首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parathyroid hormone (PTH) inhibits renal proximal tubular phosphate (Pi) and bicarbonate reabsorption by regulating the activity of apical Na/Pi cotransport and Na/H exchange. Two renal epithelial cell lines [proximal tubular, LLC-PK1; distal tubular, Madin-Darby canine kidney, (MDCK) cells] were stably transfected with complementary deoxyribonucleic acids (cDNAs) encoding a cloned PTH receptor in order to examine the polarity of transfected receptor function and whether or not intrinsic Pi transport is regulated by the transfected PTH receptor. The receptors are functionally coupled to the stimulation of adenosine 35 cyclic monophosphate (cAMP) production at both cell surfaces in LLC-PK1 cells, whereas this response is primarily limited to the basolateral surface in MDCK cells. Immunocytochemistry suggests an apical and basolateral localization of the transfected PTH receptor in LLC-PK1 cells and only a basolateral localization in MDCK cells. PTH activation of the transfected receptors is not coupled to the regulation of intrinsic Pi transport in either LLC-PK1 or MDCK cells.  相似文献   

2.
In dissociated MDCK cells, activators of the cyclic AMP system cause depolarization detectable by changes in fluorescence of the membrane potential sensitive dye bisoxonol. Addition of forskolin (60 M), vasopressin (2 M), 8-bromo-cyclic AMP (0.5 mM) or l-epinephrine (10 M) depolarized the cells substantially in low Cl (5 mM) but had little effect in high Cl (140 mM) solution. These results are consistent with cyclic AMP activation of Cl channels. The Ca2+-ionophore ionomycin (1 M) produced a rapid hyperpolarization in low and high Cl solutions, consistent with K+ channel opening. Using a clonal subline, MDCK-14, the magnitude of the ionomycin hyperpolarization was roughly proportional to the concomitant rise in [Ca2+]i as measured with the intracellular Ca2+ probe indo-I. Both l-epinephrine and isoproterenol appeared to activate the Cl channels. However only l-epinephrine produced a [Ca2+]i rise and a transient hyperpolarization (due to K+ channel opening), which preceeded the depolarization due to Cl channel opening. The l-epinephrine-induced [Ca2+]i response of the heterogeneous MDCK cell population but not of the clonal subline MDCK-14 was inhibited by removal of extracellular Ca2+. In the latter only the slow secondary phase of the [Ca2+]i rise was affected by Ca2+ removal. It is concluded that l-epinephrine activates K+ and Cl channels in a sequential manner in MDCK cells by Ca2+ and cAMP signals, presumably via - and -adrenergic receptors located on the same cell.Abbreviations MDCK cells Madin Darby Canine Kidney cells - [Ca2+]i intracellular calcium concentration - [Cl]i intracellular chloride concentration - [Cl]o extracellular chloride concentration - [Na++K+]i intracellular concentration of Na+ and K+ - [Na++K+]o extracellular concentration of Na+ and K+ - EM transmembrane potential - ECl chloride equilibrium potential - EK potassium equilibrium potential - bis-oxonol [bis(1,3-diethylthio-barbiturate)] trimethine oxonol - DMSO dimethylsulfoxide - EDTA ethylenediaminetetraacetic acid - EGTA ethylene glycol bis (-aminoethyl ether) N,N-tetraacetic acid - Hepes 4-(2-hydroxyethyl)-1 piperazineethanesulfonic acid - NMG+ N-methylglucamine - RPMI medium Rosewell Park Memorial Institute medium  相似文献   

3.
Ca2+ channel blockers (CCB) have been shown to be protective against ischaemic damage of the kidney, suggesting an important role for intracellular Ca2+ ([Ca2+]i) in generating cell damage. To delineate the mechanism behind this protective effect, we studied [Ca2+]i in cultured proximal tubule (PT) cells during anoxia in the absence of glycolysis and the effect of methoxyverapamil (D600) and felodipine on [Ca2+]i during anoxia. A method was developed whereby [Ca2+]i in cultured PT cells could be measured continuously with a fura-2 imaging technique during anoxic periods up to 60 min. Complete absence of O2 was realised by inclusion of a mixture of oxygenases in an anoxic chamber. [Ca2+]i in PT cells started to rise after 10 min of anoxia and reached maximal levels at 30 min, which remained stable up to 60 min. The onset of this increase and the maximal levels reached varied markedly among individual cells. The mean values for normoxic and anoxic [Ca2+]i were 118±2 (n=98) and 662±22 (n=160) nM, respectively. D600 (1 M), but not felodipine (10 M), significantly reduced basal [Ca2+]i in normoxic incubations. During anoxia 1 M and 100 M D 600 significantly decreased anoxic [Ca2+]i levels by 22 and 63% respectively. Felodipine at 10 M was as effective as 1 M D600. Removal of extracellular Ca2+ and addition of 0.1 mM La3+ completely abolished anoxia-induced increases in [Ca2+]i. We conclude that anoxia induces increases in [Ca2+]i in rabbit PT cells in primary culture, which results from Ca2+ influx. Since this Ca2+ influx is partially inhibited by low doses of CCBs, Ltype Ca2+ channels may be involved.  相似文献   

4.
The temperature dependence of cardiac active Na transport is studied in voltage clamped sheep Purkinje fibres by means of simultaneous measurements of the membrane current (I) and the intracellular Na activity (a Na i ). During activation of the Na pump a transient outward current (I) anda Na i decline exponentially with an identical time constant (). The transient outward current and the decline ina Na i are blocked by 10–4 M dihydroouabain (DHO). Lowering the temperature from 42°C to 17°C prolongs . The electrogenic fraction (e.f.) of the active Na efflux remains unaffected. The Q10 value of the active Na transport derived from the changes of varies within the temperature range studied. The Q10 amounts to 1.2 between 42°C and 35°C, to 2.4 between 35°C and 22°C and to 2.1 between 35°C and 17°C. Correspondingly the activation energy of the active Na transport is not constant between 42°C and 17°C. It is calculated to be 3.4 kcal/mol between 42°C and 35°C, 15.9 kcal/mol between 35°C and 22°C and 12.4 kcal/mol between 35°C and 17°C. Variations in temperature change the maximal rate constant of the active Na transport, whereas the sensitivity of the Na pump towards the extracellular K concentration (Ko) is little affected. The unidirectional active Na efflux of a fibre as a function of the intracellular Na concentration (Nai) at 35°C and 22°C is derived from the experemental data. The relationship is linear over the narrow Nai range studied but seems to be more complex when a wider Nai range is considered.Supported by the Deutsche Forschungsgemeinschaft (SFB 114 Bionach)  相似文献   

5.
We report the use of a new pH-sensitive dualemission fluoroprobe, carboxy-seminaphthorhodafluor-1 (carboxy-SNARF-1) for ratiometric recording of intracellular pH (pHi) in small isolated cells. The method is illustrated with pHi measurement in single type-1 cells (cell diameter 10 m) isolated from the carotid body of the neonatal rat. Carboxy-SNARF-1 is loaded using bath application of the acetoxymethyl ester. When excited at 540 nm, the fluoroprobe gives strong, inversely related emission signals at 590 nm and 640 nm. Stable ratiometric recordings of pHi can be achieved from a single cell (pHi 8.5-6.5) for up to 50 min. Photobleaching of the probe is minimised by illuminating at relatively low light intensity (50 W xenon lamp with 0.2% transmission neutral density filter). The probe can be calibrated in situ using the nigericin technique and this is in good quantitative agreement with the independent null-point technique (extracellular weak acid/weak base application) of Eisner et al. (1989). This fluoroprobe offers certain advantages over the other commonly used probe for pHi 2,7-bis-(2-carboxyethyl)-5(and -6)-carboxyfluorescein (BCECF): (i) because of its two strong pH-sensitive peak emissions, SNARF displays a good signal-to-noise ratio for ratiometric recording at low light intensities; (ii) unlike BCECF, the dual emisson of SNARF requires no sequential mechanical switching of excitation filters, thus simplifying the epifluorescence set-up; (iii) because carboxy-SNARF-1 emission signals are at the yellow/red end of the visible spectrum, fluorescent drugs like amiloride, ethyl-isopropyl-amibride (EIPA), 4,4-diisothiocyanostilbene 2,2-disulphonic acid (DIDS) and cinnamate analogues do not interfere with the pHi recording, even when used at high concentrations.  相似文献   

6.
Field-potential stimulation of rat dorsal-root ganglion (DRG) neurons evoked action-potential-mediated transient increases in intracellular free calcium concentration ([Ca2+]i) as measured by indo-1-based microfluorimetry. Field-potential-evoked [Ca2+]i transients were abolished by tetrodotoxin, and their dependence on stimulus intensity exhibited an abrupt threshold. -Conotoxin GVIA (-CgTx, 100 nM) inhibited action-potential-mediated Ca2+ influx by 79%, while nitrendipine (1 M) had little effect. -Grammotoxin SIA (-GsTx, 267 nM), a peptide toxin purified from the venom of the tarantula spider, Grammostola spatulata, blocked action-potential-mediated Ca2+ influx as effectively as did -CgTx, suggesting that -GsTx blocks N-type Ca2+ channels. In contrast to block by -CgTx, the block produced by -GsTx reversed upon washout of the peptide. -GsTx (270 nM) blocked 80%, and -CgTx (1 M) blocked 64%, of whole-cell Ca2+ current (I Ca) elicited by step depolarization to 0 mV from a holding potential of –80 mV. -GsTx completely occluded inhibition of I Ca by -CgTx. However, when applied after -CgTx, -GsTx produced an additional inhibition of 27%, indicating that -GsTx also blocked a non-N-type Ca2+ channel. BayK8644 (1 M) elicited an increase in I Ca in the presence of maximally effective concentrations of -GsTx, suggesting that -GsTx does not block L-type channels. Thus, -GsTx displays a selectivity for Ca2+ channel subtypes which should prove useful for studying Ca2+ channels and Ca2+-channel-mediated processes.  相似文献   

7.
The effects of changing the intracellular concentrations of either free Mg2+ ions ([Mg2+]i) or Mg2+-bound adenosine triphosphate ([Mg · ATP]i) on Ca2+ channel currents were assessed in cultured rat cerebellar granule neurones using the whole-cell patch-clamp technique. Raising [Mg2+]i from 0.06 mM to 1.0 mM inhibited Ca2+ channel currents by approximately 50%. The action of -conotoxin GVIA (-CgTX), a selective inhibitor of N-type Ca2+ channels was also investigated. With increasing [Mg2+]i, the proportion of current irreversibly blocked by -CgTX was reduced, and was negligible (approximately 5 pA of current) in the presence of [Mg2+]i values of 0.5 mM or greater. Block of the -CgTX-sensitive current accounted for the reduction in total current by concentrations of [Mg2+]i to 0.5 mM. Raising [Mg2+]i had no effect on the rate of decay of Ca2+ currents, but did produce a negative shift in current activation, possibly due to a non-specific interaction with negative surface charge. Altering [Mg · ATP]i from 0.3 to 5.0 mM caused a twofold increase in the size of currents without affecting the proportion of current sensitive to -CgTX. [Mg2+]i was also effective in inhibiting the Ca2+ channel current following potentiation by increasing [Mg · ATP]i. These data suggest that -CgTX-sensitive current in these cells is selectively inhibited by internal Mg2+ whereas both -CgTX-sensitive and -resistant components of current are potentiated by internal Mg · ATP. The mechanism by which Mg2+ inhibits N-type channels is unclear, but may involve an open channel block.  相似文献   

8.
A complementary deoxyribonucleic acid (cDNA) corresponding to a murine renal cortical Na/phosphate-(Na/Pi-) cotransporter was isolated and its transport properties characterized by electrophysiological techniques after expression in Xenopus laevis oocytes. A Na-dependent inward movement of positive charges (short-circuit current) was observed upon superfusion with Pi (and with arsenate). Increasing the Na concentration led to a sigmoidal elevation in Pi-induced short-circuit current; the apparent Michaelis constant, K m, (around 40 mM Na) was increased by lowering the pH of the superfusate but was not influenced by altering the Pi concentration. Increasing the Pi (and arsenate) concentration led to a hyperbolic elevation in Na-dependent short-circuit current (apparent Km for Pi at 100 mM Na was around 0.1 mM; apparent Km for arsenate was around 1 mM); lowering the Na concentration decreased the apparent affinity for Pi. The Pi-induced short-circuit current was lower at more acidic pH values (at pH 6.3 it was about 50% of the value at pH 7.8); this pH dependence was similar if the Pi concentration was calculated in total, or if distinction was made between its mono- and divalent forms. Thus, the pH dependence of Na-dependent Pi transport (total Pi) may not be related primarily to a pH-dependent alteration in the availability of divalent Pi, but includes also a competitive interaction of Na with protons. The effect of Pi and Na concentration on the apparent Km values for Na or Pi, respectively, provides evidence for an ordered interaction of cosubstrate (Na first) and substrate (Pi or arsenate second).  相似文献   

9.
In hypokalaemic rats maintained on a potassium deficient diets for 10–50 days, the isolated Na-loaded and K-depleted (Na-rich) muscle fibers showed the membrane potential less than –115 mV in fresh muscles of normal rats in K+-free Krebs solution. Upon adding 5 mM K+ to the K+-free medium bathing the soleus muscles, the measured potentials of Na-rich muscles always exceeded the membrane potentials of fresh muscles in 5 mM K+. The hyperpolarization was dependent on the amount of intracellular Na+ concentration ([Na]i) accumulated during the potassium deficiency. The electrogenic Na-pump was activated by an increase of [Na]i of less than 5 mM. Further increases in [Na]i resulted in increases in membrane potential which appeared to approach a limit at [Na]i levels higher than 65 mM.  相似文献   

10.
Summary In frog atrial bundles it is possible under voltage clamp conditions to distinguish between a phasic component of mechanical response, depending on Ca++ influx, and a slow component, which does not directly depend on the presence of extracellular Ca++ (Vassort et Rougier, 1972). The present results suggest that the slow component can be abolished by substituting LiCl for NaCl. The hypothesis is advanced that a displacement of Ca++ by Na+ from some intracellular binding sites by a variation of membrane potential or [Na]i causes the slow phase of contraction.Furthermore, relaxation during the phasic component is markedly slowed when LiCl or sucrose is substituted for NaCl. This may indicate that a Na+-Ca++ exchange across the surface membrane is essential for relaxation.A Na+-Ca++ exchange (a Ca influx linked to a Na efflux in this case) may account for the contractures elicited by Na-free media.This work constitutes a part of Doctorat es Sciences No CNRS: AO 66 71. It was supported in part by contract DGRST, Paris, France.  相似文献   

11.
In the heart, the guanosine 5-triphosphate (GTP)-binding protein Gs is activated by hormone binding to -adrenergic receptors and stimulates the intracellular cyclic adenosine 3,5-monophosphate (cAMP) pathway that leads to phosphorylation of L-type Ca channels by the cAMP-dependent protein kinase A [28]. Additionally, Gs can modulate cardiac Ca channels directly in cell-free systems [57]. In order to examine the question of whether these pathways could be separated functionally and whether they act independently or synergistically on L-type Ca channels in intact cells, the whole-cell Ca current (I Ca) and the respective current density were measured in guinea-pig ventricular myocytes at 0 mV. The following results were obtained.First, typically, the I Ca density increased from 12 to 40 A/cm2 following application of 1 M isoproterenol (ISP) to myocytes bathed in solutions containing 1.8 mM CaCl2. However, 1 M ISP enhanced I Ca only from 9 to 17 A/cm2 after inhibition of the protein kinase A by dialysis of 0.5 mM Rp-cAMPS (the Rp-isomer of adenosine 3,5-monophosphorothioate) in the presence of 0.5 mM GTP. Withdrawal of GTP from the dialysate attenuated the effects of ISP on I Ca. Thus, Rpc-AMPS unmasks a GTP-dependent component of the -adrenergic stimulation of I Ca, which probably reflects the direct stimulation of Ca channels by Gs under block of cAMP-dependent phosphorylation.Second, in cells under dialysis with 100 or 200 M cAMP, bath application of 20–40 M 3-isobutyl-1-methylxanthine (IBMX) enhanced the I Ca density to about 41 A/cm2 indicating saturation of the cAMP pathway. Under this condition, 1 M ISP was without significant effect on I Ca. This result may suggests that direct Gs stimulation is rather ineffective on Ca channels after maximal cAMP-dependent phosphorylation. Alternatively, maximal stimulation of the cAMP pathway may also interfere with the activation of the Gs pathway in intact myocytes.Third, simultaneous application of 1 M ISP and 40 M IBMX enhanced I Ca up to densities of around 75 A/cm2 during cell dialysis with 100 M cAMP, an effect much stronger than that exerted by IBMX alone under similar conditions. Since it seems likely that Gs is activated more quickly, than the cAMP pathway during application of the ISP/IBMX mixture, the latter result suggests that a direct effect of Gs may act to prime L-type Ca channels for cAMP-dependent phosphorylation during -adrenergic stimulation of cardiac myocytes.  相似文献   

12.
The blocking properties of the neurotoxic peptide -conotoxin GVIA (-CgTX), on neuronal Ca channels were investigated. In line with previous reports (Feldman et at. 1987; McCleskey et al. 1987), we found that micromolar concentrations of the toxin block selectively and persistently the high-threshold Ca channels of chick sensory neurons. The block by -CgTX could be partially relieved in low [Ca2+]0 (<1 M) toxin-free solutions, allowing Na ions to flow through open high-threshold Ca channels. Ca currents through these channels, however, remained permanently blocked on returning to normal Ca2+ toxin-free solutions. Also neurons which were preincubated with -CgTX in low Ca2+ (6 mM EGTA) failed to show high-threshold Ca currents during washing with normal Ca2+. Thus, appearance of Na currents through Ca channels in CgTX-pretreated cells was neither a consequence of unbinding of the toxin from its receptor site nor due to an interaction of EGTA with bound -CgTX. Na currents in CgTX-pretreated cells could be reversibly suppressed by bath applications of verapamil or by further addition of the toxin. At variance with Ca currents, block of Na currents by -CgTX was faster and reversible (K D 0.7 M). Our data are consistent with the idea that neuronal Ca channels are in different conformational states when permeable to Ca2+ or Na+ ions and that -CgTX depresses persistently ion permeation primarity in the Ca-permeable state.  相似文献   

13.
The effects of diethylstilbestrol (DES) on steady-state intracellular calcium concentration ([Ca2+]i) and resting Ca2+ influx were examined in primary cultures of bovine lens epithelial cells using conventional fluorometric techniques (Fura-2). At low concentrations (10 M), DES usually induced relatively rapid increases in [Ca2+]i that occurred over an interval of 10–50 s and that persisted for several minutes in the continued presence of the drug. In about 10% of the cells, cyclic oscillations in [Ca2+]i were seen after adding 10 M DES. At higher concentrations (100 M), the drug induced more prolonged increases in [Ca2+]i lasting several minutes. DES did not affect Mn2+ quench determinations of resting Ca2+ influx, and neither 100 M GdCl3, which blocked resting Ca2+ influx, nor low [Ca2+]o solutions substantially diminished the influence of DES on [Ca2+]i. Pretreatment of cells with the smooth endoplasmic reticulum Ca2+ ATPase (SERCA) inhibitors cyclopiazonic acid (CPA) or thapsigargin completely abolished the effect of 10 M DES on [Ca2+]i, while the IP3 receptor blocker 2-aminoethoxydiphenyl borane (2-APB) had no effect. These results indicate that DES releases CPA-sensitive stores of intracellular Ca2+, perhaps by inhibiting SERCA-dependent Ca2+ sequestration.  相似文献   

14.
Enzymatically dispersed smooth muscle cells of the guinea-pig portal vein were studied by the patch-clamp technique. They were found to have Ca2+-dependent K+ channels with the typical properties of the BK channel, i.e. a reversal potential at the calculated equilibrium potential for K+ ions, a striking voltage dependence, and a conductance of approximately 200 pS ([K+]0 50 mM, [K+]i 150 mM, positive patch potentials). Tedisamil, a new bradycardic agent with an inhibitory action on K+ currents in heart muscle, reduced the open probability of the BK channels concentration-dependently (1–100 M) when applied at the cytosolic side of membrane inside-out patches. At 100 M [Ca2+]i, the IC50 of tedisamil was 13.8 M (¯x, n=5). Tedisamil increased the frequency of channel closures, and reduced the mean duration of openings from 8 ms to < 1 ms, while the mean duration of closures within bursts (1–2 ms) was not altered. Tedisamil did not affect long closures (> 160 ms) between bursts, either. The mean time of residence of tedisamil at the BK channel was estimated to be 1–2ms. Hence, tedisamil, in comparison to the slow blocker Ba2+ and the fast blocker tetraethylammonium, holds the position of an intermediate K+ channel blocker.Supported by the Deutsche Forschungsgemeinschaft  相似文献   

15.
In the present study we used the pH sensitive absorbance of 5(and6)-carboxy-4,5-dimethylfluorescein to investigate intracellular pH (pHi) regulation in A10 vascular smooth muscle cells: (1) The steady state pHi in A10 cells averaged 7.01±0.1 (mean±SEM,n=26) at an extracellular pH of 7.4 (28 mM HCO3/5% CO2). (2) Removal of extracellular sodium led to an intracellular acidification of 0.36±0.07 pH-units (mean±SEM,n=8). (3) pHi-Recovery after an acute intracellular acid load (by means of NH4Cl-prepulse) was reversibly blocked by 1 mM amiloride and was dependent on the presence of sodium. The velocity of pHi recovery increased with increasing sodium concentrations with an apparentK m for external sodium of about 30 mM and aV max of about 0.35 pH units/min. These findings are compatible with a Na/H exchanger being responsible for pHi recovery after an acid load. (4) Removal of extracellular chioride induced an intracellular alkalinization of 0.23±0.03 pH-units (mean±SEM,n=10). The alkalinization was dependent on the presence of extracellular bicarbonate (5) Removal of chloride during pHi recovery from an alkaline load (imposed by acetate prepulse) stopped and reversed pHi backregulation. Chloride removal had no effect in the absence of bicarbonate or in the presence of 10–4 M DIDS, suggesting that the effects were mediated by a Cl/HCO3 exchanger. In conclusion we have demonstrated evidence for a Na/H exchanger and a Cl/HCO3 exchanger in A10 vascular smooth muscle cells.Abbreviations used CDMF 5(and6)-carboxy-4,5-dimethylfluorescein - DIDS 4,4-diisothiocyanostilbene-2,2-disulfonic acid - NMDG N-methyl-d-glucamine; pHi, intracellular pH - pHo extracellular pH - Mops 3-[N-Morpholino]propanesulfonic acid - Hepes 2-[4-(2-Hydroxyethyl)-1-piperazinyl]-ethanesulfonic acid - Tris Tris(hydroxymethyl)-aminomethane - EDTA ethylenediamine-tetraacetic acid - EGTA ethyleneglycol-bis-(-amino-ethylether)N,N-tetraacetic acid  相似文献   

16.
The influence of internal Ca2+ ions has been investigated during intracellular perfusion of isolated neurones from pedal ganglia of Helix pomatia in which serotonin (5-HT) induces a cyclic-adenosine-monophosphate-(cAMP)-dependent enhancement of high-threshold Ca2+ current (I Ca). Internal free Ca2+ ([Ca2+]i) was varied between 0.01 and 10 M by addition of Ca2+-EGTA [ethylenebis(oxonitrilo)tetraacetate] buffer. Elevation of [Ca2+]i depressed the 5-HT effect. The dose/ effect curve for the Ca2+ blockade had a biphasic character and could be described by the sum of two Langmuir's isotherms for tetramolecular binding with dissociation constants K d1=0.063 M and K d2=1 M. Addition of calmodulin (CM) antagonists (50 M trifluoperazine or 50 M chlorpromazine), phosphodiesterase (PDE) antagonists [100 M isobutylmethylxanthine (IBMX) or 5 mM theophylline] and protein phosphatase antagonists [2 M okadaic acid (OA)] in the perfusion solution caused anticalcium action and modified the Ca2+ binding isotherm. Using the effect of OA and IBMX, two components of the total Ca2+ inhibition were separated and evaluated. In the presence of one of these blockers tetramolecular curves with K d1=0.04 M and K d2=0.69 M were obtained describing the activation of the retained unblocked enzyme — PDE or calcineurin (CN) correspondingly. The sum of these isotherms gave a biphasic curve similar to that in control. Leupeptin (100 M), a blocker of Ca2+-dependent proteases did not influence the amplitude of 5-HT effect, indicating that channel proteolysis is not involved in the depression. Our findings show that the molecular mechanism of Ca2+-induced suppression of the cAMP-dependent upregulation of Ca2+ channels is due to involvement of two Ca2+-CM-dependent enzymes: PDE reducing the cAMP level, and CN causing channel dephosphorylation. No other processes are involved in the investigated phenomenon at a Ca2+ concentration of less than or equal to 10 M.  相似文献   

17.
Intracellular free Ca2+ concentrations ([Ca2+]i) were measured in subclones of NL308 neuroblastoma x fibroblast hybrid cells expressing each of the individual muscarinic acetylcholine receptor (mAChR) subtypes m1, m2, m3 and m4. Application of 100 M acetylcholine (ACh) increased [Ca2+]i in all four subclones. The increased [Ca2+]i levels were significantly higher in m1- and m3-transformed cells than those in m2- and m4-transformed cells. In more than 95% of m2- and m4-transformed cells, [Ca2+]i showed sinusoidal oscillations. ACh-induced increases in [Ca2+]i were not observed in cells treated with an intracellular Ca2+ chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N,N'-tetraacetic acid (BAPTA). Removal of extracellular Ca2+ with ethyleneglycol-bis-(-aminoethyl)-N,N,N,N'-tetraacetate (EGTA) did not affect the initial [Ca2+]i increases, but reduced the late phases of [Ca2+]i in m1- and m3-transformed cells by 20–30%. Oscillations in m2- and m4-transformed cells persisted in EGTA solution (though sometimes slowed in frequency), suggesting that they were of intracellular origin. ACh-induced [Ca2+]i and inositol 1,4,5-trisphosphate formation was completely suppressed by pre-treatment with 50–100 ng ml–1 Pertussis toxin (PTX) for 12 h in m2- and m4-transformed cells, but not in m1 and m3-transformed cells. In all cells, extracellular application of caffeine and ryanodine, or intracellular application of cyclic adenosine diphosphate ribose (cADPR) produced a rise in [Ca2+]i. ACh-induced [Ca2+]i oscillations were not observed in ryanodine-treated m2-transformed cells. These results show that, while all four mAChRs utilize Ca2+ as a common second messenger, m2 and m4 receptors use a different signalling pathway to that used by m1 and m3 receptors.  相似文献   

18.
The mechanism of regulation of intracellular pH (pHi) in dispersed acini from the rat mandibular salivary gland has been studied with a microfluorimetric imaging method and the pH probe 2,7-bis(2-carboxyethyl)-5(and –6)-carboxyfluorescein. The pHi in the TRIS/HEPES-buffered standard solution was 7.29±0.01. Addition of 1 mol/l acetylcholine (ACh) or ionomycin caused a sustained increase in the pHi. These agents decreased pHi in the absence of external Na+ or in the presence of amiloride. The rate of pHi recovery from an acid load after NH 4 + prepulse was a linear function of pHi and increased as pHi became more acidic. Addition of ACh shifted the relationship towards a more alkaline pHi range. The increase in pHi induced by ACh or ionomycin was not inhibited by the protein kinase C inhibitors staurosporine (10 nM) and 1-(5-isoquinolinesulfonyl)-1-methylpiperazine (50 mol/l). Addition of 0.1–1 mol/l phorbol 12-myristate 13-acetate (TPA) had little effect on pHi within 10 min; however, exposure to TPA for 120 min resulted in a significant rise in pHi. In Ca2+-free solution with 50 mol/l 8-(diethylamino)-octyl-3,4,5-trimethoxybenzoate, the ACh-induced rise in both pHi and cytosolic Ca2+ concentration was suppressed. ACh and ionomycin caused an increment of amiloride-sensitive acid output into the extracellular fluid, while 20 mol/l 1-oleoyl-2-acetylglycerol had little effect on it. It was concluded that (a) stimulation with ACh activated the Na+/H+ antiport in the plasma membrane, (b) ACh also stimulated the intracellular acid production but acid extrusion by the Na+/H+ antiport prevented the cell from intracellular acidification, and (c) the major route of signal transduction for the ACh-induced activation of the Na+/H+ antiport was independent of protein kinase C but was dependent on the rise in cytosolic Ca2+ concentration. The implication of the cytosolic acidification and cell volume change in pHi regulation is discussed.  相似文献   

19.
ATP and adenosine(5)tetraphospho(5)adenosine (Ap4A), released from adrenal chromaffin cells, are potent stimulators of endothelial cell function. Using single-cell fura-2 fluorescence recording techniques to measure free cytosolic Ca2+ concentration ([Ca2+]i), we have investigated the role of purinoceptor subtypes in the activation of cocultured chromaffin and endothelial cells. ATP evoked concentration-dependent [Ca2+]i rises (EC50=3.8 M) in a subpopulation of chromaffin cells. Both ATP-sensitive and -insensitive cells were potently activated by nicotine, bradykinin and muscarine. Reducing extracellular free Ca2+ concentration to around 100 nM suppressed the [Ca2+]i transient evoked by ATP but not the [Ca2+]i response to bradykinin. ATP-sensitive chromaffin cells were also potently stimulated by 2-methylthioadenosine triphosphate (2MeSATP; EC50= 12.5 M) and UTP, but did not respond to either adenosine 5-[-thio]diphosphate (ADP[S]), a P2Y receptor agonist, adenosine 5-[,-methylene]triphosphate (pp[CH2]pA), a P2X agonist or AMP. Adrenal endothelial cells displayed concentration-dependent [Ca2+]i responses when stimulated with ATP (EC50=0.86 M), UTP (EC50=1.6 M) and 2MeSATP (EC50= 0.38 M). 2MeSATP behaved as a partial agonist. Ap4A and ADP[S] also raised the [Ca2+]i in endothelial cells, whereas AMP and pp[CH2]pA were ineffective. Lowering extracellular free Ca2+ to around 100 nM did not affect the peak ATP-evoked [Ca2+]i rise in these cells. It is concluded that different purinoceptor subtypes are heterogeneously distributed among the major cell types of the adrenal medulla. An intracellular Ca2+-releasing P2U-type purinoceptor is specifically localized to adrenal endothelial cells, while a subpopulation of chromaffin cells expresses a non-P2X, non-P2Y subtype exclusively coupled to Ca2+ influx.  相似文献   

20.
We studied the effect of isoproterenol on the Ca2+-activated K+(BK) channel in smooth muscle cells isolated from the basilar artery of the guinea pig. Cells were studied in a whole-cell configuration to allow the clamping of intracellular Ca2+ concentration, [Ca2+]i. Macroscopic BK channel currents were recorded during depolarizing test pulses from a holding potential (V H) of 0 mV, which was used to inactivate the outward rectifier. The outward macroscopic current available from aV H of 0 mV was highly sensitive to block by external tetraethylammonium·Cl (TEA) and charybdotoxin, and was greatly augmented by increasing [Ca2+]i from 0.01 to 1.0 M. With [Ca2+]i between 0.1 and 1.0 M, 0.4 M isoproterenol increased this current by 58.6±17.1%, whereas with [Ca2+]i at 0.01 M a sixfold smaller increase was observed. With [Ca2+]i0.1 M, 100 M dibutyryl-adenosine 3:5: cyclic monophosphate (cAMP) and 1 M forskolin increased this current by 58.5±24.1% and 59.7±10.3%, respectively. The increase with isoproterenol was blocked by 4.0 M propranolol extracellularly, and by 10 U/ml protein kinase inhibitor intracellularly. Single-channel openings during depolarizing test pulses from aV H of 0 mV recorded in the whole-cell configuration under the same conditions (outside-outwhole-cell recording) indicated a slope conductance of 260 pS. In conventional outside-out patches, this 260-pS channel was highly sensitive to block by external TEA, and in inside-out patches, its probability of opening was greatly augmented by increasing [Ca2+]i from 0.01 to 1.0 M. Outside-out-whole-cell recordings with [Ca2+]i0.1 M indicated that 100 M dibutyryl-cAMP increased the probability of opening of the 260-pS channel by 152±115%. In inside-out patches, the catalytic subunit of protein kinase A increased the probability of opening, and this effect also depended on [Ca2+]i, with a 35-fold larger effect observed with 0.1–0.5 M Ca2+ compared to 0.01 M Ca2+. We conclude that the BK channel in cerebrovascular smooth muscle cells can be activated by-adrenoceptor stimulation, that the effect depends strongly on [Ca2+]i, and that the effect is mediated by cAMP-dependent protein kinase A with no important contribution from a direct G-protein or phosphorylation-independent mechanism. Our data indicate that the BK channel may participate in-adrenoceptor-mediated relaxation of cerebral vessels, although the importance of this pathway in obtaining vasorelaxation remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号