首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 600 毫秒
1.
Retromer deficiency has been implicated in sporadic AD and animals deficient in retromer components exhibit pronounced neurodegeneration. Because retromer performs retrograde transport from the endosome to the Golgi apparatus and neuronal Aβ is found in late endosomal compartments, we speculated that retromer malfunction might enhance amyloidogenic APP processing by promoting interactions between APP and secretase enzymes in late endosomes. We have evaluated changes in amyloid precursor protein (APP) processing and trafficking as a result of disrupted retromer activity by knockdown of Vps35, a vacuolar sorting protein that is an essential component of the retromer complex. Knocking down retromer activity produced no change in the quantity or cellular distribution of total cellular APP and had no affect on internalization of cell-surface APP. Retromer deficiency did, however, increase the ratio of secreted Aβ42:Aβ40 in HEK-293 cells over-expressing APP695, due primarily to a decrease in Aβ40 secretion. Recent studies suggest that the retromer-trafficked protein, Wntless, is secreted at the synapse in exosome vesicles and that these same vesicles contain Aβ. We therefore hypothesized that retromer deficiency may be associated with altered exosomal secretion of APP and/or secretase fragments. Holo-APP, Presenilin and APP C-terminal fragments were detected in exosomal vesicles secreted from HEK-293 cells. Levels of total APP C-terminal fragments were significantly increased in exosomes secreted by retromer deficient cells. These data suggest that reduced retromer activity can mimic the effects of familial AD Presenilin mutations on APP processing and promote export of amyloidogenic APP derivatives.  相似文献   

2.
The proteolytic breakdown of the amyloid precursor protein (APP) to neurotoxic amyloid-beta peptides in the brain has been recognized as a major pathological pathway in Alzheimer's disease (AD). Yet, the factors that control the processing of APP and their potential contribution to the common sporadic form of AD remain poorly understood. Here, we review recent findings from studies in patients and in animal models that led to the identification of a unique sorting receptor for APP in neurons, designated SORLA/SORL1, that emerges as a key player in amyloidogenic processing and as major genetic risk factor for AD.  相似文献   

3.
Although, in principle, gene expression profiling is well suited to isolate pathogenic molecules associated with Alzheimer's disease (AD), techniques such as microarray present unique analytic challenges when applied to disorders of the brain. Here, we addressed these challenges by first constructing a spatiotemporal model, predicting a priori how a molecule underlying AD should behave anatomically and over time. Then, guided by the model, we generated gene expression profiles of the entorhinal cortex and the dentate gyrus, harvested from the brains of AD cases and controls covering a broad age span. Among many expression differences, the retromer trafficking molecule VPS35 best conformed to the spatiotemporal model of AD. Western blotting confirmed the abnormality, establishing that VPS35 levels are reduced in brain regions selectively vulnerable to AD. VPS35 is the core molecule of the retromer trafficking complex and further analysis revealed that VPS26, another member of the complex, is also downregulated in AD. Cell culture studies, using small interfering RNAs or expression vectors, showed that VPS35 regulates Abeta peptide levels, establishing the relevance of the retromer complex to AD. Reviewing our findings in the context of recent studies suggests how downregulation of the retromer complex in AD can regulate local levels of Abeta peptide.  相似文献   

4.
The retromer complex plays an important role in intracellular transport, is highly expressed in the hippocampus, and has been implicated in the trafficking of the amyloid precursor protein (APP). Nevertheless, the trafficking routes of the neuronal retromer and the role it plays in APP transport in neuronal processes remain unknown. Here we use hippocampal neuronal cultures to address these issues. Using fluorescence microscopy, we find that Vps35, the core element of the retromer complex, is in dendrites and axons, is enriched in endosomes and trans-Golgi network, and is found in APP-positive vesicles. Next, to identify the role the neuronal retromer plays in cargo transport, we infected hippocampal neurons with a lentivirus expressing shRNA to silence Vps35. By live fluorescence imaging, Vps35 deficiency was found to reduce the frequency, but not the kinetics, of long-range APP transport within neuronal processes. Supporting the interpretation that retromer promotes long-range transport, Vps35 deficiency led to increased APP in the early endosomes, in processes but not the soma. Finally, Vps35 deficiency was associated with increased levels of Aβ, a cleaved product of APP, increased colocalization of APP with its cleaving enzyme BACE1 in processes, and caused an enlargement of early endosomes. Taken together, our studies clarify the function of the neuronal retromer, and suggest specific mechanisms for how retromer dysfunction observed in Alzheimer's disease affects APP transport and processing.  相似文献   

5.
Genetic variants in the sortilin-related receptor (SORL1) and the sortilin-related vacuolar protein sorting 10 (VPS10) domain-containing receptor 1 (SORCS1) are associated with increased risk of Alzheimer''s disease (AD), declining cognitive function and altered amyloid precursor protein (APP) processing. We explored whether other members of the (VPS10) domain-containing receptor protein family (the sortilin-related VPS10 domain-containing receptors 2 and 3 (SORCS2 and SORCS3) and sortilin (SORT1)) would have similar effects either independently or together. We conducted the analyses in a large Caucasian case control data set (n=11 840 cases, 10 931 controls) to determine the associations between single nucleotide polymorphisms (SNPs) in all the five homologous genes and AD risk. Evidence for interactions between SNPs in the five VPS10 domain receptor family genes was determined in epistatic statistical models. We also compared expression levels of SORCS2, SORCS3 and SORT1 in AD and control brains using microarray gene expression analyses and assessed the effects of these genes on γ-secretase processing of APP. Several SNPs in SORL1, SORCS1, SORCS2 and SORCS3 were associated with AD. In addition, four specific linkage disequilibrium blocks in SORCS1, SORCS2 and SORCS3 showed additive epistatic effects on the risk of AD (P⩽0.0006). SORCS3, but not SORCS2 or SORT1, showed reduced expression in AD compared with control brains, but knockdown of all the three genes using short hairpin RNAs in HEK293 cells caused a significant threefold increase in APP processing (from P<0.001 to P<0.05). These findings indicate that in addition to SORL1 and SORCS1, variants in other members of the VPS10 domain receptor family (that is, SORCS1, SORCS2, SORCS3) are associated with AD risk and alter APP processing. More importantly, the results indicate that variants within these genes have epistatic effects on AD risk.  相似文献   

6.
《Alzheimer's & dementia》2013,9(4):386-391
Backgroundβ-Site amyloid precursor protein (APP)–cleaving enzyme 1 (BACE1) activity determines the rate of APP cleavage and is therefore the main driver of amyloid β production, which is a pathological hallmark of Alzheimer’s disease (AD).MethodsThe present study explored the correlation between BACE1 activity and cerebrospinal fluid (CSF) markers of APP metabolism and axonal degeneration in 63 patients with mild AD and 12 healthy control subjects.ResultsIn the AD group, positive correlations between BACE1 activity and soluble APP β, the APP sorting receptor sortilin-related receptor with A-type repeats (also known as SorLA or LR11), and tau were detected. BACE1 activity was not associated with amyloid β1–42 or soluble APP α concentrations in the AD group, and no associations between BACE1 activity and any of the protein concentrations were found in the control group.ConclusionOur results confirm the relevance of BACE1 and sortilin-related receptor with A-type repeats within the amyloid cascade and also provide a further piece of evidence for the link between amyloid and tau pathology in AD.  相似文献   

7.
Mint adaptor proteins bind to the membrane-bound amyloid precursor protein (APP) and affect the production of pathogenic amyloid-β (Aβ) peptides related to Alzheimer's disease (AD). Previous studies have shown that loss of each of the three Mint proteins delays the age-dependent production of amyloid plaques in transgenic mouse models of AD. However, the cellular and molecular mechanisms underlying Mints effect on amyloid production are unclear. Because Aβ generation involves the internalization of membrane-bound APP via endosomes and Mints bind directly to the endocytic motif of APP, we proposed that Mints are involved in APP intracellular trafficking, which in turn, affects Aβ generation. Here, we show that APP endocytosis was attenuated in Mint knock-out neurons, revealing a role for Mints in APP trafficking. We also show that the endocytic APP sorting processes are regulated by Src-mediated phosphorylation of Mint2 and that internalized APP is differentially sorted between autophagic and recycling trafficking pathways. A Mint2 phosphomimetic mutant favored endocytosis of APP along the autophagic sorting pathway leading to increased intracellular Aβ accumulation. Conversely, the Mint2 phospho-resistant mutant increased APP localization to the recycling pathway and back to the cell surface thereby enhancing Aβ42 secretion. These results demonstrate that Src-mediated phosphorylation of Mint2 regulates the APP endocytic sorting pathway, providing a mechanism for regulating Aβ secretion.  相似文献   

8.
Here, we investigate the involvement of caveolins in the pathophysiology of Alzheimer's disease (AD). We show dramatic upregulation of caveolin-3 immunoreactivity in astroglial cells surrounding senile plaques in brain tissue sections from authentic AD patients and an established transgenic mouse model of AD. In addition, we find that caveolin-3 physically interacts and biochemically colocalizes with amyloid precursor protein (APP) both in vivo and in vitro. Interestingly, recombinant overexpression of caveolin-3 in cultured cells stimulated beta-secretase-mediated processing of APP. Immunoreactivities of APP and presenilins were concomitantly increased in caveolin-3-positive astrocytes. Because the presenilins also form a physical complex with caveolin-3, caveolin-3 may provide a common platform for APP and the presenilins to associate in astrocytes. In AD, augmented expression of caveolin-3 and presenilins in reactive astrocytes may alter APP processing, leading to the overproduction of its toxic amyloid metabolites.  相似文献   

9.
Parkinson's disease (PD) is a neurodegenerative disorder involving the loss of dopaminergic neurons in the brain. Following the discovery of the PD-causing D620N mutation in the VPS35 (Vacuolar sorting protein 35) gene, dysfunction in the subcellular retromer complex has been strongly implicated in pathogenesis of PD. Although the function and dysfunction of the retromer has been a focus of study for some time, the role of this complex in the development of PD is not fully understood. Investigating cellular alterations that occur when the retromer is rendered dysfunctional, such as when the D620N disease-causing mutation is introduced into various model systems, shows that endosomal processing defects are major contributors to the disease phenotype. Altered trafficking of retromer cargo molecules, reduced cellular survival and altered processing of alpha-synuclein have all been observed in the presence of the D620N mutation. In addition, interactions between the retromer and the protein products of other familial Parkinsonism-related genes, has made the retromer a prime target of research in PD. This review gives an overview of the changes in retromer function, identified thus far, that may contribute to the neurodegeneration observed in PD.  相似文献   

10.
Very few studies have examined expression and function of amyloid precursor protein (APP) in the retina. We showed that APP mRNA and protein are expressed according to the different waves of retinal differentiation. Depletion of App led to an absence of amacrine cells, a 50% increase in the number of horizontal cells and alteration of the synapses. The retinas of adult APP(-/-) mice showed only half as many glycinergic amacrine cells as wild-type retinas. We identified Ptf1a, which plays a role in controlling both amacrine and horizontal cell fates, as a downstream effector of APP. The observation of a similar phenotype in sorLA knockout mice, a major regulator of APP processing, suggests that regulation of APP functions via sorLA controls the determination of amacrine and horizontal cell fate. These findings provide novel insights that indicate that APP plays an important role in retinal differentiation.  相似文献   

11.
《Neurodegeneration》1996,5(4):477-482
Brain amyloid deposits play a central role in the histopathology of Alzheimer's disease (AD), as evidenced by increased formation of amyloid β peptides (Aβ) in genetic forms of AD that are caused by mutations in the presenilin genes, or the amyloid β protein precursor (APP) gene. Neuronal deafferentation in AD brain may also be associated with accelerated Aβ formation, because APP processing is regulated by neuronal activity, presumably via several G protein-coupled neurotransmitter receptors. Subtype-selective agonists including muscarinic m1 receptor ligands may be useful for the pharmacological reduction of Aβ formation.  相似文献   

12.
During the tail end of the 20th century, a "golden period" in Alzheimer disease (AD) research, many of the pathogenic molecules of the autosomal dominant form of the disease were isolated. These molecular defects, however, do not exist in "sporadic" late-onset AD, the form of the disease that accounts for more than 95% of all cases. Pinpointing the pathogenic molecules of late-onset AD has, therefore, become an urgent goal, both for understanding disease mechanisms and for opening up novel therapeutic avenues. The retromer sorting pathway transports cargo along the endosome-trans-Golgi network, and retromer defects were first implicated in late-onset AD by a study that combined brain imaging with microarray. A range of studies have confirmed that defects in this pathway can play a pathogenic role in the disease. Herein, these findings will be reviewed, the details of the retromer sorting pathway will be discussed, and a biological model that can account for the disease's regional selectivity will be elaborated.  相似文献   

13.
Lipoprotein receptors have important roles in pathological processes that lead to Alzheimer's disease (AD). Previously, they were believed to act mainly by modulating the neuronal metabolism of cholesterol and apolipoprotein E, major risk factors for spontaneous AD. However, recent findings point towards an unexpected new function for lipoprotein receptors in regulation of intracellular transport and processing of the amyloid precursor protein (APP) to give amyloid-beta peptide, the principal component of senile plaques. Here, we will discuss how lipoprotein receptors might modulate distinct steps in neuronal trafficking of APP, and how an intricate balance between opposing receptor activities might be a crucial determinant of APP processing, and of onset and progression of neurodegeneration.  相似文献   

14.
Pathophysiologic hypotheses for Alzheimer's disease (AD) are centered on the role of the amyloid plaque Abeta peptide and the mechanism of its derivation from the amyloid precursor protein (APP). As part of the disease process, an aberrant axonal sprouting response is known to occur near Abeta deposits. A Nogo to Nogo-66 receptor (NgR) pathway contributes to determining the ability of adult CNS axons to extend after traumatic injuries. Here, we consider the potential role of NgR mechanisms in AD. Both Nogo and NgR are mislocalized in AD brain samples. APP physically associates with the NgR. Overexpression of NgR decreases Abeta production in neuroblastoma culture, and targeted disruption of NgR expression increases transgenic mouse brain Abeta levels, plaque deposition, and dystrophic neurites. Infusion of a soluble NgR fragment reduces Abeta levels, amyloid plaque deposits, and dystrophic neurites in a mouse transgenic AD model. Changes in NgR level produce parallel changes in secreted APP and AB, implicating NgR as a blocker of secretase processing of APP. The NgR provides a novel site for modifying the course of AD and highlights the role of axonal dysfunction in the disease.  相似文献   

15.
Alzheimer's disease (AD) is defined by deposits of the 42-residue amyloid-beta peptide (Abeta42) in the brain. Abeta42 is a minor metabolite of the amyloid precursor protein (APP), but its relative levels are increased by mutations on APP and presenilins 1 and 2 linked to familial AD. beta-secretase (BACE-1), an aspartyl protease, cleaves approx 10% of the APP in neuronal cells on the N-terminal side of Abeta to produce the C-terminal fragment (CTFbeta), which is cleaved by gamma-secretase to produce mostly Abeta of 40 residues (90%) and approx10% Abeta42. A third enzyme, alpha-secretase, cleaves APP after Abeta16 to secrete sAPPalpha and CTFalpha, the major metabolites of APP. Moreover, previous studies have demonstrated that phorbol esters stimulate processing of APP by alpha-secretase. Because alpha-secretase and BACE-1 cleave APP within the secretory pathway, it is likely that the two enzymes compete for the APP substrate. This type of competition can explain the failure to saturate the minor BACE-1 pathway by overexpressing APP in the cell. In this study, we demonstrate that inhibition of constitutive alpha-secretase processing in a human neuroblastoma cell line does not increase the yield of Abeta, suggesting that the APP substrate targeted for alpha-secretase processing is not diverted to the BACE-1 pathway. However, when phorbol ester-induced alpha-secretase was similarly inhibited, we detected an increase in BACE-1 processing and AB yield. We explain these results compartmentalization of BACE-1 and alpha-secretase with processing depending on sorting of APP to the two compartments. The simplest explanation for the detection of competition between the two pathways upon phorbol ester stimulation is the partial failure of this compartmentalization by phorbol ester-induced release of secretory vesicles.  相似文献   

16.
Alzheimer's disease (AD) is a complex, progressive neurological disorder characterized by the formation of extracellular amyloid plaques composed of β‐amyloid protein (Aβ), the key component in pathogenesis of AD. Peripheral administration of enoxaparin (ENO) reportedly reduces the level of Aβ and the amyloid plaques in the cortex of amyloid precursor protein (APP) transgenic mice. However, the exact mechanism of these effects is unclear. Our previous studies indicated that ENO can inhibit APP processing to Aβ in primary cortical cells from Tg2576 mice by downregulating BACE1 levels. This study examines whether ENO‐induced reduction of amyloid load is due to the decreased APP processing to Aβ in Tg2576 mice. Surprisingly, our results indicated that ENO significantly increases the Aβ42/Aβ40 ratio in cortex and enhances the amyloid plaque load in both cortex and hippocampus, although overall APP processing was not influenced by ENO. Moreover, ENO stimulated the aggregation of both Aβ40 and Aβ42 in vitro. Although ENO has been reported to improve cognition in vivo and has potential as a therapeutic agent for AD, the results from our study suggest that ENO can exacerbate the amyloid pathology, and the strategy of using ENO for the treatment of AD may require further assessment. © 2016 Wiley Periodicals, Inc.  相似文献   

17.
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized clinically by progressive impairment of memory and cognition. The currently available pharmacological treatment of AD consists mainly of cholinesterase inhibitors. Rivastigmine is one of the cholinesterase inhibitors clinically used to treat this disease, and many clinical trials have indicated that it did alleviate some AD symptoms without causing apparent side effects. Since the amyloid precursor protein (APP) processing imbalance plays a crucial role in AD pathogenesis, the effects of rivastigmine on APP processing were investigated. In neuroblastoma SK-N-SH cells, rivastigmine significantly increased the secretion of sAPPα and decreased the release of Aβ40 and Aβ42 as compared with control group, but it has no effect on cellular full length APP expression. Rivastigmine significantly increased α-secretase activity and decreased β-secretase activity as compared with control group. The increased sAPPα can be partially blocked by muscarinic receptor inhibitor scopolamine but not by nicotinic receptor antagonist α-Bungarotoxin. The effect of rivastigmine on sAPPα can be partially reversed by PKC inhibitor GF109203X, ERK inhibitor PD98059 and JNK inhibitor SP600125. The data present here indicated that rivastigmine can regulate APP processing in vitro by increasing sAPPα secretion and decreasing Aβ release and this pharmacological property may underlie the clinical effect of the drug in the treatment of AD patients.  相似文献   

18.
The accumulation of the β-amyloid peptide (Aβ) in Alzheimer's disease (AD) is thought to play a causative role in triggering synaptic dysfunction in neurons, leading to their eventual demise through apoptosis. Aβ is produced and secreted upon sequential cleavage of the amyloid precursor protein (APP) by β-secretases and γ-secretases. However, while Aβ levels have been shown to be increased in the brains of AD patients, little is known about how the cleavage of APP and the subsequent generation of Aβ is influenced, or whether the cleavage process changes over time. It has been proposed that Aβ can bind APP and promote amyloidogenic processing of APP, further enhancing Aβ production. Proof of this idea has remained elusive because a clear mechanism has not been identified, and the promiscuous nature of Aβ binding complicates the task of demonstrating the idea. To work around these problems, we used an antibody-mediated approach to bind and cross-link cell-surface APP in cultured rat primary hippocampal neurons. Here we show that cross-linking of APP is sufficient to raise the levels of Aβ in viable neurons with a concomitant increase in the levels of the β-secretase BACE1. This appears to occur as a result of a sorting defect that stems from the caspase-3-mediated inactivation of a key sorting adaptor protein, namely GGA3, which prevents the lysosomal degradation of BACE1. Together, our data suggest the occurrence of a positive pathogenic feedback loop involving Aβ and APP in affected neurons possibly allowing Aβ to spread to nearby healthy neurons.  相似文献   

19.
The retromer is an evolutionary conserved multiprotein complex involved in the sorting and retrograde trafficking of cargo from endosomal compartments to the Golgi network and to the cell surface. The neuronal retromer traffics the amyloid precursor protein away from the endosomes, a site where amyloid precursor protein is enzymatically cleaved into pathogenic fragments in Alzheimer’s disease. In recent years, deficiencies in retromer-mediated transport have been implicated in several neurological and non-neurological diseases, including Parkinson’s disease, suggesting that improving the efficacy of the retromer trafficking pathway would result in decreased pathology. We recently identified a new family of small molecules that appear to stabilize the interaction between members of the retromer complex and enhance its function in neurons: the retromer pharmacological chaperones. Here we discuss the role of these molecules in the improvement of retromer trafficking and endosomal dysfunction, as well as their potential as therapeutics for neurological and non-neurological disorders.

Electronic supplementary material

The online version of this article (doi:10.1007/s13311-014-0321-y) contains supplementary material, which is available to authorized users.Key Words: Retromer, Alzheimer’s disease, neurodegeneration, pharmacological chaperones  相似文献   

20.
Amyloid-β peptide (Aβ) is generated by sequential cleavage of the amyloid precursor protein (APP) by β-site amyloid precursor protein cleaving enzyme 1 (β-secretase, or BACE1) and γ-secretase. Several reports demonstrate increased BACE1 enzymatic activity in brain and cerebrospinal fluid (CSF) from Alzheimer's disease (AD) subjects, suggesting that an increase in BACE1-mediated cleavage of APP drives amyloid pathophysiology in AD. BACE1 cleavage of APP leads to the generation of a secreted N-terminal fragment of APP (sAPPβ). To relate BACE1 activity better to endogenous APP processing in AD and control brains, we have directly measured brain sAPPβ levels using a novel APP β-site specific enzyme-linked immunosorbent assay. We demonstrate a significant reduction in brain cortical sAPPβ levels in AD compared with control subjects. In the same brain samples, BACE1 activity was unchanged, full-length APP and sAPPα levels were significantly reduced, and Aβ peptides were significantly elevated. In conclusion, a reduction in cortical brain sAPPβ together with unchanged BACE1 activity suggests that this is due to reduced full-length APP substrate in late-stage AD subjects. These results highlight the need for multiparameter analysis of the amyloidogenic process to understand better AD pathophysiology in early vs. late-stage AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号