首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
OPA1 (Kjer type) dominant optic atrophy: a novel mitochondrial disease   总被引:9,自引:0,他引:9  
Dominant optic atrophy (DOA) is the most common form of inherited optic neuropathy. Although heterogeneous, a major locus has been mapped to chromosome 3q28 and the responsible gene, OPA1, was recently identified. OPA1 is a mitochondrial dynamin-related GTPase implicated in the formation and maintenance of the mitochondrial network. To date, 62 mutations have been identified in a total of 201 DOA patients. Most of them (90%) are distributed from exons 8 to 28 with a majority in the GTPase domain (54%). None were found in the alternatively spliced exons 4, 4b, and 5b. Half of them are truncative mutations (50%) with a frequent recurrent allele, c.2708delTTAG. Most missense mutations (81%) cluster within the putative GTPase domain. Various pathogenic mechanisms may play a role in OPA1 DOA. Truncative mutations in the N-terminal region and perhaps missense mutations in the GTPase domain lead to a loss of function of the encoded protein and haplotype insufficiency. However, there is a cluster of truncation mutations in the in C-terminus, a putative dimerization domain, that could act through a dominant negative effect. The findings that OPA1-type DOA, as Leber optic neuropathy, is caused by the impairment of a mitochondrial protein address the question of the vulnerability of the retinal ganglion cell in response to mitochondrial defects.  相似文献   

2.
常染色体显性视神经萎缩 (Autosomal Dominant Optic Atrophy , ADOA), 亦称Kjer型,是一种常见的遗传性视神经病变。该病常在儿童期发病(平均发病年龄为7岁),发病率约1:10 000-1:50 000,表现为隐匿性渐进性视力减退,双颞侧视盘苍白,中心或旁中心暗点,色觉障碍(常表现为蓝黄色盲)。组织病理学表现为:视网膜神经节细胞退行性变。 OPA1编码一种保守的动力相关GTPase,OPA1突变是ADOA发病的主要原因,目前已发现117个ADOA相关OPA1突变,包括:31.6%缺失和插入突变, 16.2%无义突变,25.6%错义突变和28.8%剪接突变。这些突变分布于OPA1基因编码区,但多数位于GTPase区。另外,本病还与OPA3 (19q13.2-q13.3)、OPA4 (18q12.2-12.3)及OPA5 (22q12.1-q13.1)基因突变有关。个体间的表型差异表明:其他遗传因素,个人因素以及环境因素可能与ADOA发病有关。  相似文献   

3.
Autosomal dominant optic atrophy (ADOA) is the most common inherited optic atrophy. Clinical features of ADOA include a slowly progressive bilateral loss of visual acuity, constriction of peripheral visual fields, central scotomas, and color vision abnormalities. Although ADOA is the most commonly inherited optic atrophy, autosomal recessive, X-linked, mitochondrial, and sporadic forms have also been reported. Four families with X-linked optic atrophy (XLOA) were previously described. One family was subsequently linked to Xp11.4-Xp11.2 (OPA2). This investigation studied one multi-generation family with an apparently X-linked form of optic atrophy and compared their clinical characteristics with those of the previously described families, and determined whether this family was linked to the same genetic locus. Fifteen individuals in a three-generation Idaho family underwent complete eye examination, color vision testing, automated perimetry, and fundus photography. Polymorphic markers were used to genotype each individual and to determine linkage. Visual acuities ranged from 20/30 to 20/100. All affected subjects had significant optic nerve pallor. Obligate female carriers were clinically unaffected. Preliminary linkage analysis (LOD score = 1.8) revealed that the disease gene localized to the OPA2 locus on Xp11.4-Xp11.2. Four forms of inherited optic neuropathy, ADOA, autosomal recessive optic atrophy (Costeff Syndrome), Leber hereditary optic neuropathy, and Charcot-Marie-Tooth disease with optic atrophy, are associated with mitochondrial dysfunction. Future identification of the XLOA gene will reveal whether this form of optic atrophy is also associated with a mitochondrial defect. Identification of the XLOA gene will advance our understanding of the inherited optic neuropathies and perhaps suggest treatments for these diseases. An improved understanding of inherited optic neuropathies may in turn advance our understanding of acquired optic nerve diseases, such as glaucoma and ischemic optic neuropathy.  相似文献   

4.
OPA1 is a ubiquitously expressed, nuclear dynamin-related GTPase, targeted to the inner mitochondrial membrane, which plays a role in mitochondrial fusion. Mutations in the OPA1 gene on chromosome 3q28-qter are associated with autosomal dominant optic atrophy (ADOA), the most common inherited optic neuropathy, in which retinal ganglion cells (RGCs) are lost and visual acuity is impaired from an early age. We have generated a novel ENU-induced mutant mouse carrying a protein-truncating nonsense mutation in opa1 in order to explore the pathophysiology of ADOA. The heterozygous mutation, B6; C3-Opa1(Q285STOP), located in exon 8 immediately before the central dynamin-GTPase, leads to approximately 50% reduction in opa1 protein in retina and all tissues on western analysis. The homozygous mutation is embryonic lethal by 13.5 days post coitum, demonstrating the importance of Opa1 during early development. Fibroblasts taken from adult heterozygous mutant mice show an apparent alteration in morphology, with an increase in mitochondrial fission and fragmentation. Heterozygous mutants show a slow onset of degeneration in the optic nerve electron microscopy. Furthermore, they demonstrate a functional reduction in visual function on testing with the optokinetic drum and the circadian running wheel. These findings indicate that the opa1 GTPase contains crucial information required for the survival of RGCs and that Opa1 is essential for early embryonic survival. The Opa1 +/- mice described here provide a means to directly investigate the cellular pathophysiology of OPA1 ADOA.  相似文献   

5.
Dominant optic atrophy (DOA) is the commonest form of inherited optic neuropathy. Although heterogeneous, a major locus has been mapped to chromosome 3q28 and the gene responsible, OPA1, was recently identified. We therefore screened a panel of 35 DOA patients for mutations in OPA1. This revealed 14 novel mutations and a further three known mutations, which together accounted for 20 of the 35 families (57%) included in this study. This more than doubles the number of OPA1 mutations reported in the literature, bringing the total to 25. These are predominantly null mutations generating truncated proteins, strongly suggesting that the mechanism underlying DOA is haploinsufficiency. The mutations are largely family-specific, although a common 4 bp deletion in exon 27 (eight different families) and missense mutations in exons 8 (two families) and 9 (two families) have been identified. Haplotype analysis of individuals with the exon 27 2708del(TTAG) mutation suggests that this is a mutation hotspot and not an ancient mutation, thus excluding a major founder effect at the OPA1 locus. The mutation screening in this study also identified a number of asymptomatic individuals with OPA1 mutations. A re-calculation of the penetrance of this disorder within two of our families indicates figures as low as 43 and 62% associated with the 2708del(TTAG) mutation. If haploinsufficiency is the mechanism underlying DOA it is unlikely that this figure will be mutation-specific, indicating that the penetrance in DOA is much lower than the 98% reported previously. To investigate whether Leber's hereditary optic neuropathy (LHON) could be caused by mutations in OPA1 we also screened a panel of 28 LHON patients who tested negatively for the three major LHON mutations. No mutations were identified in any LHON patients, indicating that DOA and LHON are genetically distinct.  相似文献   

6.
No evidence of genetic heterogeneity in dominant optic atrophy.   总被引:2,自引:2,他引:2       下载免费PDF全文
Autosomal dominant optic atrophy (OPA, MIM 165500) is an eye disease causing a variable reduction of visual acuity with an insidious onset in the first six years of life. It is associated with a central scotoma and an acquired blue-yellow dyschromatopsia. A gene for dominant optic atrophy (OPA1) has recently been mapped to chromosome 3q in three large Danish pedigrees. Here, we confirm the mapping of OPA1 to chromosome 3q28-qter by showing close linkage of the disease locus to three recently reported microsatellite DNA markers in the interval defined by loci D3S1314 and D3S1265 in four French families (Zmax = 5.13 at theta = 0 for probe AFM 308yf1 at locus D3S1601). Multipoint analysis supports the mapping of the disease gene to the genetic interval defined by loci D3S1314 and D3S1265. The present study provides three new markers closely linked to the disease gene for future genetic studies in OPA.  相似文献   

7.
Charcot-Marie-Tooth (CMT) disease is the most frequent inherited peripheral motor and sensory neuropathy characterised by chronic distal weakness with progressive muscular atrophy and sensory loss of the distal extremities. The dominant form of the disease is genetically heterogeneous but only one locus has been identified on chromosome 8q13- q21.1 for autosomal recessive CMT. By homozygosity mapping in a large Algerian kindred, we have assigned a second locus for autosomal recessive CMT to chromosome 5q23-33. Linkage analysis demonstrated that the same locus is involved in a second Algerian family with a demyelinating CMT. Haplotype reconstruction and determination of the minimal region of homozygosity restricts the candidate region to a 4 cM interval.   相似文献   

8.
Dominant optic atrophy, Kjer type, is an autosomal dominant disorder causing progressive loss of visual acuity and colour vision from early childhood. The gene (OPA1) has variable expressivity, a penetrance of 0.98, and the locus has been localised to 3q28-29. We have genotyped nine British families with the disease using 12 polymorphic microsatellite markers from this region. Linkage and haplotype analysis shows the OPA1 gene to be located in a 2.3 cM interval between markers D3S1601 and D3S2748. One family showed no evidence of linkage with the chromosome 3 markers, suggesting for the first time that locus heterogeneity for this disease may exist, although exclusion for linkage is based on unaffected subjects. In addition, analysis of recombinants has enabled us to order the 12 markers along chromosome 3.  相似文献   

9.
Glaucoma describes a clinically and genetically heterogeneous group of diseases that result in optic neuropathy and progressive loss of visual fields. A gene for juvenile onset primary open angle glaucoma JOAG) has recently been mapped to 1q21-31. Mutations in the trabecular meshwork induced glucocorticoid response gene (TIGR, also known as myocilin or the GLC1A locus) have been found to cause both juvenile and later onset primary open angle glaucoma. Family TCD-POAG1 is a Spanish kindred, which segregates JOAG in an autosomal dominant fashion. This family was found to be linked to the previously identified GLC1A locus on chromosome 1q. Direct sequencing of the TIGR/myocilin gene showed a heterozygous A to C transition in codon 380, resulting in the substitution of alanine for aspartic acid (Asp380Ala). This substitution created a StyI restriction site, which segregated with the JOAG phenotype and permitted rapid screening of all members of the family. This restriction site was not present in 60 controls.  相似文献   

10.
Autosomal dominant optic atrophy (OPA, MIM 165500) is an eye disease characterised by variable optic atrophy and reduction in visual acuity. It has an insidious onset in the first decade of life and is clinically highly heterogeneous. It is associated with a centrocecal scotoma of varying size and density and an acquired blue-yellow dyschromatopsia. Recent studies of three large Danish pedigrees have mapped a gene for dominant optic atrophy (OPA1) to a 10 cM region on chromosome 3q, between markers D3S1314 and D3S1265 (3q28-qter). Genetic linkage analysis in five British pedigrees confirms mapping to chromosome 3q28-qter. Haplotype analysis of a seven generation pedigree positions the disease causing gene between loci D3S3590 and D3S1305, corresponding to a genetic distance of 2 cM. This represents a significant linkage refinement and should facilitate positional cloning of the disease gene.  相似文献   

11.
Both peripheral neuropathy and distal myopathy are well-established inherited neuromuscular disorders characterized by progressive weakness and atrophy of the distal limb muscles. A complex phenotype of peripheral neuropathy, myopathy, hoarseness, and hearing loss was diagnosed in a large autosomal dominant Korean family. A high density single nucleotide polymorphism (SNP)-based linkage study mapped the underlying gene to a region on chromosome 19q13.3. The maximum multipoint LOD score was 3.794. Sequencing of 34 positional candidate genes in the segregating haplotype revealed a novel c.2822G>T (p.Arg941Leu) mutation in the gene MYH14, which encodes the nonmuscle myosin heavy chain 14. Clinically we observed a sequential pattern of the onset of muscle weakness starting from the anterior to the posterior leg muscle compartments followed by involvement of intrinsic hand and proximal muscles. The hearing loss and hoarseness followed the onset of distal muscle weakness. Histopathologic and electrodiagnostic studies revealed both chronic neuropathic and myopathic features in the affected patients. Although mutations in MYH14 have been shown to cause nonsyndromic autosomal dominant hearing loss (DFNA4), the peripheral neuropathy, myopathy, and hoarseness have not been associated with MYH14. Therefore, we suggest that the identified mutation in MYH14 significantly expands the phenotypic spectrum of this gene.  相似文献   

12.
Optic neuropathies such as Leber's hereditary optic neuropathy, dominant optic atrophy and toxic amblyopia are an important cause of irreversible visual failure. Although they are associated with a defect of mitochondrial energy production, their pathogenesis is poorly understood. A common feature to all these disorders is relatively selective degeneration of the papillomacular bundle of retinal ganglion cells resulting central or caecocentral visual field defects. The striking similarity in the pattern of clinical involvement seen with these disparate disorders suggests a common pathway in their aetiology. The existing hypothesis that the optic nerve head has higher energy demands than other tissues making it uniquely dependent on oxidative phosporylation is not satisfactory. First, other ocular tissues such as photoreceptors, which are more dependent on oxidative phosporylation are not affected. Second, other mitochondrial disorders, which have a greater impact on mitochondrial energy function, do not affect the optic nerve. The optic nerve head has certain unique ultra structural features. Ganglion cell axons exit the eye through a perforated collagen plate, the lamina cribrosa. There is a sharp discontinuity in the density of mitochondria at the optic nerve head, with a very high concentration in the prelaminar nerve fibre layer and low concentration behind the lamina. This has previously been attributed to a mechanical hold up of axoplasmic flow, which has itself been proposed as a factor in the pathogenesis of a number of optic neuropathies. More recent evidence shows that mitochondrial distribution reflects the different energy requirements of the unmyelinated prelaminar axons in comparison to the myelinated retrolaminar axons. The heterogeous distribution of mitochondria is actively maintained to support conduction through the optic nerve head. We propose that factors that disrupt the heterogeneous distribution of mitochondria can result in ganglion cell death. Evidence for this comes from studies of cultured cells with the dominant optic atrophy mutation in which mitochondrial distribution is altered and from some forms of hereditary spastic paraparesis which are associated with optic atrophy. The responsible mutations do not affect ATP production until late in the disease but do affect mitochondrial arrangement, again showing that mitochondrial distribution as well as energy production by individual mitochondria may be important in the pathogenesis of ganglion cell death. Greater understanding of the factors localising mitochondria within the ganglion cell axon in particular the interaction with cytoskeleton is required to formulate new treatments. Boosting energy production alone may not be an effective treatment.  相似文献   

13.
The autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is considered a neurodegenerative disease caused by mutations in the SACS gene, located on chromosome 13q12.12. It is a syndrome that comprises skeletal, retinal and neurological manifestations, among which feature spasticity, cerebellar ataxia and peripheral neuropathy.Five patients with a molecular diagnosis of ARSACS underwent clinical, radiological, and ophthalmologic examinations. Every one of the identified causal mutations was novel. Spastic ataxia, peripheral neuropathy, pes cavus, and hammertoes were found in every case. T2 and T2-fluid attenuation inversion recovery-weighted MRI sequences demonstrated cerebellar atrophy and a hypointense linear striation at the pons. Tensor diffusion sequences revealed that the hypointense striation corresponded with hyperplasia of the pontocerebellar fibres, which gave place to abnormally thick middle cerebellar peduncles. Stereophotographs of the optic discs showed an increased number of retinal fibres, and ocular coherence tomography, increased thickness of the retinal nerve fibre layer. The authors suggest that the hyperplasic pontocerebellar fibres compress the pyramidal tracts at the pons since a very early stage of central nervous system development, causing spasticity, and may also cause cerebellar atrophy by means of glutamate-induced excitotoxicity. The abnormal amount of retinal fibres traversing the optic discs could have caused the detected mild peripheral visual field defects.Taken together, these facts point to a developmental cause in ARSACS, as it does not exhibit the tissue atrophy characteristic of degenerative diseases. Clinical deterioration in ARSACS seems to be mediated by phenomena (compression of the pyramidal tracts and cerebellar glutamate-mediated excitotoxicity) derived from the developmental anomalies referred to, while the neuromuscular symptoms are caused by a peripheral neuropathy with pathologic features suggestive of a similar origin. These observations should be taken into account when research about the origin of ARSACS is undertaken.  相似文献   

14.
In contrast to the frequent dominant optic atrophies (DOAs) in which the neuropathy is usually an isolated event, isolated recessive optic atrophies (ROAs) are very uncommon and have been described as severe congenital or early infantile conditions. To date, two loci for isolated DOA have been mapped, of which one was ascribed to mutations in the OPA1 gene. Conversely, no isolated autosomal ROA locus had previously been localised. Here, we report a large multiplex consanguineous family of French origin affected with an early onset but slowly progressive form of isolated OA. A genome-wide search for homozygosity allowed the localisation of the disease-causing gene to chromosome 8q21-q22 (Zmax of 3.41 at theta=0 for D8S270), in a 12 Mb interval flanked by markers D8S1702 and D8S1794. This localisation excludes allelism of the disease with both isolated DOAs, on one hand, or all known syndromic forms of ROA, on the other hand, supporting the mapping of a first gene for isolated autosomal ROA (ROA1) on the long arm of chromosome 8.  相似文献   

15.
Autosomal dominant optic atrophy (ADOA), the commonest cause of inherited optic atrophy, is caused by mutations in the ubiquitously expressed gene optic atrophy 1 (OPA1), involved in fusion and biogenesis of the inner membrane of mitochondria. Bioenergetic failure, mitochondrial network abnormalities and increased apoptosis have all been proposed as possible causal factors. However, their relative contribution to pathogenesis as well as the prominent susceptibility of the retinal ganglion cell (RGC) in this disease remains uncertain. Here we identify a novel deletion of OPA1 gene in the GTPase domain in three patients affected by ADOA. Muscle biopsy of the patients showed neurogenic atrophy and abnormal morphology and distribution of mitochondria. Confocal microscopy revealed increased mitochondrial fragmentation in fibroblasts as well as in myotubes, where mitochondria were also unevenly distributed, with clustered organelles alternating with areas where mitochondria were sparse. These abnormalities were not associated with altered bioenergetics or increased susceptibility to pro-apoptotic stimuli. Therefore, changes in mitochondrial shape and distribution can be independent of other reported effects of OPA1 mutations, and therefore may be the primary cause of the disease. The arrangement of mitochondria in RGCs, which degenerate in ADOA, may be exquisitely sensitive to disturbance, and this may lead to bioenergetic crisis and/or induction of apoptosis. Our results highlight the importance of mitochondrial dynamics in the disease per se, and point to the loss of the fine positioning of mitochondria in the axons of RGCs as a possible explanation for their predominant degeneration in ADOA.  相似文献   

16.
Leber's hereditary optic neuropathy (LHON) is a maternally inherited degenerative disorder characterised by an acute or subacute optic nerve degeneration resulting in visual failure. Mitochondrial DNA mutations have been reported and a nuclear modifier gene(s) on the X chromosome is thought to play an important role in the onset of this disorder. We analysed a LHON family with a novel and more accurate approach using 27 X chromosomal microsatellite markers. Meiotic breakpoint mapping and two point lod score did not point to any particular area on the X chromosome which might contain the X susceptibility locus.  相似文献   

17.
Retinitis pigmentosa (RP) represents a group of inherited human retinal diseases which involve degeneration of photoreceptor cells resulting in visual loss and often leading to blindness. In order to identify candidate genes for the causes of these diseases, we have been studying a pool of photoreceptor-specific cDNAs isolated by subtractive hybridization of mRNAs from normal and photoreceptorless rd mouse retinas. One of these cDNAs was of interest because it mapped to proximal mouse chromosome 1 in a region homo-logous to human 8q11-q13, the locus of autosomal dominant RP1. Therefore, using the mouse cDNA as probe, we cloned the human cDNA (hG28) and its corresponding gene and mapped it near to D8S509, which lies in the RP1 locus. This gene consists of four exons with an open reading frame of 6468 nt encoding a protein of 2156 amino acids with a predicted mass of 240 kDa. Given its chromosomal localization, we screened this gene for mutations in a large family affected with autosomal dominant RP previously linked to the RP1 locus. We found an R677X mutation that co-segregated with disease in the family and is absent from unaffected members and 100 unrelated controls. This mutation is predicted to lead to rapid degradation of hG28 mRNA or to the synthesis of a truncated protein lacking approximately 70% of its original length. Our results suggest that R677X is responsible for disease in this family and that the gene corresponding to hG28 is the RP1 gene.  相似文献   

18.
19.
Dominant optic atrophy (DOA) is genetically heterogeneous and pathogenic mutations have been identified in the OPA1 and OPA3 genes, both encoding for mitochondrial proteins. We characterized clinical and laboratory features in a large OPA1-negative family with complicated DOA. Search for mitochondrial dysfunction was performed by studying muscle biopsies, fibroblasts, platelets and magnetic resonance (MR) spectroscopy. Genetic investigations included mitochondrial DNA (mtDNA) analysis, linkage analysis, copy number variation (CNV) analysis and candidate gene screening. Optic neuropathy was undistinguishable from that in OPA1-DOA and frequently associated with late-onset sensorineural hearing loss, increases of central conduction times at somato-sensory evoked potentials and various cardiac abnormalities. Serum lactic acid after exercise, platelet respiratory complex activities, adenosine triphosphate (ATP) content in fibroblasts and muscle phosphorus MR spectroscopy all failed to reveal a mitochondrial dysfunction. However, muscle biopsies and their mtDNA analysis showed increased mitochondrial biogenesis. Furthermore, patient's fibroblasts grown in the galactose medium were unable to increase ATP content compared with controls, and exhibited abnormally high rate of fusion activity. Genome-wide linkage revealed a locus on chromosome 16q21-q22 with a maximum two-point LOD score of 8.84 for the marker D16S752 and a non-recombinant interval of ~ 6.96 cM. Genomic screening of 45 genes in this interval including several likely candidate genes (CALB2, CYB5B, TK2, DHODH, PLEKHG4) revealed no mutation. Moreover, we excluded the presence of CNVs using array-based comparative genome hybridization. The identification of a new OPA locus (OPA8) in this pedigree demonstrates further genetic heterogeneity in DOA, and our results indicate that the pathogenesis may still involve mitochondria.  相似文献   

20.
Optic atrophy, hearing loss, and peripheral neuropathy   总被引:2,自引:0,他引:2  
Here we report on two families with a previously apparently undescribed, autosomal dominant disorder resulting in optic atrophy and subsequent development of hearing loss and peripheral neuropathy. This disorder differs from previous syndromes resulting in this triad of effects both in the severity and early onset of the optic atrophy and in its mode of transmission. Review of published cases of optic atrophy + hearing loss + peripheral neuropathy suggests that there are at least three such specific disorders; classification of these published cases by first-appearing symptom also results in a clean division by most-likely inheritance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号