首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insulin and leptin are hypothesized to be 'adiposity signals' for the long-term regulation of body weight by the brain. Accordingly, a change in the plasma levels of leptin or insulin indicates a state of altered energy homeostasis and adiposity, and the brain responds by adjusting food intake to restore adipose tissue mass to a regulated level. The candidate site for the brain's detection of leptin adiposity signaling is the hypothalamic arcuate nucleus, where leptin inhibits expression neuropeptide Y and increases expression of the pro-opiomelanocortin (POMC) precursor of alphaMSH. Insulin also inhibits arcuate nucleus expression of neuropeptide Y but its effects on other hypothalamic signaling systems are not known. Leptin-responsive neurons in the arcuate nucleus are hypothesized to project to the paraventricular nucleus and lateral hypothalamic area where they are proposed to influence the expression of peptides that regulate food intake. Future development of this model will incorporate brain pathways for integration of leptin and insulin adiposity signaling to the hypothalamus with meal-related signals that act in the caudal brainstem. Recent research showing that leptin and insulin enhance the satiety action of peripheral CCK, thereby causing meals to be terminated earlier and reducing cumulative food intake, suggests that hypothalamic pathways that are sensitive to leptin and insulin adiposity signals have anatomical connections with caudal brainstem neurons that respond to meal-related signals and regulate meal size. The recent findings that insulin alters the expression and function of neural transporters for dopamine and norepinephrine indicate that adiposity signals may influence food intake by acting on non-peptide neurotransmitter systems.  相似文献   

2.
Leptin regulation of neuroendocrine systems   总被引:31,自引:0,他引:31  
  相似文献   

3.
Recent studies have identified several neuropeptide systems in the hypothalamus that are critical in the regulation of body weight. The lateral hypothalamic area (LHA) has long been considered essential in regulating food intake and body weight. Two neuropeptides, melanin-concentrating hormone (MCH) and the orexins (ORX), are localized in the LHA and provide diffuse innervation of the neuraxis, including monosynaptic projections to the cerebral cortex and autonomic preganglionic neurons. Therefore, MCH and ORX neurons may regulate both cognitive and autonomic aspects of food intake and body weight regulation. The arcuate nucleus also is critical in the regulation of body weight, because it contains neurons that express leptin receptors, neuropeptide Y (NPY), α-melanin-stimulating hormone (α-MSH), and agouti-related peptide (AgRP). In this study, we examined the relationships of these peptidergic systems by using dual-label immunohistochemistry or in situ hybridization in rat, mouse, and human brains. In the normal rat, mouse, and human brain, ORX and MCH neurons make up segregated populations. In addition, we found that AgRP- and NPY-immunoreactive neurons are present in the medial division of the human arcuate nucleus, whereas α-MSH-immunoreactive neurons are found in the lateral arcuate nucleus. In humans, AgRP projections were widespread in the hypothalamus, but they were especially dense in the paraventricular nucleus and the perifornical area. Moreover, in both rat and human, MCH and ORX neurons receive innervation from NPY-, AgRP-, and α-MSH-immunoreactive fibers. Projections from populations of leptin-responsive neurons in the mediobasal hypothalamus to MCH and ORX cells in the LHA may link peripheral metabolic cues with the cortical mantle and may play a critical role in the regulation of feeding behavior and body weight. J. Comp. Neurol. 402:442–459, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
The adipocyte-derived hormone leptin and the pancreatic beta cell-derived hormone insulin each function as afferent signals to the hypothalamus in an endocrine feedback loop that regulates body adiposity. Although these two hormones, and the receptors on which they act, are unrelated and structurally distinct, they exert overlapping effects in the arcuate nucleus, a key hypothalamic area involved in energy homeostasis. Defects in either insulin or leptin signaling in the brain result in hyperphagia, disordered glucose homeostasis, and reproductive dysfunction. To explain this striking physiological overlap, we hypothesize that hypothalamic insulin and leptin signaling converge upon a single intracellular signal transduction pathway, known as the insulin-receptor-substrate phosphatidylinositol 3-kinase pathway. Here we synthesize data from a variety of model systems in which such "cross-talk" between insulin and leptin signal transduction has either been observed or can be inferred, discuss our own data demonstrating that insulin and leptin both activate hypothalamic phosphatidylinositol 3-kinase signaling, and discuss the significance of such convergence with respect to neuronal function in normal individuals and in pathological states such as obesity. Identification of the key early molecular events mediating the action of both insulin and leptin in hypothalamic neurons promises new insight into the regulation of these neurons in health and disease.  相似文献   

5.
Lactation is a physiological model for studying how the hypothalamus integrates peripheral signals, such as sensory signals (suckling stimulus) and those denoting energy balance (leptin), to alter hypothalamic function regulating food intake/energy balance and reproduction. The characteristics of food intake/energy balance during lactation are extreme hyperphagia, coupled with negative energy balance. The arcuate nucleus Neuropeptide Y (ARH-NPY) system is activated by: (1) brainstem projections specifically activated by the suckling stimulus, and (2) the decrease in leptin in response to the metabolic drain of milk production. NPY neurons from the ARH make direct contact with GnRH neurons and with CRH neurons in the PVH. NPY neurons also make contact with orexin and MCH neurons in the LHA, which, in turn, make contacts with GnRH neurons. Thus, the ARH-NPY system provides a neuroanatomical framework by which to integrate changes in food intake/energy with the regulation of cyclic reproductive function.  相似文献   

6.
Galanin-like peptide (GALP) is a hypothalamic neuropeptide that binds and activates galanin receptors in vitro. Following the discovery of GALP, researchers have attempted to properly place it in the context of galanin receptor physiology. Central injections of GALP have revealed some common actions with galanin, such as acutely increased food intake and suppression of the thyroid axis. Other actions are unique to GALP, such as long-term inhibition of food intake and stimulation of luteinizing hormone (LH) secretion in male rats. GALP and galanin also produce differential effects on expression of the immediate early gene product Fos in the brain. Determining which of these actions are dependent on galanin receptors (versus a putative GALP-specific receptor), as well as which actions represent the authentic physiology of endogenous GALP will require continued experimentation. GALP gene expression is positively regulated by several hormones involved in the control of energy balance and metabolism, namely leptin, insulin and thyroid hormone. Based on current evidence, GALP neurones may serve as a hypothalamic relay, transmitting information from the periphery to circuits within the brain involved in the physiological control of metabolism and reproduction.  相似文献   

7.
8.
PYY transgenic mice are protected against diet-induced and genetic obesity   总被引:3,自引:0,他引:3  
The gut-derived hormone, peptide YY (PYY) reduces food intake and enhances satiety in both humans and animals. Obese individuals also have a deficiency in circulating peptide YY, although whether this is a cause or a consequence of obesity is unclear. Our aims were to determine whether peptide YY (PYY) over-expression may have therapeutic effects for the treatment of obesity by altering energy balance and glucose homeostasis. We generated PYY transgenic mice and measured body weight, food intake, temperature, adiposity, glucose tolerance, circulating hormone and lipid concentrations and hypothalamic neuropeptide levels (neuropeptide Y; proopiomelanocortin, and thyrotropin-releasing hormone) under chow and high-fat feeding and after crossing these mice onto the genetically obese leptin-deficient ob/ob mouse background. PYY transgenic mice were protected against diet-induced obesity in association with increased body temperature (indicative of increased thermogenesis) and sustained expression of thyrotropin-releasing hormone in the paraventricular nucleus of the hypothalamus. Moreover, PYY transgenic mice crossed onto the genetically obese ob/ob background had significantly decreased weight gain and adiposity, reduced serum triglyceride levels and improved glucose tolerance compared to ob/ob controls. There was no effect of PYY transgenic over expression on basal or fasting-induced food intake measured at 11-12 weeks of age. Together, these findings suggest that long-term administration of PYY, PYY-like compounds or agents that stimulate PYY synthesis in vivo can reduce excess adiposity and improve glucose tolerance, possibly via effects on the hypothalamo-pituitary-thyroid axis and thermogenesis.  相似文献   

9.
The hypocretins are two neuropeptides of related sequence that are produced from a common precursor whose expression is restricted to 1, 100 large neurons of the rat dorsal-lateral hypothalamus. The hypocretins have been detected immunohistochemically in secretory vesicles at synapses of fibers that project to areas within the posterior hypothalamus that are implicated in feeding behaviors and hormone secretion and diverse targets in other brain regions and in the spinal cord, including several areas implicated in cardiovascular function and sleep-wake regulation. The hypocretin-producing cells have receptors for leptin and receive input from arcuate neuropeptide Y neurons. The peptides are excitatory when applied to cultured hypothalamic, cortical, or spinal cord neurons. Two G protein-coupled receptors for the hypocretins have been identified, and these have different distributions within the CNS and differential affinities for the two hypocretins. Administration of the hypocretins stimulates food intake; affects blood pressure, hormone secretion, and locomotor activity; and increases wakefulness while suppressing REM sleep. The hypocretin mRNA accumulates during food deprivation. An inactivating insertion into the hypocretin receptor 2 gene in dogs results in narcolepsy. Mice whose hypocretin gene has been inactivated exhibit a narcolepsy-like phenotype. Human patients with narcolepsy have greatly reduced levels of hypocretin peptides in their cerebral spinal fluid. One aspect of hypocretin activity is the direct excitation of noradrenergic neurons in the locus coeruleus to prevent entry into REM sleep. These peptides appear to be part of a complex circuit that integrates aspects of energy metabolism, cardiovascular function, hormone homeostasis, and sleep-wake behaviors.  相似文献   

10.
The link between the state of energy balance and reproductive function is well known. Thus, signals denoting negative energy balance and the accompanying hyperphagic drive are likely to be factors in the suppression of gonadotropin releasing hormone (GnRH) activity. We have previously found that appetite-regulating systems, such as neuropeptide Y (NPY) in the arcuate nucleus (ARH) and orexin in the lateral hypothalamic area (LHA), send fiber projections that come in close apposition with GnRH neurons. Furthermore, the appropriate receptors, NPY Y5 and OR-1, respectively, are coexpressed on GnRH neurons, providing neuroanatomical evidence for a direct link between the NPY and orexin systems and GnRH neurons. Therefore, these orexigenic neuropeptide systems are potential candidates that convey information about energy balance to GnRH neurons. The current studies focused on melanin concentrating hormone (MCH), another orexigenic neuropeptide system located in the LHA that is sensitive to energy balance. The results showed that MCH fiber projections came in close apposition with approximately 85-90% of GnRH cell bodies throughout the preoptic area and anterior hypothalamic area in the rat. In addition, the MCH receptor (MCHR1) was coexpressed on about 50-55% of GnRH neurons. These findings present evidence for a possible direct neuroanatomical pathway by which MCH may play a role in the regulation of GnRH neuronal function. Thus, MCH is another potential signal that may serve to integrate energy balance and reproductive function.  相似文献   

11.
12.
Multiple neural systems controlling food intake and body weight   总被引:2,自引:0,他引:2  
Discovery of the leptin receptor and its downstream peptidergic pathways has reconfirmed the crucial role of the hypothalamus in the regulation of food intake and energy balance. Strategically located in the midst of the mammalian neuraxis, the hypothalamus receives at least three distinct types of relevant information via direct or indirect neural connections as well as hormone receptors and substrate sensors bestowed on hypothalamic neurons. First, the medial and to a lesser extent the lateral hypothalamus receive a rich mix of information pertaining to the internal state of relative energy repletion/depletion. Second, specific hypothalamic nuclei receive information about the behavioral state, such as diurnal clock, physical activity-level, reproductive cycle, developmental stage, as well as imminent (e.g. fight and flight) and chronic (e.g. infection) stressors, that can potentially impact on short-term availability of fuels and long-term energy balance. Third, the hypothalamus, particularly its lateral aspects, receives information from areas in the forebrain involved in the acquisition, storage, and retrieval of sensory representations of the external food space and internal food experience, as well as from the executive forebrain involved in behavior selection and initiation. In addition, rich intrahypothalamic connections facilitate further distribution of incoming information to various hypothalamic nuclei. On the other hand, the hypothalamus has widespread neural projections to the same cortical areas it receives inputs, and many hypothalamic neurons are one synapse away from most endocrine systems and from both sympathetic and parasympathetic effector organs involved in the flux, storage, mobilization, and utilization of fuels. It is argued that processing within cortico-limbic areas and communication with hypothalamic areas are particularly important in human food intake control that is more and more guided by cognitive rather than metabolic aspects in the obesigenic environment of affluent societies. A distributed neural network for the control of food intake and energy balance consisting of a central processor and several parallel processing loops is hypothesized. Detailed neurochemical, anatomical, and functional analysis of reciprocal connections of the numerous peptidergic neuron populations in the hypothalamus with extrahypothalamic brain areas will be necessary to better understand what hypothalamus, forebrain, and brainstem tell each other and who is in charge under specific conditions of internal and external nutrient availability.  相似文献   

13.
The hypothalamic melanocortin system regulates feeding in part through interaction of the appetite stimulating peptide, agouti-related protein (AGRP), and the anorectic peptide, alpha-melanocyte stimulating hormone, a peptide derived from the pro-opiomelanocortin (POMC) polyprotein. Central administration of AGRP induces hyperphagia and increased gain in body weight in rodents, but may also exert metabolic effects even when hyperphagia is prevented. In the present studies, the effects of AGRP on hypothalamic neuropeptide gene expression and metabolism were examined in the rat. Central administration of AGRP for 3- and 7-day periods resulted in hyperphagia, increased body weight and increased plasma leptin and insulin concentrations compared to saline-injected controls. Hypothalamic concentrations of Pomc mRNA were also increased by 27% and 44% (in 3- and 7-day experiments, respectively). The hypothalamic concentration of Agrp mRNA was unchanged after 3 days, but was significantly decreased by 33% after 7 days of AGRP infusion. To determine if these changes were dependent upon AGRP-induced hyperphagia, pair-fed rats with restricted food intake receiving central administration of AGRP were also studied. In the absence of hyperphagia, intracerebralventricular administration of AGRP caused significant increases in plasma leptin and insulin concentrations (two-fold and 1.5-fold, respectively) and fat pad mass. A significant increase in hypothalamic Pomc mRNA concentrations was not detected in pair-fed rats. In contrast, Agrp mRNA concentrations remained suppressed by 45% in the pair-fed group after 7 days of AGRP infusion despite equal body weight compared to saline controls. The ratio of hypothalamic Pomc to Agrp mRNA was elevated two-fold in ad libitum and pair-fed AGRP-injected rats, which is consistent with increased stimulation of central melanocortin signalling pathways. Thus, central administration of AGRP exerts changes in hypothalamic neuropeptide gene expression and metabolic effects that are independent of the effects on food intake and body weight.  相似文献   

14.
15.
16.
Glucocorticoid deficiency is associated with a decrease of food intake. Orexigenic peptides, neuropeptide Y (NPY) and agouti related protein (AgRP), and the anorexigenic peptide proopiomelanocortin (POMC), expressed in the arcuate nucleus of the hypothalamus (ARC), are regulated by meal-induced signals. Orexigenic neuropeptides, melanin-concentrating hormone (MCH) and orexin, expressed in the lateral hypothalamic area (LHA), also control food intake. Thus, the present study was designed to test the hypothesis that glucocorticoids are required for changes in the expression of hypothalamic neuropeptides induced by feeding. Male Wistar rats (230-280 g) were subjected to ADX or sham surgery. ADX animals received 0.9% NaCl in the drinking water, and half of them received corticosterone in the drinking water (B: 25 mg/L, ADX+B). Six days after surgery, animals were fasted for 16 h and they were decapitated before or 2 h after refeeding for brain tissue and blood collections. Adrenalectomy decreased NPY/AgRP and POMC expression in the ARC in fasted and refed animals, respectively. Refeeding decreased NPY/AgRP and increased POMC mRNA expression in the ARC of sham and ADX+B groups, with no effects in ADX animals. The expression of MCH and orexin mRNA expression in the LHA was increased in ADX and ADX+B groups in fasted condition, however there was no effect of refeeding on the expression of MCH and orexin in the LHA in the three experimental groups. Refeeding increased plasma leptin and insulin levels in sham and ADX+B animals, with no changes in leptin concentrations in ADX group, and insulin response to feeding was lower in this group. Taken together, these data demonstrated that circulating glucocorticoids are required for meal-induced changes in NPY, AgRP and POMC mRNA expression in the ARC. The lower leptin and insulin responses to feeding may contribute to the altered hypothalamic neuropeptide expression after adrenalectomy.  相似文献   

17.
Microinjection of colchicine (COL), a neurotoxin that blocks axoplasmic flow in the neurons, bilaterally into the ventromedial nucleus (VMN) evokes transient hyperphagia and body weight gain. These shifts in energy balance occurred in conjunction with development of increased sensitivity to neuropeptide Y (NPY), the endogenous orexigenic signal. In order to trace the aetiology of NPY supersensitivity, we have evaluated (1) NPY Y1 and Y5 receptor (R) gene expression in the hypothalamus and (2) the possibility of alterations in the inhibitory action of leptin, a hormone produced by lipocytes. Adult male rats were rendered hyperphagic with bilateral microinjections of COL (4 μg/side) into the VMN. We observed that hypothalamic NPY Y1 mRNA levels, as measured by RNAase protection assay, were significantly increased on day 2 and returned to the control level on day 4 in COL-injected rats. The effects on NPY Y5R mRNA were not as clear cut. Interestingly, serum leptin levels increased in association with the hyperphagia and body weight gain, thereby raising the likelihood of development of resistance to the suppressive effect of endogenous leptin on food intake. Indeed, intracerebroventricular injection of 7 μg human recombinant leptin, a dose that attenuated daily food intake in normal and fasted rats, was completely ineffective in attenuating hyperphagia in COL-treated rats. These results show that transient hyperphagia induced by interruption of signalling in the VMN may be caused by increased sensitivity to NPY, which may be caused, in part, by increased expression of NPY Y1R in hypothalamic sites involved in regulation of ingestive behaviour. Additionally, the observation of increased leptin release and concurrent development of leptin resistance suggest that a normally functioning VMN may be necessary for the central inhibitory effects of leptin on food intake.  相似文献   

18.
Cholecystokinin (CCK) is a gastrointestinal satiety signal released from the duodenum to terminate feeding, via CCK1 receptors. CCK2 receptors are considered to be involved in anxiety. CCK2 receptor knockout mice have increased body weight and food intake. Little is known regarding the effects of CCK2 receptor deficiency on adipose distribution and hypothalamic feeding regulators such as neuropeptide Y (NPY), a powerful stimulator of feeding. Adult (10 week) CCK2 receptor knockout and wild-type mice were anaesthetized and killed by decapitation. Brain sections, organs and fat tissue were dissected. Plasma leptin, insulin and brain NPY content were measured by radioimmunoassay. Female CCK2 receptor knockout mice weighed more than control mice (22.0 +/- 0.2 vs. 19.9 +/- 0.4 g, P < 0.05), with this difference being less marked in male mice (26.4 +/- 0.4 vs. 25.6 +/- 0.6 g). Fat masses in all locations sampled were significantly smaller in CCK2 receptor knockout mice of both genders (P < 0.05), resulting in lower plasma leptin and insulin levels. NPY concentrations were significantly increased in arcuate nucleus and anterior hypothalamus in both male and female CCK2 receptor knockout mice, and total hypothalamic NPY content was increased by 7 and 9% in males and females, respectively (P < 0.05). CCK2 receptor deletion was associated with increased body weight and hypothalamic NPY content, but reduced fat masses and plasma leptin and insulin. Increased NPY might contribute to increased food intake in CCK2 receptor knockout mice. Further work needs to focus on the metabolic changes.  相似文献   

19.
Leptin, a hormone secreted from the adipose tissue, is involved in the regulation of food intake and neuroendocrine function, by modulation of the expression and/or function of various neuropeptides in the hypothalamus. The long isoform (OB-Rb) is the major signaling form of the leptin receptor in the hypothalamus. We have used double-labeling immunohistochemistry to examine the extent of OB-Rb expression in neurochemically defined cell types in the ovine hypothalamus. OB-Rb-like immunoreactivity was widespread within cells localized to the periventricular, paraventricular, supraoptic, dorsomedial hypothalamic, ventromedial hypothalamic and arcuate nuclei, as well as the median eminence, perifornical, anterior hypothalamic and lateral hypothalamic areas and the zona incerta. Double-labeling showed expression of OB-Rb in 59.6±6.0% neuropeptide Y-containing cells, 60.8±4.7% galanin-containing cells, 89.8±2.65% pro-opiomelanocortin-containing cells, 73.4±3.5% tyrosine hydroxylase-containing cells and 31.8±2.8% corticotropin-releasing factor-containing cells. Interestingly 100% of melanin-concentrating hormone and orexin positive cells were also OB-Rb immunoreactive. These data provide semi-quantitative information on the extent to which various cell types express OB-Rb in the hypothalamus. Expression of OB-Rb within specific neuropeptidergic neurons provides evidence for the direct action of leptin upon the various neurochemical systems that regulate food intake, neuroendocrine and autonomic function in the brain.  相似文献   

20.
The orexins (or hypocretins) are neuropeptide transmitters made exclusively in hypothalamic neurons that have extensive CNS projections. Previous studies reported that this system is most strongly associated with feeding, arousal and the maintenance of waking. We review here recent studies that reveal a novel and important role for the orexin/hypocretin neuronal system in reward processing and addiction. We propose that the current evidence indicates a dichotomy in orexin function, such that orexin neurons in the lateral hypothalamus regulate reward processing for both food and abused drugs, whereas those in the perifornical and dorsomedial hypothalamus regulate arousal and response to stress. Evidence also indicates roles for lateral hypothalamus orexin neurons and ventral tegmental orexin receptors in reward-based learning and memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号