首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exposure to persistent organic pollutants, including polychlorinated biphenyls (PCBs) is correlated with multiple vascular complications including endothelial cell dysfunction and atherosclerosis. PCB-induced activation of the vasculature subsequently leads to oxidative stress and induction of pro-inflammatory cytokines and adhesion proteins. Gene expression of these cytokines/proteins is known to be regulated by small, endogenous oligonucleotides known as microRNAs that interact with messenger RNA. MicroRNAs are an acknowledged component of the epigenome, but the role of environmentally-driven epigenetic changes such as toxicant-induced changes in microRNA profiles is currently understudied. The objective of this study was to determine the effects of PCB exposure on microRNA expression profile in primary human endothelial cells using the commercial PCB mixture Aroclor 1260. Samples were analyzed using Affymetrix GeneChip® miRNA 4.0 arrays for high throughput detection and selected microRNA gene expression was validated (RT-PCR). Microarray analysis identified 557 out of 6658 microRNAs that were changed with PCB exposure (p < 0.05). In-silico analysis using MetaCore database identified 21 of these microRNAs to be associated with vascular diseases. Further validation showed that Aroclor 1260 increased miR-21, miR-31, miR-126, miR-221 and miR-222 expression levels. Upregulated miR-21 has been reported in cardiac injury while miR-126 and miR-31 modulate inflammation. Our results demonstrated evidence of altered microRNA expression with PCB exposure, thus providing novel insights into mechanisms of PCB toxicity.  相似文献   

2.
In the embryo-larval stages of fish, alkylphenanthrenes such as retene (7-isopropyl-1-methylphenanthrene) produce a suite of developmental abnormalities typical of exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), including pericardial and yolk sac edema, cardiovascular dysfunction, and skeletal deformities. To investigate the mechanism and target tissue of retene toxicity, we used observational, histological, and protein knockdown techniques in zebrafish (Danio rerio) embryos. The primary overt signs of toxicity are pericardial edema and reduced blood flow, first observed at 36 h post-fertilization (hpf). The most pronounced effects at this stage are a reduced layer of cardiac jelly in the atrium and reduced diastolic filling. Conversely, an increased layer of cardiac jelly is observed at 72 hpf in retene-exposed embryos. Induction of cytochrome P4501A (CYP1A) is apparent in a subset of cardiomyocytes by 48 hpf suggesting that early cardiac effects may be due to AhR activation in the myocardium. Myocardial CYP1A induction is transient, with only endocardial induction observed at 72 hpf. Knockdown of cyp1a by morpholino oligonucleotides does not affect retene toxicity; however, ahr2 knockdown prevents toxicity. Thus, the mechanism of retene cardiotoxicity is AhR2-mediated and CYP1A-independent, similar to TCDD; however, the onset and proximate signs of retene toxicity differ from those of TCDD. Retene cardiotoxicity also differs mechanistically from the cardiac effects of non-alkylated phenanthrane, illustrating that alkyl groups can alter toxic action. These findings have implications for understanding the toxicity of complex mixtures containing alkylated and non-alkylated polycyclic aromatic hydrocarbons.  相似文献   

3.
4.
5.
MicroRNAs are short non-coding RNA molecules able to affect stability and/or translation of mRNA, thereby regulating the expression of genes involved in many biological processes. We report here that microRNAs miR-27a and miR-451 are involved in activating the expression of P-glycoprotein, the MDR1 gene product that confers cancer cell resistance to a broad range of chemotherapeutics. We showed that expressions of miR-27a and miR-451 were up-regulated in multidrug resistant (MDR) cancer cell lines A2780DX5 and KB-V1, as compared with their parental lines A2780 and KB-3-1. Treatment of A2780DX5 cells with the antagomirs of miR-27a or miR-451 decreased the expression of P-glycoprotein and MDR1 mRNA. In contrast, the mimics of miR-27a and miR-451 increased MDR1 expression in the parental cells A2780. The sensitivity to and intracellular accumulation of cytotoxic drugs that are transported by P-glycoprotein were enhanced by the treatment with the antagomirs of miR-27a or miR-451. Our results demonstrate for the first time the roles of microRNAs in the regulation of drug resistance mediated by MDR1/P-glycoprotein, and suggest the potential for targeting miR-27a and miR-451 as a therapeutic strategy for modulating MDR in cancer cells.  相似文献   

6.
Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on local circulation and apoptosis in the midbrain were investigated in zebrafish (Danio rerio) embryos during early development. Embryos were exposed to TCDD from 24 h post fertilization (hpf) until observation, in water maintained at 28.5 degrees C. TCDD decreased blood flow in the mesencephalic vein, the only vessel perfusing the dorsal midbrain of the embryo. At 50 hpf, blood flow was maximally reduced in this vessel and gradually returned to the control level at 60 hpf. In contrast, blood flows in the trunk and in other vessels of the head of the embryo did not significantly change until 72 hpf. Furthermore, TCDD exposure caused apoptosis in the midbrain at 60 hpf, and the TCDD dose response relationship for this effect was similar to that for reduced blood flow in the mesencephalic vein at 50 hpf. The effects of TCDD on apoptosis in the midbrain, but not on blood flow, were abolished by Z-VAD-FMK, a general caspase inhibitor. TCDD effects on both endpoints were mimicked by beta-naphthoflavone (BNF), an aryl hydrocarbon receptor (AHR) agonist, and almost abolished by concomitant exposure to TCDD and alpha-naphthoflavone (ANF), an AHR antagonist. Concomitant exposure to TCDD and either an inhibitor of cytochrome P450 (CYP) (SKF525A or miconazole) or an antioxidant (N-acetylcysteine or ascorbic acid) inhibited these effects of TCDD. The incidence of apoptosis in the midbrain was inversely related to blood flow in this brain region following these various treatments and graded TCDD exposure concentrations (r = -0.91). The same range of TCDD exposure concentrations that reduced blood flow and increased apoptosis in the midbrain greatly enhanced CYP1A mRNA expression and immunoreactivity at 50 hpf in endothelial cells of blood vessels including the mesencephalic vein and the heart, but not the brain parenchyma. Taken together, these results suggest that TCDD induces apoptosis in the midbrain of the zebrafish embryo secondary to local circulation failure, which could be related to AHR activation, induction of CYP1A, and oxidative stress.  相似文献   

7.
8.
Previous studies have reported that environmental lead (Pb) exposure can result in neurological alterations in children leading to reduced IQ, attention deficit hyperactivity disorder, and diminished reading and learning abilities. However, the specific alterations in neurodevelopmental morphology and the underlying genetic mechanisms of these alterations have not yet been thoroughly defined. To investigate alterations in neurologic morphology and test the hypothesis that developmental Pb neurotoxicity is partially mediated through alterations in neuronal growth and transport function of axons, the changes of specific axon tracts in the embryonic zebrafish brain were observed with anti-acetylated α-tubulin staining at several developmental time points through 36 hours post fertilization (hpf). In addition, the role of a subset of axonogenesis-related genes including shha, epha4b, netrin1b, netrin2, and noiwas investigated with real-time quantitative PCR (qPCR). Pb treatment resulted in decreased axonal density at 18, 20, and 24 hpf for specific axon tracts in the midbrain and forebrain. These observations corresponded to an observed down-regulation of shha and epha4b at 14 and 16 hpf, respectively. The axonal density in Pb exposed individuals at later stages (30 and 36 hpf) was not significantly different from controls. An overexpression of netrin2 at these two developmental stages suggests a novel role for this gene in regulating axonal density specific to Pb neurotoxicity. Although no significant differences in axonal density was observed in the two later developmental stages, further studies are needed to determine if the morphologic alterations observed at the earlier stages will have lasting functional impacts.  相似文献   

9.
10.
The purpose of this study was to examine the effects of the persistent and accumulative environmental pollutants tributyltin (TBT) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) individually and in combination on differentiating bone cells. TBT and TCDD are chemically distinct compounds with different mechanisms of toxicity, but they typically have the same sources of exposure and both have been shown to affect bone development at low exposure levels. Bone marrow stem cells were isolated from femurs and tibias of C57BL/6 J mice, differentiated in culture into osteoblasts or osteoclasts and exposed to 0.1-10 nM TBT, 0.01-1 nM TCDD or 10 nM TBT + 1 nM TCDD. In osteoblasts, the combined exposure to TBT and TCDD significantly decreased the mRNA expression of alkaline phosphatase and osteocalcin more than TBT or TCDD alone. PCR array showed different gene expression profiles for TBT and TCDD individually, and the combination evoked several additional alterations in gene expression. Expression of aryl hydrocarbon receptor repressor (AHRR) was increased by TCDD as expected, but simultaneous exposure to TBT prevented the increase thus potentially strengthening AHR-mediated effects of TCDD. The number of osteoclasts was reduced by TCDD alone and in combination with TBT, but TBT alone had no effect. However, the total area of resorbed bone was remarkably lower after combined exposure than after TBT or TCDD alone. In conclusion, very low concentrations of TBT and TCDD have synergistic deleterious effects on bone formation and additive effects on bone resorption.  相似文献   

11.
韩滨  马晓峰张超 《天津医药》2016,44(10):1251-1254
目的 探讨急性脑卒中患者外周血单个核细胞内乙酰胆碱酯酶(AChE)相关的 microRNAs 的表达变化。方法 利用 microRNAs 的预测软件并结合文献, 筛选靶向 AChE 的 microRNAs。 收集发病 24 h 以内的急性脑卒中患者和与之相匹配的对照组人群, 留取静脉血提取单个核细胞。 利用实时荧光定量 PCR(qRT-PCR) 技术检测 microRNAs 和 AChE mRNA 的表达, 利用 Western blot 技术检测 AChE 蛋白的表达。 结果 预测的靶向 AChE 的 microRNAs 包括 microRNA(miR)-24、-28、-124、-132、-182*、-194、-484。 与对照组相比, 脑卒中患者外周血单个核细胞内 miR-24、-124、-132 和-194 表达升高(P< 0.05), miR-28、-182*及-484 无明显变化, AChE mRNA 和蛋白表达水平降低(P < 0.05)。 结论 脑卒中时 miRNAs 可能通过靶向 AChE 增强胆碱能抗炎通路。  相似文献   

12.
13.
14.
Embryonic exposure to ethanol leads to malformations such as cyclopia. Cyclopic embryos present fused eyes and lack of the ventral specification of the brain, with physiological and morphological defects in the visual system, which provides a useful model for teratology and neurotoxicity assessments.We analysed the differentiation of the visual areas in the ethanol-induced cyclopic animals. For this purpose we exposed zebrafish embryos to 1.5% ethanol from 4 hours post-fertilisation (hpf) to 24 hpf in order to get cyclopic embryos. We monitored cytoarchitecture and quantified both the proliferation rate and cell differentiation from 2 days post-fertilisation (dpf) onwards, focusing on the main components of the visual system (retina, optic nerve and optic tectum) of normal and cyclopic zebrafish embryos.The visual system of the zebrafish embryos is affected by exposure to ethanol; two optic nerves that fuse before leaving the eyes are present in cyclopic specimens but an optic chiasm is not evident. Cell differentiation is severely delayed throughout the visual system at 2 dpf. At 5 dpf, lamination in the cyclopic retina and optic tectum is completed, but they are filled with pyknotic nuclei demonstrating cell death. At this stage the proliferation rate and expression patterns are unaltered and glial and neuronal neurochemical differentiations are similar to untreated animals. We found that the alterations produced by exposure to ethanol are not only cell-selective, but also tissue-selective.Cyclopia is the most severe phenotype induced by ethanol, although cell differentiation and proliferation can reach normal patterns after a certain period of time, which points to a neural plasticity process. Zebrafish embryos may possess a compensation mechanism against the ethanol effect, which would account for their use for pharmacogenetic and chemical screenings in the analysis of new molecules that could improve visual problems.  相似文献   

15.
Lead is a persistent metal and commonly present in our living environment. The present study was aimed to investigate lead-induced embryonic toxicity, behavioral responses, and adult learning/memory deficit in zebrafish. Lead acetate (PbAc) induced malformations such as uninflated swim bladder, bent spine and yolk-sac edema with an EC50 of 0.29 mg/L at 120 h post fertilization (hpf). Spontaneous movement as characterized by tail bend frequency was significantly altered in zebrafish embryos following exposure to PbAc. Behavior assessment demonstrated that lead exposure changed behavioral responses in zebrafish larvae, as hyperactivity was detected within the first minute of light-to-dark transition in the fish exposed to PbAc from 6 to 96 hpf, and a different dose-dependent change was found in swimming speeds in the dark and in the light at 120 hpf following lead exposure. Learning/memory task assay showed that embryos exposed to PbAc from 6 to 120 hpf developed learning/memory deficit at adulthood as exhibited by a significant decrease in accuracy rate to find the food and a significant increase in finding time. Overall, our results suggested that low dose of developmental lead exposure resulted in embryonic toxicity, behavioral alteration, and adult learning/memory deficit in zebrafish.  相似文献   

16.
Hydroxylated PBDEs induce developmental arrest in zebrafish   总被引:1,自引:0,他引:1  
The ubiquitous spread of polybrominated diphenyl ethers (PBDEs) has led to concerns regarding the metabolites of these congeners, in particular hydroxylated PBDEs. There are limited studies regarding the biological interactions of these chemicals, yet there is some concern they may be more toxic than their parent compounds. In this study three hydroxylated PBDEs were assessed for toxicity in embryonic zebrafish: 3-OH-BDE 47, 5-OH-BDE 47, and 6-OH-BDE 47. All three congeners induced developmental arrest in a concentration-dependent manner; however, 6-OH-BDE 47 induced adverse effects at lower concentrations than the other congeners. Furthermore, all three induced cell death; however apoptosis was not observed. In short-term exposures (24-28 hours post fertilization), all hydroxylated PBDEs generated oxidative stress in the region corresponding to the cell death at 5 and 10 ppm. To further investigate the short-term effects that may be responsible for the developmental arrest observed in this study, gene regulation was assessed for embryos exposed to 0.625 ppm 6-OH-BDE 47 from 24 to 28 hpf. Genes involved in stress response, thyroid hormone regulation, and neurodevelopment were significantly upregulated compared to controls; however, genes related to oxidative stress were either unaffected or downregulated. This study suggests that hydroxylated PBDEs disrupt development, and may induce oxidative stress and potentially disrupt the cholinergic system and thyroid hormone homeostasis.  相似文献   

17.
Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that affect embryonic development. The purpose of this study was to examine the effects of embryonic exposure to PCBs on early retinal development in zebrafish, Danio rerio. Zebrafish embryos were immediately exposed to different concentrations (0, 0.125, 0.25, 0.5, 1.0 and 2.0 mg) of PCBs per liter of medium at 28.5 °C. Embryos were assessed at 30, 48, 72 and 96 h post‐fertilization (hpf) for changes in embryonic survival rate, development, larval retinal morphology and ultrastructure of the retina. The results show that PCB exposure decreased the survival rate of embryos in a time‐ and dose‐dependent manner. Embryos exposed to the higher concentrations of PCBs (0.5, 1.0 and 2.0 mg l?1) displayed obvious gross morphological deformities. At 72 hpf, the retinal layer development of zebrafish was delayed at higher PCB concentrations (1.0 mg l?1). At 96 hpf, irregularity of photoreceptor cells arrangement and thickening of photoreceptor and ganglionic layers were observed in PCB‐treated larvae at concentrations of 0.25–1 mg l?1. Ultrastructural examination showed signs of growth inhibition of the photoreceptor outer segment at 0.25–1 mg l?1 PCB exposure at 72 hpf, as well as the appearance of massive vacuoles and holes inside the outer segments in the PCB exposure group at 96 hpf. These results suggest that embryonic exposure to moderate and high levels of PCBs induced developmental deficits in zebrafish retinas, particularly in photoreceptor cells. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The zebrafish model system is ideal for studying nervous system development. Ultimately, one would like to link the developmental biology to various aspects of behavior. We are studying the consequences of nicotine exposure on nervous system development in zebrafish and have previously shown that chronic nicotine exposure produces paralysis. We also have made observations that the embryos moved in the initial minutes of the exposure as the bend rates of the musculature increased. This nicotine induced behavior manifests as an increase in the rate of spinal musculature bends, which spontaneously begin at ∼ 17 h post fertilization. The behavioral observations prompted the systematic characterization of nicotine-induced modulation of zebrafish embryonic motor output; bends of the trunk musculature.We first characterized embryonic motor output in zebrafish embryos with and without their chorions. We then characterized the motor output in embryos raised at 28 °C and 25 °C. The act of dechorionation along with temperature influenced the embryonic bend rate. We show that nicotine exposure increases embryonic motor output. Nicotine exposure caused the musculature bends to alternate in a left-right-left fashion. Nicotine was able to produce this phenotype in embryos lacking supraspinal input. We then characterize the kinetics of nicotine influx and efflux and demonstrate that nicotine as low as 1 μM can disrupt embryonic physiology. Taken together, these results indicate the presence of nicotinic acetylcholine receptors (nAChRs) associated with a spinal motor circuit early in embryogenesis.  相似文献   

19.
A role for the aryl hydrocarbon receptor (AHR) pathway in vascular maturation has been implicated by studies in Ahr-null mice. In this study the hypothesis that activation of AHR signaling by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) alters common cardinal vein (CCV) development in the zebrafish embryo was investigated. The CCV is a paired vessel that grows across the yolk, connecting to the heart. It is extensively remodeled and regresses as the heart migrates dorsally within the pericardium. TCDD significantly reduced CCV growth as early as 44 h post fertilization (hpf), and CCV area was reduced to 63% of control at 62 hpf. This vascular response to TCDD was at least as sensitive as previously defined endpoints of TCDD developmental toxicity in zebrafish. TCDD also blocked regression of the CCV (by 80 hpf), possibly contributing to the "string-like" heart phenotype seen in TCDD-exposed zebrafish larvae. Dependence of the block in CCV regression on zebrafish (zf) AHR2 was investigated using a zfahr2 specific morpholino to knock down expression of AHR2. The zfahr2 morpholino had no effect on CCV regression in the absence of TCDD, but did protect against the TCDD-induced block of CCV regression. This demonstrates that the TCDD-induced block in CCV regression is AHR2 dependent. It is significant that decreased CCV growth occurs before and inhibition of CCV regression occurs concurrent with overt signs of TCDD developmental toxicity. This suggests that alterations of vascular growth and remodeling may play a role in TCDD developmental toxicity in zebrafish.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号