首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Removal of all contiguous visual cortical areas of one hemisphere results in a contralateral hemianopia. Subsequent deactivation of the contralesional superior colliculus (SC) nullifies the effects of the visual cortex ablation and restores visual orienting responses into the cortically blind hemifield. This deficit nullification has become known as the "Sprague Effect." Similarly, in the auditory system, unilateral ablation of auditory cortex results in severe sound localization deficits, as assessed by acoustic orienting, to stimuli in the contralateral hemifield. The purpose of this study was to examine whether auditory orienting responses can be restored into the impaired hemifield during deactivation of the contralesional SC. Three mature cats were trained to orient toward and approach an acoustic stimulus (broadband, white noise burst) that was presented centrally, or at one of 12 peripheral loci, spaced at 15 degrees intervals. After training, a cryoloop was chronically implanted over the dorsal surface of the right SC. During cooling of the cooling loop to temperatures sufficient to deactivate the superficial and intermediate layers (SZ, SGS, SO, SGI), auditory orienting responses were eliminated into the left (contracooled) hemifield while leaving acoustic orienting into the right (ipsicooled) hemifield unimpaired. This deficit was temperature-dependently graded from periphery to center. After the effectiveness of the SC cooling loop was verified, auditory cortex of the middle and posterior ectosylvian and anterior and posterior sylvian gyri was removed from the left hemisphere. As expected, the auditory cortex ablation resulted in a profound deficit in orienting to acoustic stimuli presented at any position in the right (contralesional) hemifield, while leaving acoustic orienting into the left (ipsilesional) hemifield unimpaired. The ablations of auditory cortex did not have any impact on a visual detection and orienting task. The additional deactivation of the contralesional SC to temperatures sufficient to cool the superficial and intermediate layers nullified the deficit caused by the auditory cortex ablation and acoustic orienting responses were restored into the right hemifield. This restoration was temperature-dependently graded from center to periphery. The deactivations were localized and confirmed with reduced uptake of radiolabeled 2-deoxyglucose. Therefore deactivation of the right superior colliculus after the ablation of the left auditory cortex yields a fundamentally different result from that identified during deactivation of the right superior colliculus before the removal of left auditory cortex in the same animal. Thus the "Sprague Effect" is not unique to a particular sensory system and deactivation of the contralesional SC can restore either visual or acoustic orienting responses into an impaired hemifield after cortical damage.  相似文献   

2.
Auditory responses to free-field broad band stimulation from different directions were recorded from clusters of neurones in the superior colliculus (SC) of the anaesthetized tammar wallaby. The auditory responses were found approximately 2 mm beneath the first recording of visually evoked responses in the superficial layers, the vast majority being solely auditory in nature; only one recording responded to both auditory and visual stimulation. Responses to suprathreshold intensities displayed sharp spatial tuning to sound in the contralateral hemifield. Those from the rostral pole of the SC disclosed a preference for auditory stimuli in the azimuthal anterior field, whereas those in the caudal SC preferentially responded to sounds in the posterior field. A continuum of directionally tuned responses was seen along the rostrocaudal axis of the SC so that the entire azimuthal contralateral auditory hemifield was represented in the SC. Furthermore, tight spatial alignment was evident between the best position of the visual responses in the superficial layers in azimuth and the peak angle of the auditory response in the deeper layers.  相似文献   

3.
The superior colliculus (SC) is one of the most ancient regions of the vertebrate central sensory system. In this hub afferents from several sensory pathways converge, and an extensive range of neural circuits enable primary sensory processing, multi-sensory integration and the generation of motor commands for orientation behaviours. The SC has a laminar structure and is usually considered in two parts; the superficial visual layers and the deep multi-modal/motor layers. Neurones in the superficial layers integrate visual information from the retina, cortex and other sources, while the deep layers draw together data from many cortical and sub-cortical sensory areas, including the superficial layers, to generate motor commands. Functional studies in anaesthetized subjects and in slice preparations have used pharmacological tools to probe some of the SC's interacting circuits. The studies reviewed here reveal important roles for ionotropic glutamate receptors in the mediation of sensory inputs to the SC and in transmission between the superficial and deep layers. N-methyl-D-aspartate receptors appear to have special responsibility for the temporal matching of retinal and cortical activity in the superficial layers and for the integration of multiple sensory data-streams in the deep layers. Sensory responses are shaped by intrinsic inhibitory mechanisms mediated by GABA(A) and GABA(B) receptors and influenced by nicotinic acetylcholine receptors. These sensory and motor-command activities of SC neurones are modulated by levels of arousal through extrinsic connections containing GABA, serotonin and other transmitters. It is possible to naturally stimulate many of the SC's sensory and non-sensory inputs either independently or simultaneously and this brain area is an ideal location in which to study: (a) interactions between inputs from the same sensory system; (b) the integration of inputs from several sensory systems; and (c) the influence of non-sensory systems on sensory processing.  相似文献   

4.
We studied calretinin-immunoreactive (IR) fibers and cells in the canine superior colliculus (SC) and studied the distribution and effect of enucleation on the distribution of this protein. Localization of calretinin was immunocytochemically observed. A dense plexus of anti--calretinin-IR fibers was found within the upper part of the superficial gray layer (SGL). Almost all of the labeled fibers were small in diameter with few varicosities. The intermediate and deep layers contained many calretinin-IR neurons. Labeled neurons within the intermediate gray layer (IGL) formed clusters in many sections. By contrast, labeled neurons in the deep gray layer (DGL) did not form clusters. Calretinin-IR neurons in the IGL and DGL varied in morphology and included round/oval, vertical fusiform, stellate, and horizontal neurons. Neurons with varicose dendrites were also labeled in the IGL. Most of the labeled neurons were small to medium in size. Monocular enucleation produced an almost complete reduction of calretinin-IR fibers in the SC contralateral to the enucleation. However, many calretinin-IR cells appeared in the contralateral superficial SC. Enucleation appeared to have no effect on the distribution of calretinin-IR neurons in the contralateral intermediate and deep layers of the SC. The calretinin-IR neurons in the superficial dog SC were heterogeneous small- to medium-sized neurons including round/oval, vertical fusiform, stellate, pyriform, and -horizontal in shape. Two-color immunofluorescence revealed that no cells in the dog SC -expressed both calretinin and GABA. Many horseradish peroxidase (HRP)-labeled retinal ganglion cells were seen after injections into the superficial layers. The vast majority of the double-labeled cells (HRP and calretinin) were small cells. The present results indicate that antibody to calretinin labels subpopulations of neurons in the dog SC, which do not express GABA. The results also suggest that the calretinin-IR afferents in the superficial layers of the dog SC originate from small class retinal ganglion cells. The expression of calretinin might be changed by the cellular activity of selective superficial collicular neurons. These results are valuable in delineating the basic neurochemical architecture of the dog visual system.  相似文献   

5.
Eye patching has revealed enhanced saccadic latencies or attention effects when orienting toward visual stimuli presented in the temporal versus nasal hemifields of humans. Such behavioral advantages have been tentatively proposed to reflect possible temporal-nasal differences in the retinotectal pathway to the superior colliculus, rather than in the retinogeniculate pathway or visual cortex. However, this has not been directly tested with physiological measures in humans. Here, we examined responses of the human superior colliculus (SC) to contralateral visual field stimulation, using high spatial resolution fMRI, while manipulating which hemifield was stimulated and orthogonally which eye was patched. The SC responded more strongly to visual stimulation when eye-patching made this stimulation temporal rather than nasal. In contrast, the lateral geniculate nucleus (LGN) plus retinotopic cortical areas V1-V3 did not show any temporal-nasal differences and differed from the SC in this respect. These results provide the first direct physiological demonstration in humans that SC shows temporal-nasal differences that LGN and early visual cortex apparently do not. This may represent a temporal hemifield bias in the strength of the retinotectal pathway, leading to a preference for the contralateral hemifield in the contralateral eye.  相似文献   

6.
When stimuli are presented in the left or right visual fields, hemispheric specialization for global and local processing in occipital areas is attenuated. Using functional magnetic resonance imaging, we investigated how this attenuation is compensated for when information must cross the corpus callosum to reach the areas specialized for global and local processing. We presented hierarchically nested letters (e.g. a large E made of smaller E's) to the right or the left visual hemifield while subjects fixated centrally. In half the trials, subjects indicated whether the global aspect and in the other half whether the local aspect of the stimulus matched a pre-specified target letter. Visual hemifield presentations showed the expected contralateral activations of occipital cortex. The main effects of locally or globally directed attention did not show any differential occipital activations, but the right anterior cingulate cortex was activated differentially during local processing. Region-of-interest-based analyses showed increased neural activity in left posterior occipital cortex during local processing when stimuli were presented in the left hemifield. During global processing with stimulus presentation to the right hemifield, the right posterior occipital cortex was activated. Activation of right anterior cingulate cortex during local processing is likely to reflect the suppression of global processing precedence in order to select correctly the local stimulus level. The activations in left (local) and right (global) occipital areas are likely to reflect the top-down augmentation of stimulus information that has been degraded by callosal crossing in order to access the hemisphere specialized for local or global processing.  相似文献   

7.
To assess cortical contributions to the photic blink reflex, signal averaged electromyograms (EMG) were compared for responses to strobe flashes presented within the blind and sighted hemifields of 13 patients with occipital lobe lesions. Reflexes evoked by flashes within the scotoma were virtually identical to those evoked by flashes within the intact visual field. This suggests that both the early and late components of this reflex (R50 and R80, respectively) are mediated by subcortical structures that do not require, or benefit from, conscious visual processing. Additional findings included larger R80s at the eyelid contralateral to the lesion, regardless of stimulated hemifield. This presumably reflects the loss of a tonic descending influence of visual cortex onto the motor limb of the reflex arc. The R80 was also larger for stimuli activating the crossed (temporal hemifield) rather than the uncrossed (nasal hemifield) afferent pathway.  相似文献   

8.
Summary The visual representation in the uncrossed retinal projection to the superior colliculus (SC) was examined electrophysiologically by recording multiunit responses in paralysed, anaesthetised adult rats (both pigmented and albino), which had been monocularly enucleated either prenatally or soon after birth. This manipulation partially stabilises an exuberant neonatal projection from the remaining eye to the ipsilateral SC. Neuronal responses were also stronger and the multi-unit receptive fields larger than in intact animals. Many of the visual fields recorded on penetrations in caudal SC were located in the peripheral ipsilateral visual hemifield, corresponding to nasal retina. Such receptive fields are not seen in normal animals and were not found in animals enucleated on day 3 or later. The topographic representation of the dorso-ventral retinal axis, lateral to medial in the SC, was normal in all experimental animals. The representation of the naso-temporal retinal axis was abnormal and more variable. In all operated animals as the recording electrode was moved caudally away from the rostral pole of the SC, the corresponding receptive fields moved gradually from up to 40° in the ipsilateral visual hemifield to about 40° into the contralateral hemifield (a location corresponding to the peripheral edge of the temporal retina). This is the mapping polarity found in the normal uncrossed retinal projection. In the enucleated animals, the map was expanded and frequently displayed a clustering of fields arising from far temporal retina. In animals enucleated prenatally or on the day of birth, visual responses could be recorded in more caudal SC. The corresponding receptive fields now moved nasally on the retina, generating reversals in the map. The most caudal penetrations in these early enucleates frequently gave receptive fields located in retina nasal to the optic disc, up to 90 degrees into the ipsilateral visual hemifield. These results demonstrate that a temporal relationship exists between the order and mapping polarity of the visual field in SC and the time of enucleation. Prenatal enucleation produces reversals of the mapping polarity in caudal SC while neonatal enucleation produces an expanded map but one with a mapping polarity appropriate for an uncrossed projection  相似文献   

9.
Although the tectofugal system projects to the primate cerebral cortex by way of the pulvinar, previous studies have failed to find any physiological evidence that the superior colliculus influences visual activity in the cortex. We studied the relative contributions of the tectofugal and geniculostriate systems to the visual properties of neurons in the superior temporal polysensory area (STP) by comparing the effects of unilateral removal of striate cortex, the superior colliculus, or of both structures. In the intact monkey, STP neurons have large, bilateral receptive fields. Complete unilateral removal of striate cortex did not eliminate visual responses of STP neurons in the contralateral visual hemifield; rather, nearly half the cells still responded to visual stimuli in the hemifield contralateral to the lesion. Thus the visual properties of STP neurons are not completely dependent on the geniculostriate system. Unilateral striate lesions did affect the response properties of STP neurons in three ways. Whereas most STP neurons in the intact monkey respond similarly to stimuli in the two visual hemifields, responses to stimuli in the hemifield contralateral to the striate lesion were usually weaker than responses in the ipsilateral hemifield. Whereas the responses of many STP neurons in the intact monkey were selective for the direction of stimulus motion or for stimulus form, responses in the hemifield contralateral to the striate lesion were not selective for either motion or form. Whereas the median receptive field in the intact monkey extended 80 degrees into the contralateral visual field, the receptive fields of cells with responses in the contralateral field that survived the striate lesions had a median border that extended only 50 degrees into the contralateral visual field. Removal of both striate cortex and the superior colliculus in the same hemisphere abolished the responses of STP neurons to visual stimuli in the hemifield contralateral to the combined lesion. Nearly 80% of the cells still responded to visual stimuli in the hemifield ipsilateral to the lesion. Unilateral removal of the superior colliculus alone had only small effects on visual responses in STP. Receptive-field size and visual response strength were slightly reduced in the hemifield contralateral to the collicular lesion. As in the intact monkey, selectivity for stimulus motion or form were similar in the two visual hemifields. We conclude that both striate cortex and the superior colliculus contribute to the visual responses of STP neurons. Striate cortex is crucial for the movement and stimulus specificity of neurons in STP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Push-pull mechanism of selective attention in human extrastriate cortex   总被引:3,自引:0,他引:3  
Selective attention operates in visual cortex by facilitating processing of selected stimuli and by filtering out unwanted information from nearby distracters over circumscribed regions of visual space. The neural representation of unattended stimuli outside this focus of attention is less well understood. We studied the neural fate of unattended stimuli using functional magnetic resonance imaging by dissociating the activity evoked by attended (target) stimuli presented to the periphery of a visual hemifield and unattended (distracter) stimuli presented simultaneously to a corresponding location of the contralateral hemifield. Subjects covertly directed attention to a series of target stimuli and performed either a low or a high attentional-load search task on a stream of otherwise identical stimuli. With this task, target-search-related activity increased with increasing attentional load, whereas distracter-related activity decreased with increasing load in areas V4 and TEO but not in early areas V1 and V2. This finding presents evidence for a load-dependent push-pull mechanism of selective attention that operates over large portions of the visual field at intermediate processing stages. This mechanism appeared to be controlled by a distributed frontoparietal network of brain areas that reflected processes related to target selection during spatially directed attention.  相似文献   

11.
The superior colliculus (SC) is a multimodal laminar structure located on the roof of the brain stem. The SC is a key structure in a distributed network of areas that mediate saccadic eye movements and shifts of attention across the visual field and has been extensively studied in nonhuman primates. In humans, it has proven difficult to study the SC with functional MRI (fMRI) because of its small size, deep location, and proximity to pulsating vascular structures. Here, we performed a series of high-resolution fMRI studies at 3 T to investigate basic visual response properties of the SC. The retinotopic organization of the SC was determined using the traveling wave method with flickering checkerboard stimuli presented at different polar angles and eccentricities. SC activations were confined to stimulation of the contralateral hemifield. Although a detailed retinotopic map was not observed, across subjects, the upper and lower visual fields were represented medially and laterally, respectively. Responses were dominantly evoked by stimuli presented along the horizontal meridian of the visual field. We also measured the sensitivity of the SC to luminance contrast, which has not been previously reported in primates. SC responses were nearly saturated by low contrast stimuli and showed only small response modulation with higher contrast stimuli, indicating high sensitivity to stimulus contrast. Responsiveness to stimulus motion in the SC was shown by robust activations evoked by moving versus static dot stimuli that could not be attributed to eye movements. The responses to contrast and motion stimuli were compared with those in the human lateral geniculate nucleus. Our results provide first insights into basic visual responses of the human SC and show the feasibility of studying subcortical structures using high-resolution fMRI.  相似文献   

12.
We measured the pupillary response to achromatic and chromatic grating stimuli in left and right visual hemifields of two rhesus monkeys, who were trained to fixate the centre of a screen. After removing the rostral inferior temporal cortex of one hemisphere, the response to chromatically modulated gratings in the contralateral hemifield was abolished, whereas the response to the luminance modulated grating was unaffected. In one of the monkeys, in which area V4 of the other hemisphere was also removed, there was no effect on the pupillary response to either kind of grating presented in the hemifield contralateral to the V4 lesion. The results show that the cortical contribution to the response of the pupil to purely chromatic changes is mediated by rostral temporal cortex, not by area V4.  相似文献   

13.
用NADPH-d 组织化学方法观察了在生后一周内即施行单眼缝合和双眼缝合成活至1 年的猫视觉中枢(上丘表层,外膝体和视皮层17 区)中的一氧化氮合酶阳性神经元数量及形态。结果显示:(1)单眼缝合或双眼缝合并不改变上丘表层中一氧化氮合酶阳性细胞的分布模式,也不影响该神经元的数量,但单眼缝合使对侧上丘表层一氧化氮合酶阳性神经元的树突野最大半径减小,树突总长度减少;而双眼缝合可使双侧上丘中一氧化氮合酶阳性细胞胞体减少,树突野最大半径以及树突总长度均明显减少。(2)单眼缝合导致外膝体非剥夺层中出现较多一氧化氮合酶阳性细胞,剥夺层少量出现,而双眼缝合却没有以上效应。(3)单眼缝合不影响视皮层17 区中一氧化氮合酶阳性细胞的空间分布模式以及该神经元在皮层各层中的分布密度;双眼缝合也不影响该神经元的分布模式,但可使NADPH-d 黄递酶活性明显降低。提示视觉神经中枢中的一氧化氮合酶阳性神经元的活动受视网膜活动依赖性的调节,且受视觉经验的影响。  相似文献   

14.
Whether different brain networks are involved in generating unimanual responses to a simple visual stimulus presented in the ipsilateral versus contralateral hemifield remains a controversial issue. Visuo-motor routing was investigated with event-related functional magnetic resonance imaging (fMRI) using the Poffenberger reaction time task. A 2 hemifield x 2 response hand design generated the "crossed" and "uncrossed" conditions, describing the spatial relation between these factors. Both conditions, with responses executed by the left or right hand, showed a similar spatial pattern of activated areas, including striate and extrastriate areas bilaterally, SMA, and M1 contralateral to the responding hand. These results demonstrated that visual information is processed bilaterally in striate and extrastriate visual areas, even in the "uncrossed" condition. Additional analyses based on sorting data according to subjects' reaction times revealed differential crossed versus uncrossed activity only for the slowest trials, with response strength in infero-temporal cortices significantly correlating with crossed-uncrossed differences (CUD) in reaction times. Collectively, the data favor a parallel, distributed model of brain activation. The presence of interhemispheric interactions and its consequent bilateral activity is not determined by the crossed anatomic projections of the primary visual and motor pathways. Distinct visuo-motor networks need not be engaged to mediate behavioral responses for the crossed visual field/response hand condition. While anatomical connectivity heavily influences the spatial pattern of activated visuo-motor pathways, behavioral and functional parameters appear to also affect the strength and dynamics of responses within these pathways.  相似文献   

15.
Interhemispheric transfer of visual information was investigated behaviourally and with functional magnetic resonance imaging (fMRI) 6 months after a lesion of the posterior two-thirds of the corpus callosum. On tachistoscopical left hemifield presentation, the patient was severely impaired in reading letters, words and geographical names and moderately impaired in naming pictures and colours. In contrast, interhemispheric transfer of visual motion information, tested by verbal report of the direction of short sequences of coherent dot motion presented within the left hemifield, was preserved. The pattern of cerebral activation elicited by apparent motion stimuli was studied with fMRI and compared to that of normal subjects. In normal subjects, apparent motion stimuli, as compared to darkness, activated strongly striate and extrastriate cortex. When presented to one hemifield only, the contralateral calcarine region was activated while regions on the occipital convexity, including putative area V5, were activated bilaterally. A similar activation pattern was found in the patient with a posterior callosal lesion; unilateral left or right hemifield stimulation was accompanied by activation in the contralateral and ipsilateral occipital convexity. Ipsilateral hemifield representation in the extrastriate visual cortex is believed to depend on callosal input. Our observation suggests that this is not the case for visual motion representation and that other, probably parallel, pathways may mediate visual motion transfer after posterior callosotomy.  相似文献   

16.
The deep layers of the superior colliculus (SC) receive visual, auditory, and somatosensory input. A major function of the SC is the control of orientation movements of the eye, head, and pinna. While a topographical map for sound source direction remains elusive in primary auditory structures of mammals, such a map for azimuthal sound source directions has been reported in the deep layers of the SC. Moreover, a gradient of elevation tuning has been also seen in the SC of ferrets and cats. Here we demonstrate that a virtual auditory environment can be used to reveal azimuthal and elevational topography for auditory spatial receptive fields in neurons in the SC of guinea pigs. Individual, head-related transfer functions (HRTF) were measured in ten guinea pigs for 122 directions in the upper hemispheric field and convolved with white noise. Many neurons (39%) in the deep layers showed robust responses to these virtual sounds, and the majority of these neurons had small spatial receptive fields that were restricted to the contralateral hemifield. Best directions varied from 0 degree to 135 degree azimuth along the contralateral side and from --10 degree to 60 degree elevation. Like previous studies using free-field stimulation, a gradient of best azimuth direction was found along the rostral-caudal axis, with rear directions represented caudally and front directions rostrally. The topographical organization for best elevations had not been studied previously in the guinea pig. We found that it roughly followed the mediolateral axis, with preference for high elevations represented medially and low elevations laterally. A similar organization using free-field stimulation has been reported in the ferret.  相似文献   

17.
Summary The superior colliculus (SC) of the cat shows a prominent compartmentalized organization at the level of its intermediate layers. The mosaic of these compartments is apparent in the pattern of acetylcholinesterase (AChE) staining. Patches of high AChE-activity are sharply set off from surrounding areas in the caudal SC while they are less distinct anteriorly. The rostral part lacks such obvious compartments. Thus, a structural reorganization apparently cuts across the topographical representations spread out in the SC. In order to test if this compartmental gradient relates to the topographic maps of the colliculus, retinotopic landmarks were visualized in the superficial layers by labeling the retinotectal pathway. In the SC ipsilateral to the eye injected with horseradish peroxidase (HRP) a paucity of labeling indicated the zone representing the ipsilateral visual half-field. Serial reconstructions of collicular sections, cut longitudinally or tangentially, revealed that the non-compartmentalized part of the intermediate layers corresponds to the representation of the ipsilateral visual half-field in the layers above, while an intricate mosaic array of compartments prevail in tectal zones related to the representation of the contralateral visual half-field.  相似文献   

18.
Neurons in both the lateral intraparietal area (LIP) of the monkey parietal cortex and the intermediate layers of the superior colliculus (SC) are activated well in advance of the initiation of saccadic eye movements. To determine whether there is a progression in the covert processing for saccades from area LIP to SC, we systematically compared the discharge properties of LIP output neurons identified by antidromic activation with those of SC neurons collected from the same monkeys. First, we compared activity patterns during a delayed saccade task and found that LIP and SC neurons showed an extensive overlap in their responses to visual stimuli and in their sustained activity during the delay period. The saccade activity of LIP neurons was, however, remarkably weaker than that of SC neurons and never occurred without any preceding delay activity. Second, we assessed the dependence of LIP and SC activity on the presence of a visual stimulus by contrasting their activity in delayed saccade trials in which the presentation of the visual stimulus was either sustained (visual trials) or brief (memory trials). Both the delay and the presaccadic activity levels of the LIP neuronal sample significantly depended on the sustained presence of the visual stimulus, whereas those of the SC neuronal sample did not. Third, we examined how the LIP and SC delay activity relates to the future production of a saccade using a delayed GO/NOGO saccade task, in which a change in color of the fixation stimulus instructed the monkey either to make a saccade to a peripheral visual stimulus or to withhold its response and maintain fixation. The average delay activity of both LIP and SC neuronal samples significantly increased by the advance instruction to make a saccade, but LIP neurons were significantly less dependent on the response instruction than SC neurons, and only a minority of LIP neurons was significantly modulated. Thus despite some overlap in their discharge properties, the neurons in the SC intermediate layers showed a greater independence from sustained visual stimulation and a tighter relationship to the production of an impending saccade than the LIP neurons supplying inputs to the SC. Rather than representing the transmission of one processing stage in parietal cortex area LIP to a subsequent processing stage in SC, the differences in neuronal activity that we observed suggest instead a progressive evolution in the neuronal processing for saccades.  相似文献   

19.
Lateralised ERP responses were measured over posterior visual brain regions in response to visual search arrays that contained one colour singleton. In the localisation task, responses were determined by the visual hemifield where this singleton was presented. In the discrimination task, they were determined by the singletons’ shape. While an N2pc component was elicited in an identical fashion in both tasks, a subsequent sustained contralateral negativity was consistently present at posterior sites in the discrimination task only. This dissociation demonstrates that these two activations reflect distinct visual processing stages. We suggest that while the N2pc reflects the ability of the visual system both to identify and localise a relevant stimulus in the scene, the late sustained activity reflects the subsequent in-depth analysis and identification of these stimuli.  相似文献   

20.
Human motion processing region MT + is retinotopically organized with perception of and attention to motion in the right visual field preferentially associated with left MT + activity and vice versa. However, the degree to which MT + is crucial for motion processing is uncertain. We report an epilepsy patient with visual symptoms early in his seizure evolution and a left temporal-occipital seizure onset electrographically in whom we hypothesized a functional left MT + lesion. The patient was impaired in his right but not left visual field on a hemifield motion attention task and demonstrated worse performance on a hemifield picture identification task when pictures implying motion were presented in the right as opposed to the left visual field. Functional MRI (fMRI) during a full-field motion detection task activated right MT + but failed to activate left MT + despite activating both left and right MT + in each of 10 controls. Furthermore, fMRI during a hemifield motion attention task also showed a lack of left MT + attention effects in the patient. Together these results suggest that MT + is necessary for normal motion processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号