首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yanovsky Y  Mades S  Misgeld U 《Neuroscience》2003,122(2):317-328
Both endocannabinoids through cannabinoid receptor type I (CB1) receptors and dopamine through dopamine receptor type D1 receptors modulate postsynaptic inhibition in substantia nigra by changing GABA release from striatonigral terminals. By recording from visually identified pars compacta and pars reticulata neurons we searched for a possible co-release and interaction of endocannabinoids and dopamine. Depolarization of a neuron in pars reticulata or in pars compacta transiently suppressed evoked synaptic currents which were blocked by GABA(A) receptor antagonists (inhibitory postsynaptic currents [IPSCs]). This depolarization-induced suppression of inhibition (DSI) was abrogated by the cannabinoid CB1 receptor antagonist AM251 (1 microM). A correlation existed between the degree of DSI and the degree of reduction of evoked IPSCs by the CB1 receptor agonist WIN55,212-2 (1 microM). The cholinergic receptor agonist carbachol (0.5-5 microM) enhanced DSI, but suppression of spontaneous IPSCs was barely detectable pointing to the existence of GABA release sites without CB1 receptors. In dopamine, but not in GABAergic neurons DSI was enhanced by the dopamine D1 receptor antagonist SCH23390 (3-10 microM). Both the antagonist for CB1 receptors and the antagonist for dopamine D1 receptors enhanced or reduced, respectively, the amplitudes of evoked IPSCs. This tonic influence persisted if the receptor for the other ligand was blocked. We conclude that endocannabinoids and dopamine can be co-released. Retrograde signaling through endocannabinoids and dopamine changes inhibition independently from each other. Activation of dopamine D1 receptors emphasizes extrinsic inhibition and activation of CB1 receptors promotes intrinsic inhibition.  相似文献   

2.
Retrograde synaptic signalling has long been recognized as a fundamental feature of neural systems. However, the cellular specificity and functional consequences of fast retrograde communication are not well understood. We have focused our efforts on understanding the role that endocannabinoids play in regulating synaptic inhibition in sensory neocortex. Recent studies have implicated endocannabinoids as the retrograde signalling molecules that underlie depolarization-induced suppression of inhibition, or DSI. This short-term form of presynaptic depression is triggered by postsynaptic depolarization and is likely to play an important role in information processing. In the present study we investigated the cellular and synaptic specificity of endocannabinoid signalling in sensory cortex using whole-cell recordings from layer 2/3 pyramidal neurones (PNs) in acute brain slices. We report that GABAergic interneurones that are depolarized by muscarinic receptor stimulation provided the majority of DSI-susceptible inputs to neocortical PNs. This subclass of interneurones generated large, fast postsynaptic currents in PNs which were transiently suppressed by either postsynaptic depolarization or a brief train of action potentials. Neocortical DSI required activation of the type 1 cannabinoid receptor (CB1R) but not metabotropic glutamate or GABA receptors. Using focal drug application, we found that the DSI-susceptible afferents preferentially synapse on the perisomatic membrane of PNs, and not on the apical dendrites. Together, these results suggest that endocannabinoid-mediated DSI in the cortex can transiently and selectively depress a subclass of PN inputs. Although the physiological implications remain to be explored, this suppression of somatic inhibition may alter the excitability of principal neurones and thereby modulate cortical output.  相似文献   

3.
Although the dentate gyrus is one of the primary targets of septo-hippocampal cholinergic afferents, relatively little is known about the cholinergic physiology of neurons in the area. By combining whole cell patch-clamp recording with brief local application of exogenous agonists in horizontal slices, we found that there is robust expression of functional somatic alpha 7-containing nicotinic acetylcholine receptors (nAChRs) on molecular layer interneurons, hilar interneurons, and the glutamatergic mossy cells of the dentate hilus. In contrast, the principal neurons of the dentate gyrus, the granule cells, are generally unresponsive to focal somatic or dendritic application of ACh in the presence of atropine. We also demonstrate that cholinergic activation of alpha 7-containing nAChRs on the subgranular interneurons of the hilus can produce methyllycaconitine-sensitive GABAergic inhibitory postsynaptic currents (IPSCs) in nearby granule cells and enhance the amplitude of an electrically evoked monosynaptic IPSC. Further, activation of alpha 7-containing nAChRs on subgranular interneurons that is timed to coincide with synaptic release of glutamate onto these cells will enhance the functional inhibition of granule cells. These findings suggest that a complex interplay between glutamatergic afferents from the entorhinal cortex and cholinergic afferents from the medial septum could be involved in the normal regulation of granule cell function. Such a relationship between these two afferent pathways could be highly relevant to the study of both age-related memory dysfunction and disorders involving regulation of excitability, such as temporal lobe epilepsy.  相似文献   

4.
In the neocortex, inhibitory interneurons tightly regulate the firing patterns and integrative properties of pyramidal neurons (PNs). The endocannabinoid system of the neocortex may play an important role in the activity-dependent regulation of inhibitory (i.e., GABAergic) inputs received by PNs. In the present study, using whole cell recordings from layer 2/3 PNs in slices of mouse sensory cortex, we have identified a role for PN-derived endocannabinoids in the control of afferent inhibitory strength. Pairing evoked inhibitory currents with repeated epochs of postsynaptic depolarization led to a transient suppression of inhibition that was induced by a rise in postsynaptic Ca(2+) and was expressed as a reduction in presynaptic GABA release. An antagonist (AM251) of the type-1 cannabinoid receptor blocked the depolarization-induced suppression of evoked inhibitory postsynaptic currents (eIPSCs), and the cannabinoid WIN55,212-2 reduced eIPSC amplitude and occluded suppression. The degree of WIN55,212-2-mediated inhibition of eIPSCs was strongly correlated with the magnitude of depolarization-induced suppression of the eIPSCs, suggesting that the WIN-sensitive afferents are suppressed by PN depolarization. Moreover, blocking endocannabinoid uptake with AM404 strongly modulated the kinetics and magnitude of eIPSC suppression. We conclude that the release of endocannabinoids from PNs allows for the postsynaptic control of presynaptic inhibition and could have profound consequences for the integrative properties of neocortical PNs.  相似文献   

5.
A number of recent studies have demonstrated that a well-known form of short-term plasticity at hippocampal GABAergic synapses, called depolarization-induced suppression of inhibition (DSI), is in fact mediated by the retrograde actions of endocannabinoids released in response to depolarization of the postsynaptic cells. These studies suggest that endogenous cannabinoids may play an important role in regulating inhibitory tone in the mammalian CNS. Despite the widespread interest and potential physiological importance of DSI, many questions regarding the physiological relevance of DSI remain. To that end, this study set out to define the specific limiting conditions that could elicit DSI at GABAergic synapses in CA1 hippocampal pyramidal neurons and to determine if DSI could be elicited with pulse trains that mimic hippocampal cell-firing patterns that occur in vivo. Whole cell recordings from hippocampal neurons under voltage-clamp configuration were made in rat hippocampal slices. Spontaneous and evoked gamma-aminobutyric acid-A (GABAA) receptor-mediated inhibitory postsynaptic currents (sIPSCs and eIPSCs, respectively) were recorded prior to and following depolarization of CA1 hippocampal pyramidal cells. Depolarizing voltage pulses were shaped to evoke currents in QX-314-treated cells similar to those accompanying single spontaneous voltage-clamped action potentials recorded from the soma. Attempts were made to elicit DSI with trains of these pulses that mimicked hippocampal cell firing patterns in vivo, for instance, when animals traverse place fields or are performing a short-term memory task. DSI could not be elicited by such pulse trains or by a number of other combinations of behaviorally specific firing parameters. The minimum duration of depolarization necessary to elicit DSI in hippocampal neurons determined by paired-pulse manipulation was 50 -75 ms at a critical interval of 20 -30 ms between pulse pairs. Under the conditions tested, the normal firing patterns of hippocampal neurons that occur in vivo do not appear to elicit DSI.  相似文献   

6.
Depolarization-induced suppression of inhibition (DSI) is a process whereby brief approximately 1-s depolarization to the postsynaptic membrane of hippocampal CA1 pyramidal cells results in a transient suppression of GABA(A)ergic synaptic transmission. DSI is triggered by a postsynaptic rise in [Ca(2+)](in) and yet is expressed presynaptically, which implies that a retrograde signal is involved. Recent evidence based on synthetic metabotropic glutamate receptor (mGluR) agonists and antagonists suggested that group I mGluRs take part in the expression of DSI and raised the possibility that glutamate or a glutamate-like substance is the retrograde messenger in hippocampal CA1. This hypothesis was tested, and it was found that the endogenous amino acids L-glutamate (L-Glu) and L-cysteine sulfinic acid (L-CSA) suppressed GABA(A)-receptor-mediated inhibitory postsynaptic currents (IPSCs) and occluded DSI, whereas L-homocysteic acid (L-HCA) and L-homocysteine sulfinic acid (L-HCSA) did not. Activation of metabotropic kainate receptors with kainic acid (KA) reduced IPSCs; however, DSI was not occluded. When iontophoretically applied, both L-Glu and L-CSA produced a transient IPSC suppression similar in magnitude and time course to that observed during DSI. Both DSI and the actions of the amino acids were antagonized by (S)-alpha-methyl-4-carboxyphenylglycine ([S]-MCPG), indicating that the effects of the endogenous agonists were produced through activation of mGluRs. Blocking excitatory amino acid transport significantly increased DSI and the suppression produced by L-Glu or L-CSA without affecting the time constant of recovery from the suppression. Similar to DSI, IPSC suppression by L-Glu or L-CSA was blocked by N-ethylmaleimide (NEM). Moreover, paired-pulse depression (PPD), which is unaltered during DSI, is also not significantly affected by the amino acids. Taken together, these results support the glutamate hypothesis of DSI and argue that L-Glu or L-CSA are potential retrograde messengers in CA1.  相似文献   

7.
Cannabinoid receptors are the molecular targets for the active component Delta(9)-tetrahydrocannabinol of marijuana and hashish, and constitute a major family of G protein-coupled seven-transmembrane-domain receptors. They consist of type 1 (CB1) and type 2 (CB2) receptors of which the CB1 is rich in various regions of the CNS. Accumulated evidence suggests that endogenous cannabinoids function as diffusible and short-lived intercellular messengers that modulate synaptic transmission. Recent studies have provided strong experimental evidence that endogenous cannabinoids mediate signals retrogradely from depolarized postsynaptic neurons to presynaptic terminals to suppress subsequent neurotransmitter release, driving the synapse into an altered state. In hippocampal neurons, depolarization of postsynaptic neurons and resultant elevation of [Ca(2+)](i) lead to transient suppression of inhibitory transmitter release (depolarization-induced suppression of inhibition, DSI). In cerebellar Purkinje cells, on the other hand, depolarization-induced elevation of [Ca(2+)](i) causes transient suppression of excitatory transmitter release (depolarization-induced suppression of excitation, DSE). DSI and DSE appear to share the same properties and may be a general and important mechanism by which the postsynaptic neuronal activity can influence the amount of transmitter release.  相似文献   

8.
Endocannabinoids (eCBs) act as retrograde messengers at inhibitory synapses of the hippocampal CA1 region. Current models place eCB synthesis in the postsynaptic pyramidal cell and the site of eCB action at cannabinoid receptors located on presynaptic interneuron terminals. Four responses at the CA1-interneuron synapse are attributed to eCBs: depolarization-induced suppression of inhibition (DSI), G-protein-coupled receptor-mediated enhancement of DSI (DeltaDSI), persistent suppression of evoked inhibitory postsynaptic currents (eIPSCs), and finally, mGluR-dependent long-term depression (iLTD). It has been proposed that all are mediated by the eCB, 2-arachidonoyl glycerol, yet there is evidence that DSI does not arise from the same underlying biochemical processes as the other responses. In view of the increasing importance of eCB effects in the brain, it will be essential to understand the mechanisms by which eCB effects are produced. Our results reveal new differences in the biochemical pathways by which the eCB-dependent responses are initiated. Both U73122, a phospholipase C antagonist, and RHC-80267, a diacylglycerol (DAG) lipase antagonist, prevented eCB-dependent iLTD induction by 3,5-dihydroxyphenylglycine (DHPG). However, mAChR activation does not cause eCB-dependent iLTD. Neither enzyme inhibitor affects DSI, and persistent eCB-dependent eIPSC suppression induced by either mGluRs or mAChRs is unaffected by U73122. On the other hand, inhibition of DAG lipase prevents persistent eCB-dependent eIPSC suppression triggered by mAChRs. The results show that the biochemical pathways for the various eCB-dependent responses differ and might therefore be independently manipulated.  相似文献   

9.
Pyramidal neurons in hippocampal CA1 regions are highly sensitive to cerebral ischemia. Alterations of excitatory and inhibitory synaptic transmission may contribute to the ischemia-induced neuronal degeneration. However, little is known about the changes of GABAergic synaptic transmission in the hippocampus following reperfusion. We examined the GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs) in CA1 pyramidal neurons 12 and 24 h after transient forebrain ischemia in rats. The amplitudes of evoked inhibitory postsynaptic currents (eIPSCs) were increased significantly 12 h after ischemia and returned to control levels 24 h following reperfusion. The potentiation of eIPSCs was accompanied by an increase of miniature inhibitory postsynaptic current (mIPSC) amplitude, and an enhanced response to exogenous application of GABA, indicating the involvement of postsynaptic mechanisms. Furthermore, there was no obvious change of the paired-pulse ratio (PPR) of eIPSCs and the frequency of mIPSCs, suggesting that the potentiation of eIPSCs might not be due to the increased presynaptic release. Blockade of adenosine A1 receptors led to a decrease of eIPSCs amplitude in post-ischemic neurons but not in control neurons, without affecting the frequency of mIPSCs and the PPR of eIPSCs. Thus, tonic activation of adenosine A1 receptors might, at least in part, contribute to the enhancement of inhibitory synaptic transmission in CA1 neurons after forebrain ischemia. The transient enhancement of inhibitory neurotransmission might temporarily protect CA1 pyramidal neurons, and delay the process of neuronal death after cerebral ischemia.  相似文献   

10.
Depolarization-induced suppression of inhibition (DSI) is a form of retrograde signaling at GABAergic synapses that is initiated by the calcium- and depolarization-dependent release of endocannabinoids from postsynaptic neurons. In the neocortex, pyramidal neurons (PNs) appear to use DSI as a mechanism for regulating somatic inhibition from a subpopulation of GABAergic inputs that express the type 1 cannabinoid receptor. Although postsynaptic control of afferent inhibition may directly influence the integrative properties of neocortical PNs, little is known about the patterns of activity that evoke endocannabinoid release and the impact such disinhibition may have on the excitability of PNs. Here we provide the first systematic survey of action potential (AP)-induced DSI in the neocortex. The magnitude and time course of DSI was directly related to the number and frequency of postsynaptic APs with significant suppression induced by a 20-Hz train containing as few as three APs. This AP-induced DSI was mediated by endocannabinoids as it was prevented by the cannabinoid receptor antagonist AM251 and potentiated by the endocannabinoid transport inhibitor AM404. We also explored the effects of endocannabinoid-mediated DSI on PN excitability. We found that single AP trains markedly increased PN responsiveness to excitatory synaptic inputs and promoted AP discharge by suppressing GABAergic inhibition. The time course of this effect paralleled DSI expression and was completely blocked by AM251. Taken together, our data suggest a role for endocannabinoids in regulating the output of cortical PNs.  相似文献   

11.
Endocannabinoids released from the postsynaptic neuronal membrane can activate presynaptic CB1 receptors and inhibit neurotransmitter release. In hippocampal slices, depolarization of the CA1 pyramidal neurons elicits an endocannabinoid-mediated inhibition of gamma-aminobutyric acid release known as depolarization-induced suppression of inhibition (DSI). Using the highly reduced neuron/synaptic bouton preparation from the CA1 region of hippocampus, we have begun to examine endocannabinoid-dependent short-term depression (STD) of inhibitory synaptic transmission under well-controlled physiological and pharmacological conditions in an environment free of other cells. Application of the CB1 synthetic agonist WIN55212-2 and endogenous cannabinoids 2-AG and anandamide produced a decrease in spontaneous inhibitory postsynaptic current (sIPSC) frequency and amplitude, indicating the presence of CB1 receptors at synapses in this preparation. Endocannabinoid-dependent STD is different from DSI found in hippocampal slices and the neuron/bouton preparation from basolateral amygdala (BLA) since depolarization alone was not sufficient to induce suppression of sIPSCs. However, concurrent application of the metabotropic glutamate receptor (mGluR) agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) and postsynaptic depolarization resulted in a transient (30-50 s) decrease in sIPSC frequency and amplitude. Application of DHPG alone had no effect on sIPSCs. The depolarization/DHPG-induced STD was blocked by the CB1 antagonist SR141716A and the mGluR5 antagonist MPEP and was sensitive to intracellular calcium concentration. Comparing the present findings with earlier work in hippocampal slices and BLA, it appears that endocannabinoid release is less robust in isolated hippocampal neurons.  相似文献   

12.
In the epileptic hippocampus, newly sprouted mossy fibers are considered to form recurrent excitatory connections to granule cells in the dentate gyrus and thereby increase seizure susceptibility. To study the effects of mossy fiber sprouting on neural activity in individual lamellae of the dentate gyrus, we used high-speed optical recording to record signals from voltage-sensitive dye in hippocampal slices prepared from kainate-treated epileptic rats (KA rats). In 14 of 24 slices from KA rats, hilar stimulation evoked a large depolarization in almost the entire molecular layer in which granule cell apical dendrites are located. The signals were identified as postsynaptic responses because of their dependence on extracellular Ca(2+). The depolarization amplitude was largest in the inner molecular layer (the target area of sprouted mossy fibers) and declined with increasing distance from the granule cell layer. In the inner molecular layer, a good correlation was obtained between depolarization size and the density of mossy fiber terminals detected by Timm staining methods. Blockade of GABAergic inhibition by bicuculline enlarged the depolarization in granule cell dendrites. Our data indicate that mossy fiber sprouting results in a large and prolonged synaptic depolarization in an extensive dendritic area and that the enhanced GABAergic inhibition partly masks the synaptic depolarization. However, despite the large dendritic excitation induced by the sprouted mossy fibers, seizure-like activity of granule cells was never observed, even when GABAergic inhibition was blocked. Therefore, mossy fiber sprouting may not play a critical role in epileptogenesis.  相似文献   

13.
Perforated patch clamp recordings were performed on cultured superficial neonatal rat dorsal horn (DH) spinal cord neurones in order to study the presynaptic modulation of GABA release at unitary synaptic connections. Since ATP can be coreleased with GABA at about two-thirds of GABAergic synapses between DH neurones, and can be rapidly metabolized to adenosine in the extracellular space, we investigated the potential role of A1 adenosine receptors and GABAB receptors which might function as inhibitory autoreceptors. Adenosine and GABAB receptor agonists reduced the amplitude of electrically evoked GABAergic inhibitory postsynaptic currents (eIPSCs) as well as the frequency of GABAergic miniature IPSCs, suggesting a presynaptic action of these substances. The actions of adenosine were blocked by the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). The effects of adenosine and GABAB agonists were occlusive, indicating a functional convergence of the signalling pathways engaged by A1 and GABAB receptors. A1 and GABAB antagonists increased the amplitude of eIPSCs in a supra-additive manner, suggesting a tonic activation of these receptors by ambient adenosine and GABA. Moreover, using trains of electrical stimulations, we were able to unravel a phasic (activity-dependent) activation of presynaptic A1 and GABAB autoreceptors only in the case of neurones coreleasing ATP and GABA, despite the presence of functional presynaptic A1 and GABAB receptors on all GABAergic DH neurones. This selective, convergent and activity-dependent inhibition of GABA release by A1 and GABAB autoreceptors might modulate the integrative properties of postsynaptic DH neurones under physiological conditions and/or during the development of pathological pain states.  相似文献   

14.
Psychoactive effects of cannabinoids are thought to be mediated, at least in part, by suppression of both glutamate and GABA release via CB1 cannabinoid receptor. Two types of cannabinoid receptor (CB1 and CB2) have been cloned so far. The CB1 receptors are abundantly expressed in the nervous system, whereas CB2 receptors are limited to lymphoid organs (Matsuda et al., 1990; Munro et al., 1993). Immunocytochemical and electrophysiological studies revealed that in the hippocampus CB1 receptors are expressed on axon terminals of GABAergic inhibitory interneurons (Tsou et al., 1999; Katona et al., 1999) and activation of these receptors decreases GABA release (Hájos et al., 2000). Other physiological studies pointed out the involvement of CB1 receptors in the modulation of hippocampal glutamatergic synaptic transmission and long-term potentiation (Stella et al., 1997; Misner and Sullivan, 1999), but anatomical studies could not confirm the existence of CB1 receptors on glutamatergic terminals. Here we examined cannabinoid actions on both glutamatergic and GABAergic synaptic transmission in the hippocampus of wild type (CB1+/+) and CB1 receptor knockout mice (CB1-/-). The synthetic cannabinoid agonist WIN55,212-2 reduced the amplitudes of excitatory postsynaptic currents in both wild type and CB1-/- mice, while inhibitory postsynaptic currents were decreased only in wild type mice, but not in CB1-/- animals. Our findings are consistent with a CB1 cannabinoid receptor-dependent modulation of GABAergic postsynaptic currents, but a novel cannabinoid-sensitive receptor must be responsible for the inhibition of glutamatergic neurotransmission.  相似文献   

15.
Endocannabinoids, acting via type 1 cannabinoid receptors (CB1), are known to be involved in short-term synaptic plasticity via retrograde signaling. Strong depolarization of the postsynaptic neurons is followed by the endocannabinoid-mediated activation of presynaptic CB1 receptors, which suppresses GABA and/or glutamate release. This phenomenon is termed depolarization-induced suppression of inhibition (DSI) or excitation (DSE), respectively. Although both phenomena have been reported to be present in the basal ganglia, the anatomical substrate for these actions has not been clearly identified. Here we investigate the high-resolution subcellular localization of CB1 receptors in the nucleus accumbens, striatum, globus pallidus and substantia nigra, as well as in the internal capsule, where the striato-nigral and pallido-nigral pathways are located. In all examined nuclei of the basal ganglia, we found that CB1 receptors were located on the membrane of axon terminals and preterminal axons. Electron microscopic examination revealed that the majority of these axon terminals were GABAergic, giving rise to mostly symmetrical synapses. Interestingly, preterminal axons showed far more intense staining for CB1, especially in the globus pallidus and substantia nigra, whereas their terminals were only faintly stained. Non-varicose, thin unmyelinated fibers in the internal capsule also showed strong CB1-labeling, and were embedded in bundles of myelinated CB1-negative axons. The majority of CB1 receptors labeled by immunogold particles were located in the axonal plasma membrane (92.3%), apparently capable of signaling cannabinoid actions. CB1 receptors in this location cannot directly modulate transmitter release, because the release sites are several hundred micrometers away. Interestingly, both the CB1 agonist, WIN55,212-2, as well as its antagonist, AM251, were able to block action potential generation, but via a CB1 independent mechanism, since the effects remained intact in CB1 knockout animals. Thus, our electrophysiological data suggest that these receptors are unable to influence action potential propagation, thus they may not be functional at these sites, but are likely being transported to the terminal fields. The present data are consistent with a role of endocannabinoids in the control of GABA, but not glutamate, release in the basal ganglia via presynaptic CB1 receptors, but also call the attention to possible non-CB1-mediated effects of widely used cannabinoid ligands on action potential generation.  相似文献   

16.
Axonal sprouting like that of the mossy fibers is commonly associated with temporal lobe epilepsy, but its significance remains uncertain. To investigate the functional consequences of sprouting of mossy fibers and alternative pathways, kainic acid (KA) was used to induce robust mossy fiber sprouting in hippocampal slice cultures. Physiological comparisons documented many similarities in granule cell responses between KA- and vehicle-treated cultures, including: seizures, epileptiform bursts, and spontaneous excitatory postsynaptic currents (sEPSCs) >600 pA. GABAergic control and contribution of glutamatergic synaptic transmission were similar. Analyses of neurobiotin-filled CA1 pyramidal cells revealed robust axonal sprouting in both vehicle- and KA-treated cultures, which was significantly greater in KA-treated cultures. Hilar stimulation evoked an antidromic population spike followed by variable numbers of postsynaptic potentials (PSPs) and population spikes in both vehicle- and KA-treated cultures. Despite robust mossy fiber sprouting, knife cuts separating CA1 from dentate gyrus virtually abolished EPSPs evoked by hilar stimulation in KA-treated but not vehicle-treated cultures, suggesting a pivotal role of functional afferents from CA1 to dentate gyrus in KA-treated cultures. Together, these findings demonstrate striking hyperexcitability of dentate granule cells in long-term hippocampal slice cultures after treatment with either vehicle or KA. The contribution to hilar-evoked hyperexcitability of granule cells by the unexpected axonal projection from CA1 to dentate in KA-treated cultures reinforces the idea that axonal sprouting may contribute to pathologic hyperexcitability of granule cells.  相似文献   

17.
The aim of this study was to determine whether age-associated alterations in the GABAergic input to pyramidal neurons in the hippocampus are due to a dysfunction of GABAergic interneurons, and/or a decrease in their cholinergic control via nicotinic receptors (nAChRs). Electrophysiological recordings were obtained from pyramidal cells in the CA1 area of hippocampal slices from young (3-4 months old) and aged (25-30 months old) Sprague-Dawley rats. Synaptic GABA(A) receptor-mediated inhibitory postsynaptic currents and inhibitory postsynaptic potentials induced by stimulation of the stratum oriens were significantly smaller in aged rats. The frequency (but not amplitude) of spontaneous and miniature GABA inhibitory postsynaptic currents (IPSCs) was reduced in aged rats, suggesting a presynaptic alteration. Tetanic stimulation of cholinergic afferents to release endogenous acetylcholine, or an exogenous application of the nAChR agonist cytisine, increased the frequency of spontaneous IPSCs in young rats; however these effects were not evident in aged rats, indicating that the nicotinic control of GABA release is lowered during aging. None of these age-related alterations were reversed by a chronic treatment with donepezil, a cholinesterase inhibitor. Immunofluorescent labeling of GABA interneurons with somatostatin (SOM), parvalbumin (PV) or calbindin (CB), together with the vesicular acetylcholine transporter VAChT, revealed a selective loss of subpopulations of SOM and CB positive interneurons. This loss was associated with a general decrease in density of the cholinergic network in aged rats. Thus, the lower GABAergic inhibition observed in the aged rat hippocampus is due to a selective loss/dysfunction of subpopulations of GABAergic interneurons, associated with a widespread cholinergic deficit.  相似文献   

18.
The hippocampus contains one very strong recurrent excitatory network formed by associational connections between CA3 pyramidal cells and another that depends largely on a disynaptic excitatory pathway between dentate granule cells. The recurrent excitatory network in CA3 has long been considered a possible location of autoassociative memory storage, whereas changes in the level and arrangement of recurrent excitation between granule cells are strongly implicated in epileptogenesis. Hilar mossy cells are likely to receive collateral input from CA3 pyramidal cells and they are key intermediaries (by mossy fiber inputs) in the recurrent excitatory network between granule cells. The current study uses minimal stimulation techniques in an in vitro preparation of the rat dentate gyrus to examine presynaptic modulation of both mossy fiber and non-mossy fiber inputs to hilar mossy cells. We report that both mossy fiber and non-mossy fiber inputs to hilar mossy cells express presynaptic gamma-aminobutyric acid type B (GABA(B)) receptors that are subject to tonic inhibition by ambient GABA. We further find that only non-mossy fiber inputs express presynaptic muscarinic acetylcholine receptors, but that bath application of cholinergic agonists produces action potential-dependent increases in ambient GABA that can indirectly inhibit mossy fiber inputs. Finally, we demonstrate that mossy cells express high-affinity postsynaptic GABA(A) receptors that are also capable of detecting changes in ambient GABA produced by cholinergic agonists. Our results are among the first to directly characterize these important collateral inputs to hilar mossy cells and may help facilitate informed comparison between primary and collateral projections in two major excitatory pathways.  相似文献   

19.
Gonadotropin-releasing hormone (GnRH) neurons form the final common pathway for central control of fertility. Regulation of GnRH neurons by long-loop gonadal steroid feedback through steroid receptor-expressing afferents such as GABAergic neurons is well studied. Recently, local central feedback circuits regulating GnRH neurons were identified. GnRH neuronal depolarization induces short-term inhibition of their GABAergic afferents via a mechanism dependent on metabotropic glutamate receptor (mGluR) activation. GnRH neurons are enveloped in astrocytes, which express mGluRs. GnRH neurons also produce endocannabinoids, which can be induced by mGluR activation. We hypothesized the local GnRH-GABA circuit utilizes glia-derived and/or cannabinoid mechanisms and is altered by steroid milieu. Whole cell voltage-clamp was used to record GABAergic postsynaptic currents (PSCs) from GnRH neurons before and after action potential-like depolarizations were mimicked. In GnRH neurons from ovariectomized (OVX) mice, this depolarization reduced PSC frequency. This suppression was blocked by inhibition of prostaglandin synthesis with indomethacin, by a prostaglandin receptor antagonist, or by a specific glial metabolic poison, together suggesting the postulate that prostaglandins, potentially glia-derived, play a role in this circuit. This circuit was also inhibited by a CB1 receptor antagonist or by blockade of endocannabinoid synthesis in GnRH neurons, suggesting an endocannabinoid element, as well. In females, local circuit inhibition persisted in androgen-treated mice but not in estradiol-treated mice or young ovary-intact mice. In contrast, local circuit inhibition was present in gonad-intact males. These data suggest GnRH neurons interact with their afferent neurons using multiple mechanisms and that these local circuits can be modified by both sex and steroid feedback.  相似文献   

20.
In hippocampal pyramidal cells, a rise in Ca(2+) releases endocannabinoids that activate the presynaptic cannabinoid receptor (CB1R) and transiently reduce GABAergic transmission-a process called depolarization-induced suppression of inhibition (DSI). The mechanism that limits the duration of endocannabinoid action in intact cells is unknown. Here we show that inhibition of cyclooxygenase-2 (COX-2), not fatty acid amide hydrolase (FAAH), prolongs DSI, suggesting that COX-2 limits endocannabinoid action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号