首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endometrial growth and repair after menstruation are associated with profound angiogenesis. Abnormalities in these processes result in excessive or unpredictable bleeding patterns and are common in many women. It is therefore important to understand which factors regulate normal endometrial angiogenesis. Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen that plays an important role in normal and pathological angiogenesis. In this study we show that expression of VEGF is regulated by hypoxia in human endometrium. Culture in vitro for 24 h under hypoxic conditions resulted in a 2- to 6-fold increase in VEGF secretion by both stromal and epithelial cells isolated from human endometrium. Quantitative RT-PCR was used to measure VEGF messenger ribonucleic acid (mRNA) levels in these cells. After hypoxia, VEGF mRNA levels increased 1.8-fold in stromal cells and 3.4-fold in glandular epithelial cells. The mRNA for each VEGF splice variant increased to an equal extent. The increase in VEGF secretion by stromal and epithelial cells in response to hypoxia was not altered by treatment at the same time with estradiol or progesterone. In situ hybridization of human endometrium during menstruation, when steroid levels are low but the tissue is subject to ischemia, showed strong hybridization to VEGF mRNA in both stromal and glandular cells. These results show that local factors, such as hypoxia, can regulate VEGF expression in the endometrium. This may play an important part in normal endometrial repair after menstruation. The secretion of VEGF by endometrial cells under hypoxic conditions may also be important in the pathogenesis of endometriosis, because it would be predicted to assist revascularization of desquamated endometrial explants when they attach at ectopic sites.  相似文献   

2.
Ischemia-driven angiogenesis   总被引:10,自引:0,他引:10  
  相似文献   

3.
The aim of this study was to identify the clinical parameters of absolutely poor-prognosis patients with chronic critical limb ischemia (AP-CLI). Sixteen no-option CLI patients with arteriosclerosis obliterans: ASO (nine) and non-ASO patients (seven) treated with bone marrow-mononuclear cell implantation (BMI) were analyzed. There were three AP-CLI patients (all ASO). The mRNA expression of several angiogenic factors in the implanted cells was analyzed in comparison with normal donor bone marrow. To observe the response of bone marrow components to hypoxia, normal bone marrow cells were cultured for 24?h in 2.5% O2, and mRNA expression of angiogenic factors were measured. AP-CLI patients exhibited extraordinary low bone marrow cellularity as well as the percentage of CD34-positive cells. Among angiogenic factors, only VEGF expression was maintained in response to HIF-1, while other factors such as HGF, Ang-1, PLGF, and SDF-1 decreased in the implanted bone marrow cells of the patients with CLI compared to normal bone marrow cells. HIF-1 and all of the five angiogenic factors increased in vitro in response to hypoxia. Thus it is highly likely that angiogenic factors except VEGF do not respond to chronic ischemia in bone marrow in vivo. An organ-protection system against tissue ischemia may be applied for acute hypoxia, but it may be insufficient for chronic ischemia.  相似文献   

4.
Perfusion insufficiency, and the resultant hypoxia, often induces a compensatory neovascularization to satisfy the needs of the tissue. We have used multicellular tumor spheroids, simulating avascular microenvironments within a clonal population of glioma tumor cells, in conjunction with in situ analysis of gene expression, to study stress inducibility of candidate angiogenic factors. We show that expression of vascular endothelial growth factor (VEGF) is upregulated in chronically hypoxic niches (inner layers) of the spheroid and that expression is reversed when hypoxia is relieved by hyperoxygenation. Acute glucose deprivation--another consequence of vascular insufficiency--also activates VEGF expression. Notably, glioma cells in two distinct regions of the spheroid upregulated VEGF expression in response to hypoxia and to glucose starvation. Experiments carried out in cell monolayers established that VEGF is independently induced by these two deficiencies. Upon implantation in nude mice, spheroids were efficiently neovascularized. Concomitant with invasion of blood vessels and restoration of normoxia to the spheroid core, VEGF expression was gradually downregulated to a constitutive low level of expression, representing the output of nonstressed glioma cells. These findings show that stress-induced VEGF activity may compound angiogenic activities generated through the tumor "angiogenic switch" and suggest that stress-induced VEGF should be taken into account in any attempt to target tumor angiogenesis.  相似文献   

5.
Vascular endothelial growth factor (VEGF) plays a key role in physiological blood vessel formation and pathological angiogenesis such as tumor growth and ischemic diseases. Hypoxia is a potent inducer of VEGF in vitro. Here we demonstrate that VEGF is induced in vivo by exposing mice to systemic hypoxia. VEGF induction was highest in brain, but also occurred in kidney, testis, lung, heart, and liver. In situ hybridization analysis revealed that a distinct subset of cells within a given organ, such as glial cells and neurons in brain, tubular cells in kidney, and Sertoli cells in testis, responded to the hypoxic stimulus with an increase in VEGF expression. Surprisingly, however, other cells at sites of constitutive VEGF expression in normal adult tissues, such as epithelial cells in the choroid plexus and kidney glomeruli, decreased VEGF expression in response to the hypoxic stimulus. Furthermore, in addition to VEGF itself, expression of VEGF receptor-1 (VEGFR-1), but not VEGFR-2, was induced by hypoxia in endothelial cells of lung, heart, brain, kidney, and liver. VEGF itself was never found to be up-regulated in endothelial cells under hypoxic conditions, consistent with its paracrine action during normoxia. Our results show that the response to hypoxia in vivo is differentially regulated at the level of specific cell types or layers in certain organs. In these tissues, up- or down-regulation of VEGF and VEGFR-1 during hypoxia may influence their oxygenation after angiogenesis or modulate vascular permeability.  相似文献   

6.
Heme-oxygenases (HOs) catalyze the conversion of heme into carbon monoxide and biliverdin. HO-1 is induced during hypoxia, ischemia/reperfusion, and inflammation, providing cytoprotection and inhibiting leukocyte migration to inflammatory sites. Although in vitro studies have suggested an additional role for HO-1 in angiogenesis, the relevance of this in vivo remains unknown. We investigated the involvement of HO-1 in angiogenesis in vitro and in vivo. Vascular endothelial growth factor (VEGF) induced prolonged HO-1 expression and activity in human endothelial cells and HO-1 inhibition abrogated VEGF-driven angiogenesis. Two murine models of angiogenesis were used: (1) angiogenesis initiated by addition of VEGF to Matrigel and (2) a lipopolysaccharide (LPS)-induced model of inflammatory angiogenesis in which angiogenesis is secondary to leukocyte invasion. Pharmacologic inhibition of HO-1 induced marked leukocytic infiltration that enhanced VEGF-induced angiogenesis. However, in the presence of an anti-CD18 monoclonal antibody (mAb) to block leukocyte migration, VEGF-induced angiogenesis was significantly inhibited by HO-1 antagonists. Furthermore, in the LPS-induced model of inflammatory angiogenesis, induction of HO-1 with cobalt protoporphyrin significantly inhibited leukocyte invasion into LPS-conditioned Matrigel and thus prevented the subsequent angiogenesis. We therefore propose that during chronic inflammation HO-1 has 2 roles: first, an anti-inflammatory action inhibiting leukocyte infiltration; and second, promotion of VEGF-driven noninflammatory angiogenesis that facilitates tissue repair.  相似文献   

7.
The tissue repair response to hypoxic stimuli during wound healing includes enhanced production of angiogenic factors, such as vascular endothelial growth factor (VEGF). Hepatic stellate cells are oxygen-sensing cells, capable of producing VEGF. We hypothesized that hypoxia-stimulated signaling in activated stellate cells mediate VEGF secretion during liver injury. The specific aim was to evaluate the effect of hypoxia on the gene expression of VEGF in HSC-T6 cells, an immortalized rat hepatic stellate cell line, and in rat primary cultures of stellate cells. Hypoxic induction of VEGF mRNA was dose- and time-dependent. The hypoxic stimulation of VEGF messenger RNA (mRNA) correlated with the secretion of VEGF protein in conditioned media by hypoxic T6 cells. S-Nitroso-N-acetyl-D, L-penicillamine (SNAP), a nitric oxide (NO) donor, and desferrioxamine (DFx) and cobalt chloride, mimics of cellular hypoxia, similarly stimulated VEGF mRNA expression and secretion. Four previously described splice variants of the VEGF mRNA (VEGF-120, 144, 164, 188) were detected in both normoxic- or hypoxic-activated stellate cells. There was differential expression of the VEGF receptors, Flt-1 and Flk-1, in hypoxic T6 cells. Hypoxic conditions selectively stimulated Flt-1 mRNA expression, whereas Flk-1 mRNA remained unchanged. Hypoxic induction of VEGF was also demonstrated in primary stellate cell cultures and after in vivo injury. Hypoxia stimulates cell signaling in stellate cells, culminating in the rapid induction of VEGF and Flt-1 mRNA expression and VEGF secretion. The hypoxic induction of VEGF is mimicked by NO and may be of mechanistic importance in the pathogenesis of hepatic wound healing and hepatocarcinogenesis.  相似文献   

8.
Understanding molecular mechanisms regulating angiogenesis may lead to novel therapies for ischemic disorders. Hypoxia-inducible factor 1 (HIF-1) activates vascular endothelial growth factor (VEGF) gene expression in hypoxic/ischemic tissue. In this study we demonstrate that exposure of primary cultures of cardiac and vascular cells to hypoxia or AdCA5, an adenovirus encoding a constitutively active form of HIF-1alpha, modulates the expression of genes encoding the angiogenic factors angiopoietin-1 (ANGPT1), ANGPT2, placental growth factor, and platelet-derived growth factor-B. Loss-of-function effects were also observed in HIF-1alpha-null embryonic stem cells. Depending on the cell type, expression of ANGPT1 and ANGPT2 was either activated or repressed in response to hypoxia or AdCA5. In all cases, there was complete concordance between the effects of hypoxia and AdCA5. Injection of AdCA5 into mouse eyes induced neovascularization in multiple capillary beds, including those not responsive to VEGF alone. Analysis of gene expression revealed increased expression of ANGPT1, ANGPT2, platelet-derived growth factor-B, placental growth factor, and VEGF mRNA in AdCA5-injected eyes. These results indicate that HIF-1 functions as a master regulator of angiogenesis by controlling the expression of multiple angiogenic growth factors and that adenovirus-mediated expression of a constitutively active form of HIF-1alpha is sufficient to induce angiogenesis in nonischemic tissue of an adult animal.  相似文献   

9.
10.
Exosomes and microvesicles, collectively referred to as extracellular vesicles (EVs), can transfer complex biological information and induce a diverse signalling response in recipient cells with potential relevance in a wide array of pathological conditions. Tissue hypoxia constitutes a stress‐associated phenotype that is central to the malignant state of aggressive tumours as well as to ischaemic tissue in cardiovascular disorders. The adaptive response to hypoxic stress is largely dependent on intercellular communication in which EVs, and cellular exchange of EV cargo molecules, have recently been implicated. The results of numerous studies indicate that hypoxia‐dependent shaping of the molecular profile of EVs may mediate the biological response to hypoxia. EVs have been shown to induce tumour angiogenesis and hypercoagulation as well as tissue remodelling and protective effects in ischaemic cardiovascular conditions. Recent findings report increased levels of circulating EVs in patients with hypoxia‐associated disorders such as myocardial infarction, stroke and pre‐eclampsia, indicating a role of EVs as biomarkers in these pathophysiological states. Here, we discuss the intriguing role of EVs in tumour development and cardiovascular disease, focusing on the paracrine transfer of the hypoxic response to neighbouring cells and to distant cells at the systemic level, with wide implications for biomarker discovery and therapeutic intervention.  相似文献   

11.
Systemic sclerosis (SSc, or scleroderma) is a chronic, multisystem connective tissue disorder characterized by widespread microvascular damage, fibrosis, and autoimmunity that affects the skin and internal organs. In the course of SSc, chronic tissue ischemia and lack of compensatory angiogenesis may lead to loss of dermal capillaries and arterioles and severe peripheral vascular complications, such as nonhealing digital ulcers and, occasionally, gangrene of the extremities, which represent a heavy burden due to their major impact on patients' quality of life. Surprisingly, several studies published during the past decade showed that the potent proangiogenic mediator vascular endothelial growth factor-A (VEGF-A) is overexpressed in the skin and circulation of patients with SSc despite evidence of an overall insufficient angiogenic response. However, early studies could not make the distinction between proangiogenic VEGF(165) and antiangiogenic VEGF(165)b isoforms, which have been uncovered only recently and appear to be generated by alternative splicing mechanisms in the terminal exon of VEGF-A pre-mRNA. In a recent study, we provided the first evidence that a switch from proangiogenic to antiangiogenic VEGF-A isoforms may play a crucial role in the defective angiogenic and vascular repair processes that characterize SSc. Future clinical and translational research should address whether molecular regulation of VEGF-A pre-mRNA splicing might represent a potential therapeutic strategy for the SSc-related peripheral vasculopathy and, most widely, for other pathologic conditions in humans in which we seek to promote or inhibit angiogenesis.  相似文献   

12.
OBJECTIVE: Platelet activation is accompanied by the release of microparticles. However, little is known about the role of platelet-derived microparticles (PMP) in the regulation of angiogenesis and related clinical situations. The aim of our study was to evaluate the effect of PMP on angiogenesis and to analyze its mechanisms. METHODS: Both in vitro (rat aortic ring model, cell invasion test) and in vivo (agarose bead transplantation, artificial cardiac ischemia in Sabra rats) approaches were used in the study. RESULTS: A dose-dependent pro-angiogenic effect of PMP was observed in the rat aortic ring model. This effect could be eliminated by inhibition of VEGF, bFGF, and PDGF, but not heparanase. PMP exerted their effect via PI 3-kinase, Src kinase, and ERK, whereas protein kinase C and p38 were not involved. Moreover, PMP induced invasion of endothelial cells through a layer of matrigel. This effect was mediated by VEGF, heparanase, and PDGF, but not bFGF. Furthermore, PMP induced angiogenesis in an in vivo model in which agarose beads containing PMP were transplanted subcutaneously into mice. In addition, the effect of PMP on angiogenesis was evaluated in the model of in vivo chronic myocardial ischemia in rats. Ischemia induced a decrease in the number of functioning capillaries (34+/-21.5 vs. 157+/-42.0 per view field), but their amount increased after injection of PMP into the myocarium (97+/-27.3; p<0.001 vs. ischemia without PMP). CONCLUSIONS: PMP induce angiogenesis both in vitro and in vivo. Injection of PMP into the ischemic myocardium might improve the process of revascularization after chronic ischemia.  相似文献   

13.
14.
15.
16.
OBJECTIVE: Insufficient angiogenesis with tissue ischemia and accumulation of extracellular matrix are hallmarks of systemic sclerosis (SSc). Based on the severely decreased oxygen levels in the skin of patients with SSc, we aimed to investigate the role of hypoxia in the pathogenesis of SSc. METHODS: Subtractive hybridization was used to compare gene expression in dermal fibroblasts under hypoxic and normoxic conditions. Dermal fibroblasts were further characterized by exposure to different concentrations of oxygen and for different time periods as well as by interference with hypoxia-inducible factor 1alpha (HIF-1alpha). The systemic normobaric hypoxia model in mice was used for in vivo analyses. RESULTS: Several extracellular matrix proteins and genes involved in extracellular matrix turnover, such as thrombospondin 1, proalpha2(I) collagen, fibronectin 1, insulin-like growth factor binding protein 3, and transforming growth factor beta-induced protein, were induced by hypoxia in SSc and healthy dermal fibroblasts. The induction of these genes was time- and dose-dependent. Experiments with HIF-1alpha-knockout mouse embryonic fibroblasts, deferoxamine/cobalt ions as chemical stabilizers of HIF-1alpha, and HIF-1alpha small interfering RNA consistently showed that extracellular matrix genes are induced in dermal fibroblasts by HIF-1alpha-dependent, as well as HIF-1alpha-independent, mechanisms. Using the systemic normobaric hypoxia mouse model, we demonstrated that dermal hypoxia leads to the induction of the identified extracellular matrix genes in vivo after both short exposure and prolonged exposure to hypoxia. CONCLUSION: These data show that hypoxia contributes directly to the progression of fibrosis in patients with SSc by increasing the release of major extracellular matrix proteins. Targeting of hypoxia pathways might therefore be of therapeutic value in patients with SSc.  相似文献   

17.
18.
19.
目的 探讨肢体缺血后代偿性血管新生及相关基因表达的动态变化和意义.方法 股动脉结扎法建立裸鼠肢体缺血模型,分别于术后3天及术后1、2、3、4周观察裸鼠肢体缺血的改变,应用苏木素-伊红染色和CD34免疫组织化学染色观察缺血肌肉组织形态学的改变,应用Western Blotting和逆转录聚合酶链反应检测低氧诱导因子1α、肝细胞生长因子和血管内皮生长因子蛋白和基因在缺血肌肉中表达的动态变化.结果 裸鼠肢体坏疽于术后1~2周最为严重,至术后3~4周时有所改善.缺血后的肌肉纤维萎缩、变形,3~4周时逐渐好转.微血管数于缺血后2周时最多.低氧诱导因子1α和肝细胞生长因子的基因表达于缺血后3天时最为强烈,血管内皮生长因子的基因表达于缺血后1周时达高峰,至缺血后3~4周时,各基因的表述均接近正常对照.结论 肢体缺血发生后,低氧诱导因子1α、肝细胞生长因子和血管内皮生长因子基因表达的变化介导了短暂的血管新生过程,但微血管的生成数量有限,尚不足以代偿肢体缺血的状态.  相似文献   

20.
BACKGROUND/AIMS: We investigated the molecular response of a non-ischemic hypoxic stress in the liver, in particular, to distinguish its hepatoprotective potential. METHODS: The livers of mice were subjected to non-ischemic hypoxia by clamping the hepatic-artery (HA) for 2h while maintaining portal circulation. Hypoxia was defined by a decrease in oxygen saturation, the activation of hypoxia-inducible factor (HIF)-1 and the mRNA up-regulation of responsive genes. To demonstrate that the molecular response to hypoxia may in part be hepatoprotective, pre-conditioned animals were injected with an antibody against Fas (Jo2) to induce acute liver failure. Hepatocyte apoptosis was monitored by caspase-3 activity, cleavage of lamin A and animal survival. RESULTS: Clamping the HA induced a hypoxic stress in the liver in the absence of severe metabolic distress or tissue damage. The hypoxic stimulus was sufficient to activate the HIF-1 signalling pathway and up-regulate hepatoprotective genes. Pre-conditioning the liver with hypoxia was able to delay the onset of Fas-mediated apoptosis and prolong animal survival. CONCLUSIONS: Our data reveal that hepatic cells can sense and respond to a decrease in tissue oxygenation, and furthermore, that activation of hypoxia-inducible signalling pathways function in part to promote liver cell survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号