首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reassortment and evolution of current human influenza A and B viruses   总被引:8,自引:0,他引:8  
During the 2001-2002 influenza season, human influenza A (H1N2) reassortant viruses were detected globally. The hemagglutinin (HA) of these H1N2 viruses was similar to that of the A/New Caledonia/20/99 (H1N1) vaccine strain both antigenically and genetically, while their neuraminidase (NA) was antigenically and genetically related to that of recent human influenza H3N2 reference viruses such as A/Moscow/10/99. All six internal genes of the H1N2 reassortants originated from an H3N2 virus. After being detected only in eastern Asia during the past 10 years, Influenza B/Victoria/2/87 lineage viruses reappeared in many countries outside of Asia in 2001. Additionally, reassortant influenza B viruses possessing an HA similar to that of B/Shandong/7/97, a recent B/Victoria/2/87 lineage reference strain, and an NA closely related to that of B/Sichuan/379/99, a recent B/Yamagata/16/88 lineage reference strain, were isolated globally and became the predominant influenza B epidemic strain. The current influenza vaccine is expected to provide good protection against H1N2 viruses because it contains A/New Caledonia/20/99 (H1N1) and A/Panama/2007/99 (H3N2) like viruses whose H1 HA or N2 NA are antigenically similar to those of recent circulating H1N2 viruses. On the other hand, widespread circulation of influenza B Victoria lineage viruses required inclusion of a strain from this lineage in influenza vaccines for the 2002-2003 season.  相似文献   

2.
Throughout most of the last decade, B/Yamagata/16/88-lineage influenza viruses were predominant among the B isolates circulating worldwide, whereas B/Victoria/2/87-lineage viruses were isolated infrequently and restricted geographically to eastern Asia. During the 2001-02 influenza season, B/Victoria/2/87-lineage viruses re-emerged in North America and Europe and spread worldwide. Virological surveillance in Italy during that season showed wide circulation of influenza B viruses, of which most were antigenically related to the B/Sichuan/379/99 (Yamagata-lineage) vaccine strain, together with a smaller number of B viruses antigenically similar to B/HongKong/330/01, a recent B/Victoria/2/87-lineage antigenic variant. In the subsequent 2002-03 epidemic season, B viruses with a Victoria-lineage hemagglutinin (HA), more closely related to that of B/Shandong/7/97, were isolated exclusively. Similar strains have continued to predominate among the few B viruses isolated in Italy during last season (2003-04), although most influenza B viruses, isolated sporadically elsewhere in Europe, again belong to the Yamagata-lineage. In the present study, phylogenetic analyses of the HA and neuraminidase (NA) genes of representative B strains, isolated throughout Italy during 2001-04, showed that during the first influenza season the NA genes, as well as the HA genes, separated into the two distinct clades, the Yamagata- and Victoria-lineages, and showed no evidence of genetic reassortment. On the contrary, all the B viruses isolated in the 2002-03 and most of those isolated in the 2003-04 epidemic season were "Victoria HA-Yamagata NA" reassortants similar to those isolated in other parts of the world, showing that these reassortants became established in the human population. The frequency of reassortment between HA and NA of distinct lineages and sublineages highlights again the importance of detailed molecular analyses of both surface glycoproteins in understanding the evolution of influenza B viruses.  相似文献   

3.
Lin YP  Gregory V  Bennett M  Hay A 《Virus research》2004,103(1-2):47-52
Recurrent epidemics of influenza are due to the frequent emergence of antigenic variants. With co-circulation of two influenza A subtypes and two antigenically distinct lineages of B viruses, genetic reassortment also has an important role in antigenic drift, as illustrated by recent changes in both A and B viruses. The H1N2 subtype viruses, which emerged during 2001, possessed a H1 HA similar to those of contemporary A/New Caledonia/20/99 (H1N1)-like viruses and seven genes closely related to those of recent H3N2 viruses, and did not represent a significant increase in the antigenic diversity of circulating viruses. The re-emergence of B/Victoria/2/87-lineage viruses, previously prevalent during the 1980s, in 2000 has been followed by the predominant circulation of reassortant B viruses possessing a B/Victoria-lineage HA and a B/Yamagata-lineage NA similar in sequence to those of recent B/Sichuan/379/99-like viruses. These events emphasize not only the lack of divergence in the complementary functional characteristics of the HA and NA of divergent influenza B lineages, but also the apparent convergence in compatibility between the H1 and N2 components of the two influenza A subtypes.  相似文献   

4.
Genetic and antigenic analyses of influenza B virus field strains isolated in Taiwan from 1998 to 2005 were performed. To investigate the molecular evolution of influenza B viruses, sequence analysis of the hemagglutinin (HA1 subunit) and neuraminidase genes was performed. All influenza B viruses isolated between 1998 and 2000 belonged to the B/Yamagata/16/88 lineage. The B/Victoria/2/87 lineage, which was cocirculating with the Yamagata lineage, was identified in Taiwan in March 2001. Concurrently, there was an increasing prevalence of this lineage in many parts of the world, including North America and Europe, during the 2001-2002 season. Since 2002, genetic reassortants of influenza B virus with the Victoria lineage of hemagglutinin and the Yamagata lineage of neuraminidase have been found at a rate of 46%. Therefore, in 2002, at least three sublineages of influenza B virus strains, the B/Shanghai/361/2002-like strain (Yamagata lineage), the B/Hong Kong/330/01-like strain (Victoria lineage), and the B/Hong Kong/1351/02-like strain (B reassortant lineage), were identified in Taiwan. The results showed that genetically distinct lineages can cocirculate in the population and that the reassortment among these strains plays a role in generating the genetic diversity of influenza B viruses. Interestingly, from January to April 2005, B reassortant viruses became dominant (73%) in Taiwan, which indicated that a mismatch had occurred between the influenza B vaccine strain recommended for the 2004-2005 season in the Northern hemisphere by the World Health Organization and the epidemic strain.  相似文献   

5.
Chen MJ  La T  Zhao P  Tam JS  Rappaport R  Cheng SM 《Virus research》2006,122(1-2):200-205
Genetic analyses were performed on 228 influenza A(H1) viruses derived from clinical subjects participating in an experimental vaccine trial conducted in 20 countries on four continents between 2001 and 2003. HA1 phylogenetic analysis of these viruses showed multiple clades circulated around the world with regional prevalence patterns. Sixty-five of the A(H1) viruses were identified as A(H1N2), 40 of which were isolated from South Africa. The A(H1) sequences of these viruses cluster with published H1N2 viruses phylogenetically and share with them diagnostic signature V169A and A193T changes. The results also showed for the first time that H1N2 viruses were prominent in South Africa during the 2001-2002 influenza season, accounting for over 90% of the A(H1) cases in our study, and infecting both children (29/31) and the elderly (11/13). Phylogenetic analysis of the 65 H1N2 viruses we identified, in conjunction with the 56 recent H1N2 viruses currently available in the database, provided a comprehensive view of the circulation and evolution of distinct clades of H1N2 viruses in a temporal manner between early 2001 and mid-2003, shortly after the appearance of these recent reassortant viruses in or near year 2000.  相似文献   

6.
In order to prepare H5N1 influenza virus vaccine, the hemagglutinins (HAs) of 14 H5 virus isolates from water birds in Asia were antigenically and genetically analyzed. Phylogenetic analysis of the H5 HA genes revealed that 13 isolates belong to Eurasian and the other one to North American lineages. Each of the deduced amino acid sequences of the HAs indicated a non-pathogenic profile. Antigenic analysis using a panel of monoclonal antibodies recognizing six different epitopes on the HA of A/duck/Pennsylvania/10218/1984 (H5N2) and chicken antiserum to an H5N1 reassortant strain generated between A/duck/Mongolia/54/2001 (H5N2) and A/duck/Mongolia/47/2001 (H7N1), [R(Dk/Mong-Dk/Mong) (H5N1)] showed that the HAs of highly pathogenic avian influenza (HPAI) viruses currently circulating in Asia were antigenically closely related to those of the present isolates from water birds. Mice subcutaneously injected with formalin-inactivated R(Dk/Mong-Dk/Mong) were protected from challenge with 100 mouse lethal dose of A/Viet Nam/1194/2004 (H5N1). The present results support the notion that the H5 isolates and the reassortant H5N1 strain should be useful for vaccine preparation.  相似文献   

7.
An avian-human reassortant influenza A virus deriving its genes coding for the hemagglutinin and neuraminidase from the human influenza A/Washington/897/80 (H3N2) virus and its six "internal" genes from the avian influenza A/Mallard/NY/6750/78 (H2N2) virus (i.e., a six-gene reassortant) was previously shown to be safe, infectious, nontransmissible, and immunogenic as a live virus vaccine in adult humans. Two additional six-gene avian-human reassortant influenza viruses derived from the mating of wild-type human influenza A/California/10/78 (H1N1) and A/Korea/1/82 (H3N2) viruses with the avian influenza A/Mallard/NY/78 virus were evaluated in seronegative (hemagglutination inhibition titer, less than or equal to 1:8) adult volunteers for safety, infectivity, and immunogenicity to determine whether human influenza A viruses can be reproducibly attenuated by the transfer of the six internal genes of the avian influenza A/Mallard/NY/78 virus. The 50% human infectious dose was 10(4.9) 50% tissue culture infectious doses for the H1N1 reassortant virus and 10(5.4) 50% tissue culture infectious doses for the H3N2 reassortant virus. Both reassortants were satisfactorily attenuated with only 5% (H1N1) and 2% (H3N2) of infected vaccines receiving less than 400 50% human infectious doses developing illness. Consistent with this level of attenuation, the magnitude of viral shedding after inoculation was reduced 100-fold (H1N1) to 10,000-fold (H3N2) compared with that produced by wild-type virus. The duration of virus shedding by vaccines was one-third that of controls receiving wild-type virus. At 40 to 100 50% human infectious doses, virus-specific immune responses were seen in 77 to 93% of volunteers. When vaccinees who has received 10(7.5) 50% tissue culture infectious doses of the H3N2 vaccine were experimentally challenged with a homologous wild-type human virus only 2 of 19 (11%) vaccinees became ill compared with 7 of 14 (50%) unvaccinated seronegative controls ( P < 0.025; protective efficacy, 79%). Thus, three different virulent human influenza A viruses have been satisfactorily attenuated by the acquisition of the six internal genes of the avian influenza A/Mallard/NY/78 virus. The observation that this donor virus can reproducibly attenuate human influenza A viruses indicates that avian-human influenza A reassortants should be further studied as potential live influenza A virus vaccines.  相似文献   

8.
During 2003, Australia and New Zealand experienced substantial outbreaks of influenza. The strain responsible was an A(H3N2) influenza virus described as A/Fujian/411/2002-like, which had circulated as a minor variant in the previous Northern Hemisphere (NH) winter, mainly in Korea and Japan. Early in the year the isolates were very similar to those that had been previously isolated in the NH, however, a reassortant strain emerged early in the New Zealand winter, followed by the appearance of similar viruses in Australia and other regional areas. While the hemagglutinin HA1 sequence of these viruses demonstrated only minor differences from the A/Fujian/411/2002 reference strain, the neuraminidase gene was clearly different from that of other recently circulating H3 viruses and most closely matched an earlier reference strain A/Chile/6416/2001. Three internal genes (NS, NP, M) in the reassortant viruses were also more closely related to the A/Chile/6416/2001 lineage. This reassortant A(H3) virus predominated in Australia and New Zealand in 2003 was also seen in Brazil and Malaysia during 2003 and was widespread in the United States and Europe during their 2003-04 winter. Interestingly most of the strains of A(H3) that were isolated at the beginning of the 2004 winter in Australia, did not have this earlier A/Chile/6416/2001-like neuraminidase but had a neuraminidase that was similar to that of the reference strain A/Fujian/411/2002. This was suggestive of the re-introduction of influenza A(H3) from other countries, however, there was still low level circulation of the reassortant virus in 2004 with isolates detected in Australia and Singapore.  相似文献   

9.
Influenza viruses A/Philippines/341/2004 (H1N2) and A/Thailand/271/2005 (H1N1) were isolated from two males, with mild influenza providing evidence of sporadic human infection by contemporary swine influenza. Both viruses were antigenically and genetically distinct from influenza A (H1N1 and H1N2) viruses that have circulated in the human population. Genetic analysis of the haemagglutinin genes found these viruses to have the highest degree of similarity to the classical swine H1 viruses circulating in Asia and North America. The neuraminidase gene and the internal genes were found to be more closely related to viruses circulating in European swine, which appear to have undergone multiple reassorting events. Although transmission of swine influenza to humans appears to be a relatively rare event, swine have been proposed as the intermediate host in the generation of potential pandemic influenza virus that may have the capacity to cause human epidemics resulting in high morbidity and mortality.  相似文献   

10.
Hatta M  Halfmann P  Wells K  Kawaoka Y 《Virology》2002,295(2):250-255
Although influenza A viruses are occasionally transmitted from one animal species to another, their host range tends to be restricted. Currently circulating human influenza A viruses are thought to have originated from avian viruses, yet none of these strains replicate in duck intestine, a major site of avian virus replication. Although the hemagglutinin (HA) and neuraminidase (NA) genes are known to restrict human virus replication in ducks, the contribution of the other viral genes remains unknown. To determine the genetic basis for host range restriction of the replication of human influenza A virus in duck intestine, we first established a reverse genetics system for generating A/Memphis/8/88 (H3N2) (Mem/88) and A/mallard/New York/6750/78 (H2N2) (Mal/NY) viruses from cloned cDNAs. Using this system, we then attempted to generate reassortant viruses with various combinations of candidate genes. We were able to generate single-gene reassortants, which possessed PB2, NP, M, or NS from Mem/88, with the remainder from Mal/NY. Despite unsuccessful production of other single-gene reassortants from Mem/88, we did generate reassortant viruses comprised of both the HA and the NA, all three polymerase genes (PB2, PB1, and PA), or all polymerase genes and the NP gene from Mem/88, with the rest derived from Mal/NY. Among these reassortants, only those possessing the M or NS gene from Mem/88 and the remainder from Mal/NY replicated in duck intestine. These results indicate incompatibility between the genes of avian and human influenza A viruses and indicate that all genes other than the M and NS restrict replication of human influenza A virus in duck intestine.  相似文献   

11.
Both H9N2 subtype avian influenza and 2009 pandemic H1N1 viruses (pH1N1) can infect humans and pigs, which provides the opportunity for virus reassortment, leading to the genesis of new strains with potential pandemic risk. In this study, we generated six reassortant H9 viruses in the background of three pH1N1 strains from different hosts (A/California/04/2009 [CA04], A/Swine/Jiangsu/48/2010 [JS48] and A/Swine/Jiangsu/285/2010 [JS285]) by replacing either the HA (H9N1-pH1N1) or both the HA and NA genes (H9N2-pH1N1) from an h9.4.2.5-lineage H9N2 subtype influenza virus, A/Swine/Taizhou/5/08 (TZ5). The reassortant H9 viruses replicated to higher titers in vitro and in vivo and gained both efficient transmissibility in guinea pigs and increased pathogenicity in mice compared with the parental H9N2 virus. In addition, differences in transmissibility and pathogenicity were observed among these reassortant H9 viruses. The H9N2-pH1N1viruses were transmitted more efficiently than the corresponding H9N1-pH1N1 viruses but showed significantly decreased pathogenicity. One of the reassortant H9 viruses that were generated, H9N-JS48, showed the highest virulence in mice and acquired respiratory droplet transmissibility between guinea pigs. These results indicate that coinfection of swine with H9N2 and pH1N1viruses may pose a threat for humans if reassortment occurs, emphasizing the importance of surveillance of these viruses in their natural hosts.  相似文献   

12.
The cold-adapted, temperature sensitive and attenuated influenza master donor viruses A/Leningrad/134/17/57 (H2N2) and B/USSR/60/69 were used to generate vaccine viruses to be included in live attenuated influenza vaccine. These vaccine viruses typically are 6: 2 reassortant viruses containing the gene segments of the surface antigens haemagglutinin and neuraminidase of current wild type influenza A and influenza B viruses with the gene segments encoding the internal viral proteins, conferring the cold-adapted, temperature sensitive and attenuated phenotype, being inherited from the master donor viruses. The 6: 2 reassortant viruses are selected from co-infections between master donor virus and wild type viruses that theoretically may yield as many as 256 combinations of gene segments and thus 256 genetically different viruses. As the time to generate and isolate vaccine viruses is limited and because only 6: 2 reassortant viruses are allowed as vaccine viruses, sboth selection and creening needs to be both rapid and unambiguous. The screening of reassortant viruses by RT-PCRs using master donor virus and wild type virus specific primer sets is described to select both influenza A and influenza B 6: 2 reassortant viruses to be used in seasonal and pandemic live attenuated vaccine, unambigously.  相似文献   

13.
The reassortants obtained via the crossing of highly productive influenza virus A/Puerto Rico/8/34 (H1N1) strain and the low pathogenic avian influenza virus A/Duck/Primorie/2621/2001 (H5N2) strain were genotyped and characterized. The H5N2 reassortant having 6 genes from A/Puerto Rico/8/34 virus has the high level of reproduction in chick embryos, while slightly more moderate than in the parent A/Puerto Rico/8/34 strain. The reproduction of the H5N1 reassortant that had 7 genes from A/Puerto Rico/8134 virus was very low. The serial passage selection allowed the investigators to obtain the H5N1 strain that was reproductively close to the H5N2 reassortant. This variant had one amino acid substitution in hemagglutinin (N244D, H3 numbering) and a lower affinity for fetuin. By the level of virulence to mice, the H5N1 and H5N2 reassortants were close to A/Puerto Rico/8/34 virus and greatly differed in this respect from low virulent A/Duck/Primorie/2621/2001 (H5N2). The results are discussed in connection with the problem of vaccination when there is a threat for H5N1 virus subtype-caused pandemic.  相似文献   

14.
A panel of monoclonal antibodies to the M1 protein of A/PR8/34 (H1N1) (PR8) influenza A virus was found to distinguish in ELISA high-yielding reassortant viruses derived from reassortment of PR8 and X-31 (H3N2) viruses with recently prevalent field strains of H1N1 or H3N2 subtype. These findings are concordant with results of genotyping that demonstrated the presence of PR8 RNA 7 or M1 protein in high-yield reassortants by RNA or protein PAGE. All high-yield vaccine candidate reassortants Application of the M1 monoclonal antibody panel facilitates the isolation of high-yield vaccine candidate reassortants bearing the PR8 M1 gene, and should aid in epidemiologic strain tracking as well.  相似文献   

15.
Segment 7 (M) of the cold-adapted live influenza A virus vaccine plays a primary role in the ability of this virus to interfere with the replication of wild-type influenza A viruses. This conclusion is based on several lines of evidence. Single gene reassortant viruses derived by crossing influenza A/Ann Arbor/6/60 (H2N2) cold-adapted donor virus with an epidemic wild-type strain, A/Korea/1/82 (H3N2), were tested for their ability to interfere with wild-type parental virus in the Madin-Darby line of canine kidney cells and embryonated eggs. It was apparent in both hosts that the single gene reassortant carrying segment 7 (M) derived from the cold-adapted virus was dominant over wild-type virus. Additional confirmation of the role of segment 7 (M) in trans-dominance of the cold-adapted vaccine virus was derived from the analysis of reassortants produced by mixed infection by a wild-type virus and its cold-adapted reassortant vaccine strain. After three serial passages, the virus yield contained a high proportion of reassortants carrying segment 7 (M) of the cold-adapted parental strain. When used in mixed infections, these reassortants were dominant over the replication of the parental wild-type virus.  相似文献   

16.
The strains of influenza A -A(H1N1), A(H3N2) and B viruses were shown in the paper to have been circulating in Russia in 1999-2002. A co-circulation of viruses of 2 to 3 types was detected in all epidemic seasons. A majority of strains was isolated on the culture of cells MDCK. A study of epidemic strains revealed the predominance of viruses A(H3N2) in 1999-2000, the predominance of viruses A(h1N1) in 2000-2001, and the predominance of influenza B viruses in 2001-2002. According to the conducted antigenic analysis, all A(H1N1) isolates were similar to the etalon A/New Caledonia/20/99. The antigenic drift of hemagglutinin of A(H3N2) epidemic strains was oriented towards the etalons of A/Sydney/5/97--A/Moscow/10/99; while in influenza B viruses it was oriented towards the etalons B/Beejing/184/93--B/Yamanashi/166/98--B/Sichuan/379/99. Sequencing of hemagglutinin gene HA1 showed certain difference in the gene structure of epidemic strains A(H1N1) and A(H3N2) versus the etalon ones, which were registered, including at antigen sites. An analysis of paired sera obtained from patients confirmed the virologic findings, i.e. it detected a growth of antibodies to viruses that circulated during an actual season.  相似文献   

17.
Summary. Reassortants between a low-pathogenic avian influenza virus strain A/Duck/Primorie/2621/2001 (H5N2) and a high-yield human influenza virus strain A/Puerto Rico/8/34 (H1N1) were generated, genotyped and analyzed with respect to their yield in embryonated chicken eggs, pathogenicity for mice, and immunogenicity. A reassortant having HA and NA genes from A/Duck/Primorie/2621/2001 virus and 6 genes from A/Puerto Rico/8/34 virus (6:2 reassortant) replicated efficiently in embryonated chicken eggs, the yields being intermediate between the yields of the avian parent virus and those of the A/Puerto Rico/8/34 parent strain. The reassortant having the HA gene from A/Duck/Primorie/2621/2001 virus and 7 genes from A/Puerto Rico/8/34 virus (7:1 reassortant) produced low yields. A variant of the 7:1 reassortant selected by serial passages in eggs had an amino acid substitution in the hemagglutinin (N244D, H3 numbering). The variant produced yields similar to those of the 6:2 reassortant. A 5:3 reassortant generated by a back-cross of the 6:2 reassortant with the avian parent and having PB1, HA and NA genes of A/Duck/Primorie/2621/2001 virus produced higher yields than the 7:1 or 6:2 reassortants, although still lower than the yields of A/Puerto Rico/8/34 virus. The 7:1, 6:2 and 5:3 reassortants were pathogenic for mice, with the level of virulence close to A/Puerto Rico/8/34 virus, in contrast to the extremely low pathogenicity of the A/Duck/Primorie/2621/2001 parent strain. Immunization of mice with an inactivated 6:2 H5N2 reassortant provided efficient immune protection against a reassortant virus containing the HA and NA genes of a recent H5N1 isolate. The results are discussed in connection with the problem of the improvement of vaccine strains against the threatening H5N1 pandemic.  相似文献   

18.
Twenty-four H1N2 influenza A viruses were newly isolated from pigs in the United States. These isolates originated from 19 farms in 9 different swine producing states between 1999 and 2001. All farms had clinical histories of respiratory problem and/or abortion. The viral isolates were characterized genetically to determine the origin of all eight gene segments. The results showed that all H1N2 isolates were reassortants of classical swine H1N1 and triple reassortant H3N2 viruses. The neuraminidase (NA) and PB1 genes of the H1N2 isolates were of human origin, while the hemagglutinin (HA), nucleoprotein (NP), matrix (M), non-structural (NS), PA and PB2 polymerase genes were of avian or swine origin. Fifteen of the 24 H1N2 isolates were shown to have a close phylogenic relationship and high amino acid homology with the first US isolate of H1N2 (A/SW/IN/9K035/99). The remaining nine isolates had a close phylogenic relationship with classical swine influenza H1N1 in the HA gene. All other genes including NA, M, NP, NS, PA, PB1 and PB2 showed a close phylogenic relationship with the H1N2 (A/SW/IN/9K035/99) strain and triple reassortant H3N2 viruses. However, PB1 genes of two isolates (A/SW/KS/13481-S/00, A/SW/KS/13481-T/00) were originated from avian influenza A virus lineage. These results suggest that although there are some variations in the HA genes, the H1N2 viruses prevalent in the US swine population are of a similar genetic lineage.  相似文献   

19.
Live attenuated cold-adapted influenza vaccine (LIV) has been used in Russia for over 50 years and proved to be safe and effective. Currently, Russian reassortant LAIV is based on influenza AILeningrad/134/17/57 (H2N2) and B/USSR/60/69 Master Donor Viruses (MDVs) which are cold-adapted (ca), temperature-sensitive (ts), and attenuated (att), respectively. The MDVs are used to generate attenuated reassortant vaccine viruses containing the surface antigens of current wild type (wt) influenza A (HINI) and A (H3N2) viruses and wt influenza B virus. The ca/ts/att phenotype of these viruses limits replication in the upper respiratory tract. Reassortment typically yields numerous viruses with different genome constellations, rapid screening is needed to select proper vaccine viruses. In this study, screening of reassortant vaccine strains for live attenuated influenza vaccine generated from currently circulating influenza A and B viruses by RFLP assay is described.  相似文献   

20.
Mungall BA  Xu X  Klimov A 《Virus research》2004,103(1-2):195-197
Neuraminidase (NA) inhibitors (NI) have recently been licensed for the prophylaxis and treatment of influenza virus infection in humans. This study has utilized a new chemiluminescent (CL) neuraminidase assay to routinely monitor more than a thousand influenza field isolates collected worldwide during the 2000-2002 seasons for susceptibility to both licensed NIs, zanamivir, and oseltamivir by determining the 50% inhibitory concentration (IC50). Our data demonstrated that influenza A viruses of the N2 subtype were less susceptible to zanamivir, but not oseltamivir, than those of the N1 subtype such that 41 of 45 confirmed H1N2 isolates could be reliably differentiated from H1N1 viruses based on their zanamivir susceptibility. Pre-titration of influenza A viruses appeared to have no effect on IC50 determined for either NI, while pre-titration of influenza B viruses significantly reduced oseltamivir IC50 and increased zanamivir IC50. Influenza B viruses were less susceptible to either compound than type A isolates. The CL assay is a rapid and reliable method for screening large numbers of influenza isolates for NI susceptibility. Reassortant viruses of the H1N2 subtype that started to circulate worldwide during the 2001-2002 season can be reliably separated from H1N1 viruses based on their zanamivir susceptibility, enabling large scale screening of H1 isolates for determining the prevalence of such reassortants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号