulate Notch signaling during the HSC differentiation process considering different temporal and spatial dimensions. In recent years, there have been important advances in this field. Here, we review relevant contributions describing different genes, factors, environmental cues, and signaling cascades that regulate the EHT through Notch interactions at multiple levels. The evolutionary conservation of the hematopoietic program has made possible the use of diverse model systems. We describe the contributions of the zebrafish model and the most relevant ones from transgenic mouse studies and from in vitro differentiated pluripotent cells.  相似文献   

10.
Identifying the molecular pathways regulating hematopoietic stem cell (HSC) specification, self-renewal, and expansion remains a fundamental goal of both basic and clinical biology. Here, we analyzed the effects of Notch signaling on HSC number during zebrafish development and adulthood, defining a critical pathway for stem cell specification. The Notch signaling mutant mind bomb displays normal embryonic hematopoiesis but fails to specify adult HSCs. Surprisingly, transient Notch activation during embryogenesis via an inducible transgenic system led to a Runx1-dependent expansion of HSCs in the aorta-gonad-mesonephros (AGM) region. In irradiated adults, Notch activity induced runx1 gene expression and increased multilineage hematopoietic precursor cells approximately threefold in the marrow. This increase was followed by the accelerated recovery of all the mature blood cell lineages. These data define the Notch-Runx pathway as critical for the developmental specification of HSC fate and the subsequent homeostasis of HSC number, thus providing a mechanism for amplifying stem cells in vivo.  相似文献   

11.
Hematopoietic stem cell (HSC) function is tightly regulated by cytokine signaling. Although phospho-flow cytometry allows us to study signaling in defined populations of cells, there has been tremendous hurdle to carry out this study in rare HSCs due to unrecoverable critical HSC markers, low HSC number, and poor cell recovery rate. Here, we overcame these difficulties and developed a "HSC phospho-flow" method to analyze cytokine signaling in murine HSCs at the single-cell level and compare HSC signaling profile to that of multipotent progenitors (MPPs), a cell type immediately downstream of HSCs, and commonly used Lin(-) cKit(+) cells (LK cells, enriched for myeloid progenitors). We chose to study signaling evoked from three representative cytokines, stem cell factor (SCF) and thrombopoietin (TPO) that are essential for HSC function and granulocyte macrophage-colony-stimulating factor (GM-CSF) that is dispensable for HSCs. HSCs display a distinct TPO and GM-CSF signaling signature from MPPs and LK cells, which highly correlates with receptor surface expression. In contrast, although majority of LK cells express lower levels of cKit than HSCs and MPPs, SCF-evoked ERK1/2 activation in LK cells shows a significantly increased magnitude for a prolonged period. These results suggest that specific cellular context plays a more important role than receptor surface expression in SCF signaling. Our study of HSC signaling at the homeostasis stage paves the way to investigate signaling changes in HSCs under conditions of stress, aging, and hematopoietic diseases.  相似文献   

12.
For the past thirty years, hematology has switched from the concept of bone marrow transplantation to the concept of hematopoietic stem cell (HSC) transplantation, from allograft to autograft, from non-manipulated graft to hyper-selection, from hematopoietic cellular therapy to immunotherapy. Indications of these transplantations are now more clear for malignant diseases and are ongoing for auto-immune diseases. A better knowledge of the HSC allows the control of their proliferation and differentiation, opening the field of ex vivo expansion. Very recently, new stem cells have been identified, establishing that a differentiated cell retain its totipotency: a nervous system cell can differentiate into HSC, which will further give hematopoiesis, mesenchymental cells or hepatocytes. New tools are under development: human ES cells, biomaterials, functionalized materials, opening the field of cellular engineering in the year 2000.  相似文献   

13.
Hao Y  Cheng D  Ma Y  Zhou W  Wang Y 《Medical hypotheses》2011,76(3):421-423
In peripheral blood stem cell transplantation, bone marrow hematopoietic stem cells (BM HSCs) are collected as they are released from the hypoxic bone marrow, then infused into peripheral blood with higher oxygen concentration after mobilization. In some cases, in vitro amplification culture under normal oxygen may be required, and homing into the hypoxic bone marrow is further carried out after intravenous re-infusion, thereby resulting in constant changes in the reactive oxygen species (ROS). The high-level ROS can damage the hematopoietic reconstitution capacity of HSCs. Thus, the application of antioxidant intervention in the in vivo mobilization of BM HSC and the in vitro culture process of peripheral blood stem cells may be effective against the negative effects of ROS on BM HSC. Antioxidant intervention may also better protect the hematopoietic reconstitution capacity of HSCs, as well as improve the success rate of transplantation.  相似文献   

14.
Insufficient numbers of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) sometimes limit allogenic transplantation of umbilical cord blood (UCB). Ex vivo expansion may overcome this limitation. Mesenchymal stem cells (MSCs), as non-hematopoietic, well-characterized skeletal and connective-tissue progenitor cells within the bone marrow stroma, have been investigated as support cells for the culture of HSCs/HPCs. MSCs are attractive for the rich environmental signals that they provide and for immunological compatibility in transplantation. Thus far, HSC/MSC co-cultures have mainly been performed in 2-dimensional (2D) configuration. We postulate that a 3-dimensional (3D) culture environment that resembles the natural in vivo hematopoietic compartment might be more conducive for regulating HSC expansion. In this study, we compared the co-culture of HSCs and MSCs in 2D and 3D configurations. The results demonstrated the benefit of MSC inclusion in HSC expansion ex vivo. Direct contact between MSCs and HSCs in 3D cultures led to statistically significantly higher expansion of cord blood CD34+ cells than in 2D cultures (891- versus 545-fold increase in total cells, 96- versus 48-fold increase of CD34+ cells, and 230- versus 150-fold increase in colony-forming cell assay [CFC]). Engraftment assays in non-obese diabetic/severe combined immunodeficiency mice also indicated a high success rate of hematopoiesis reconstruction with these expanded cells.  相似文献   

15.
Hematopoietic stem cell (HSC) transplant is a well established curative therapy for some hematological malignancies. However, achieving adequate supply of HSC from some donor tissues can limit both its application and ultimate efficacy. The theory that this limitation could be overcome by expanding the HSC population before transplantation has motivated numerous laboratories to develop ex vivo expansion processes. Pioneering work in this field utilized stromal cells as support cells in cocultures with HSC to mimic the HSC niche. We hypothesized that through translation of this classic coculture system to a three-dimensional (3D) structure we could better replicate the niche environment and in turn enhance HSC expansion. Herein we describe a novel high-throughput 3D coculture system where murine-derived HSC can be cocultured with mesenchymal stem/stromal cells (MSC) in 3D microaggregates--which we term "micromarrows." Micromarrows were formed using surface modified microwells and their ability to support HSC expansion was compared to classic two-dimensional (2D) cocultures. While both 2D and 3D systems provide only a modest total cell expansion in the minimally supplemented medium, the micromarrow system supported the expansion of approximately twice as many HSC candidates as the 2D controls. Histology revealed that at day 7, the majority of bound hematopoietic cells reside in the outer layers of the aggregate. Quantitative polymerase chain reaction demonstrates that MSC maintained in 3D aggregates express significantly higher levels of key hematopoietic niche factors relative to their 2D equivalents. Thus, we propose that the micromarrow platform represents a promising first step toward a high-throughput HSC 3D coculture system that may enable in vitro HSC niche recapitulation and subsequent extensive in vitro HSC self-renewal.  相似文献   

16.
Space-time considerations for hematopoietic stem cell transplantation   总被引:1,自引:0,他引:1  
The mammalian blood system contains a multitude of distinct mature cell lineages adapted to serving diverse functional roles. Mutations that abrogate the development or function of one or more of these lineages can lead to profound adverse consequences, such as immunodeficiency, autoimmunity, or anemia. Replacement of hematopoietic stem cells (HSC) that carry such mutations with HSC from a healthy donor can reverse such disorders, but because the risks associated with the procedure are often more serious than the blood disorders themselves, bone marrow transplantation is generally not used to treat a number of relatively common inherited blood diseases. Aside from a number of other problems, risks associated with cytoreductive treatments that create "space" for donor HSC, and the slow kinetics with which immune competence is restored following transplantation hamper progress. This review will focus on how recent studies using experimental model systems may direct future efforts to implement routine use of HSC transplantation to cure inherited blood disorders.  相似文献   

17.
Biology of human bone marrow stem cells   总被引:10,自引:0,他引:10  
The bone marrow is constituted of two separate and distinct stem cells. The hematopoietic stem cells (HSC) are responsible for the production and maintenance of all the mature blood cells. The mesenchymal stem cells constituted the bone marrow stroma. In this report we review our current understanding on both stem cell populations. We also discuss the recent unexpected degree of differentiation plasticity that have been reported recently and the impacts these new discoveries may have in stem cell therapy.  相似文献   

18.
Embryonic stem cell (ESC)-derived hematopoietic stem cells (HSC), unlike HSC harvested from the blood or marrow, are not contaminated by lymphocytes. We therefore evaluated whether ESC-derived HSC could produce islet cell tolerance, a phenomenon termed graft versus autoimmunity (GVA), without causing the usual allogeneic hematopoietic stem cell transplant complication, graft-versus-host disease (GVHD). Herein, we demonstrate that ESC-derived HSC may be used to prevent autoimmune diabetes mellitus in NOD mice without GVHD or other adverse side effects. ESC were cultured in vitro to induce differentiation toward HSC, selected for c-kit expression, and injected either i.v. or intra-bone marrow (IBM) into sublethally irradiated NOD/LtJ mice. Nine of 10 mice from the IBM group and 5 of 8 from the i.v. group did not become hyperglycemic, in contrast to the control group, in which 8 of 9 mice developed end-stage diabetes. All mice with >5% donor chimerism remained free of diabetes and insulitis, which was confirmed by histology. Splenocytes from transplanted mice were unresponsive to glutamic acid decarboxylase isoform 65, a diabetic-specific autoantigen, but responded normally to third-party antigens. ESC-derived HSC can induce an islet cell tolerizing GVA effect without GVHD. This study represents the first instance, to our knowledge, of ESC-derived HSC cells treating disease in an animal model.  相似文献   

19.
The effect of bleeding on hematopoietic stem cell cycling and self-renewal   总被引:1,自引:0,他引:1  
Hematopoietic stem cells (HSCs) divide and give rise to more committed progenitors, which ultimately produce all lineages of blood cells. HSCs can be induced to enter the cell cycle in vitro and in vivo by stimulatory cytokines and in vivo by ablation of bone marrow (BM) cells with irradiation or chemotherapeutic agents. Although it has been postulated that rates of HSC proliferation increase with normal hematopoietic stresses, such as infection or hemorrhage, this hypothesis has never been directly tested. The ability to analyze HSCs prospectively by cell-surface phenotype c-kit(+), Thy1.1(lo), Sca-1(+), Linage(neg/lo) has allowed us to perform a detailed examination of the effects of bleeding on the cell cycle kinetics of HSCs. Our results demonstrate for the first time that HSCs in both the BM and the spleen proliferate and self-renew in response to tail-vein bleeding in mice. This response was suppressed when red blood cells, but not when white blood cells, were transferred after bleeding. Thus, regulators of HSC proliferation can sense and respond to red blood cell levels.  相似文献   

20.
AimTo evaluate the effects of gestational diabetes mellitus (GDM) on the quantity and quality of hematopoietic stem cells (HSC).MethodsIn this case-control study, HSC were isolated from umbilical cord blood (UCB) procured at delivery from 63 mothers with GDM and 67 healthy mothers. Total nucleated cells (TNC) and CD34+ cells were quantified using BD FACSCalibur flow cytometer. The quantity and quality of stem cells were determined.ResultsThe GDM group had lower total cord blood volume and lower number of nucleated HSC compared with healthy mothers. Regarding stem cell quantity parameters, they had significantly lower UCB volume (P = 0.041), TNC count (P = 0.022), total viable NC count (P = 0.014), and CD34+ percentage (P = 0.014). Regarding the quality of stem cells, they had significantly lower viable TNC percentage (P = 0.015). The predictors for total TNC count were longer labor duration (adjusted B coefficient [p]: 0.031 [0.046]), greater estimated blood loss (0.089 [0.005]), female neonates (12.322 [0.049]), and higher placenta weight (0.080 [0.033]). The predictors of total viable NC count were greater estimated blood loss (0.092 [0.003]), female neonates (13.16 [0.035]), and greater placenta weight (0.083 [0.026]).ConclusionThe GDM group had much lower quantity and quality of UCB stem cells. Our results should be taken into consideration when drawing cord blood for unrelated stem cell banking in an obstetric unit to ensure the obtaining of optimal cord blood samples and to avoid unnecessary expenses.

Umbilical cord blood (UCB) is increasingly being used as a primitive source of hematopoietic stem cells (HSC). This has created the need for growing storage inventories, which contain a large number of genetically diverse UCB units available when there is no adult peripheral blood stem cell or bone marrow donor. Since the clinical outcomes of CB transplantation are affected by nucleated cell count per UCB unit transplanted, UCB units containing an appropriate number of nucleated cells must be obtained (1). However, the use of UCB entails several limitations compared with the use of other stem cell sources, including insufficient cell doses for larger recipients, delayed neutrophil and platelet engraftment, prolonged immune reconstitution, and lack of donor white blood cells (WBC) for donor WBC infusion (2-4).The two main factors for the selection of blood cord units for cryopreservation are a minimum product weight (volume) of between 40 and 60 mL (5,6) and a total nucleated cell (TNC) count from 6 to 10 × 108 for storage (7). The concentration of CD34+ cells may also affect engraftment and survival after UCB transplantation (8).To date, most research has focused on the variables that can improve the quality of UCB since their greater understanding could reduce the cost and time required for evaluating, processing, and storing the material (9,10). UCB quality is affected by several maternal and fetal characteristics. Most studies investigated UCB stem cells in a healthy pregnancy. Data about the effects of common diseases complicating pregnancy are still scarce. Specifically, there is little data on the effects of gestational diabetes mellitus (GDM) on HSC isolated from UCB. The quantity of hematopoietic stem and progenitor cells (CD34+) in the UCB of neonates born to women with GDM on insulin therapy was much higher than that of neonates born to healthy women (11). Therefore, we assessed the quality and quantity of HSC isolated from UCB of neonates born to GDM mothers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号