首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Platelets aggregation and thrombosis formation are major reasons of cardiovascular and cerebral vascular diseases.To develop new generative,potent and safe agents for inhibiting platelet aggregation and preventing above diseases are urgently required.Some traditional Chinese medicines of″Houxue Huayu″have been shown to inhibit platelet aggregation potently.In the present study the mechanisms and the molecular targets of puerarin,salvianolic acid B and the analogue of 3-n-butylphthalide,dl-PHPB were investigated and compared with ticlopidine.Four platelet aggregation inducers,ADP,arachidonic acid,collagen and thrombin were used in the study.It was found that puerarin and dl-PHPB specifically inhibited ADP induced platelet aggregation like ticlopidine did.However,salvianolic acid B inhibited both ADP and collagen induced platelet aggregations with similar potency.Due to existing two ADP receptor subtypes on platelets,P2Y1 and P2Y12,we studied the action of above compounds on the receptors and the signaling pathways.It was found that dl-PHPB decreased IP1 accumulation produced by ADP,but had no effect on IP1 level induced by m-3M3 FBS,an activator of PLC.M-3M3 FBS might attenuate the inhibitory effect of dl-PHPB on ADP-induced platelet aggregation.In addition,dl-PHPB did not affect cyclic AMP formation in platelets by ADP,which is different from P2Y12 antagonist ticlopidine.Puerarin showed the similar effects of dl-PHPB.Therefore,the actions of dl-PHPB and puerarin might be through P2Y1receptor-PLC-βpathway.Salvianolic acid B did not reduce the IP1 accumulation stimulated by ADP.It might act on the receptor subtype P2Y12.Our results suggest that components of Chinese herb medicine might be a resource for development of novel anti-platelet drugs.  相似文献   

2.
Platelets possess two receptors for ADP, P2Y(1) and P2Y(12). ADP is released from platelet dense granules upon platelet activation by numerous agonists and thereby amplifies platelet responses regardless of the initial stimulus. The P2Y(1) receptor is one of many platelet receptors coupled to Gq and initiates ADP-induced activation. The P2Y(12) receptor on the other hand is linked to Gi and plays a special role in the amplification of platelet activation initiated by numerous other pathways. Platelet activation leads to a range of responses that play a critical role in arterial thrombosis and the inflammatory responses associated with this, including platelet aggregation, dense and alpha granule secretion and procoagulant activity. P2Y(12) receptor activation yields powerful amplification of these processes such that P2Y(12) receptor antagonists may have dramatic inhibitory effects on platelet function regardless of the activating stimuli. This phenomenon, coupled with the restricted distribution of the P2Y(12) receptor in humans, makes the receptor an ideal target for pharmaceutical therapy. This has already been established by the therapeutic success of clopidogrel, which acts, via an active metabolite, on this receptor. However, current therapeutic regimens of clopidogrel yield variable and incomplete P2Y(12) receptor blockade and more effective strategies to block P2Y(12) receptor activation offer the potential of greater clinical efficacy.  相似文献   

3.
Plasmin-induced platelet aggregation has been considered to be a cause of reocclusion after thrombolytic treatment with plasminogen activators. However, little is known regarding the mechanism and regulation of plasmin-induced platelet aggregation. In this study, we demonstrated that plasmin causes the degranulation of platelets, and that ADP released from granules plays a crucial role in the induction of platelet aggregation. This conclusion is supported by results showing that both ADP antagonists and ADPase can inhibit the effect of plasmin on platelets. We also demonstrated that pretreatment of platelets with ADP makes the platelets more sensitive to plasmin, and plasmin-induced platelet aggregation is, therefore, observed at lower concentrations where no aggregation occurs in quiescent platelets. In other words, it is thought that ADP potentiates the plasmin-induced aggregation. The effect of ADP was inhibited by N(6)-[2-(methylthio)-ethyl]-2-(3,3, 3-trifluoropropyl)thio-5'-adenylic acid, monoanhydride with dichloromethylenebisphosphonic acid (AR-C69931), a selective antagonist for the P2T(AC) subtype of P2 receptor, but not by the P2Y1 receptor-selective antagonist adenosine 3'-phosphate 5'-phosphosulfate (A3P5PS). The P2X1 receptor agonist alpha, beta-methylene adenosine 5'-triphosphate (alpha,beta-MeATP) did not mimic the action of ADP. These data indicate that ADP potentiates plasmin-induced platelet aggregation via the P2T(AC) receptor. In addition, epinephrine, a typical G(i) agonist against platelets, could potentiate the plasmin-induced platelet aggregation, suggesting that the signal via the G(i) protein is involved in potentiating the plasmin-induced platelet aggregation, ADP is secreted from platelet granules, and concomitantly works in conjunction with plasmin in a P2T(AC) receptor-mediated manner.  相似文献   

4.
Despite intensive research, the nucleotide P2 receptor that is involved in the aggregation and activation of platelets by ADP has remained elusive. However, now two research groups have independently identified a new platelet receptor of unexpected structure, P2Y(12), that acts with the P2Y(1) receptor to form the site of ADP activation and explains the multiple transduction mechanisms observed in response to ADP in platelets. Recent evidence also suggests that a third component, ATP action on the P2X(1) receptor ion channel, contributes to platelet activation.  相似文献   

5.
Despite common use of clopidogrel in patients with vascular disease, monitoring of platelet inhibition is still not conventional in clinical practice. Considering substantial response variability, when some patients may experience inadequate protection, and/or increased risk of bleeding, simple and reliable methods to control adequate antiplatelet regimen is mandatory. We validated a new VerifyNow-P2Y12 assay to measure inhibition of the P2Y12 platelet receptors by clopidogrel by evaluating its receptor specificity, precision, and potential interference with platelet count, hematocrit, age, cholesterol, triglycerides, and other antiplatelet agents. Platelet aggregation induced by ADP or ADP + prostaglandin E1 (ADP + PGE1) in the presence of specific P2Y12 inhibitor 2-methylthio-AMP (2MeSAMP) for the assessment of assay specificity was performed in 10 volunteers. Seventeen medications were used for the VerifyNow-P2Y12 interference testing, and assay interplay with blood constituents was evaluated in a clinical setting in 131 patients with coronary artery disease. In the presence of 2MeSAMP, the average residual aggregation level across the 10 donors was 27% for ADP and 5% for ADP + PGE1. There also was a strong agreement between ADP + PGE1 aggregometry and VerifyNow-P2Y12 assay (93% vs. 95% average inhibition across all donors). The coefficient of variation for the test precision was less than 8%. The VerifyNow-P2Y12 readings were not influenced by age, platelet count, hematocrit, fibrinogen, cholesterol, or triglycerides level. There was an interference with abciximab before P2Y12 inhibition; however, after platelet suppression with cilostazol, the interference with all tested substances was minimal. VerifyNow-P2Y12 is a reliable, simple, and sensitive device suitable for monitoring of P2Y12 platelet receptor inhibitors in the clinical arena.  相似文献   

6.
《Nanotoxicology》2013,7(2):93-103
Primary objective. Elevation of the thrombotic responses mediated by a variety of carbon-derived nanoparticles was recently reported in the literature. In this paper our objective was to investigate whether metal nanoparticles (iron, copper, gold or cadmium sulfide [CdS]) impart such prothrombotic effects on human platelets. Secondly, we wanted to examine whether such effects were mediated through any specific platelet receptor. Experimental design. The size distributions and zeta potentials of characterized gold, copper, iron and CdS (rod & sphere) nanoparticles were measured using photon correlation spectroscopy and laser Doppler velocimetry. The effect of two classes of agonists, adenosine diphosphate (ADP) and epinephrine were studied. To study the effect of ADP, a suboptimal concentration was chosen below a critical concentration. Above the critical concentration, the aggregation assumed its standard hyperbolic shape (and de-aggregation disappeared). Pro-aggregatory action of a given agent can be understood with better sensitivity using a transition from deaggregation to aggregation at this suboptimal agonist level. For epinephrine at low concentration this criticality was absent, however the aggregatory profile showed a delayed response. Two classes of human subjects (a) normal and (b) individuals with acute coronary syndrome, who were under a therapeutic regime of clopidogrel were chosen, as clopidogrel is a specific inhibitor of the low affinity ADP receptor P2Y12. This enabled us to understand the pro-aggregatory effects of nanoparticles with only P2Y1 (high affinity ADP receptor) active. In another set of aggregation experiments, the inhibitor MRS2179 was used to specifically block the high affinity ADP receptor P2Y1. Methods. The threshold ADP concentration was determined using an ADP titration. Nanoparticle rich platelet suspensions were exposed to a previously determined sub-optimal ADP concentration. The experiment was repeated with iron, copper, gold and CdS nanoparticles (later with two different morphologies, rod and sphere). Results. The primary result was that the nanoparticles, composed of various materials and shape features, are likely to impart a pro-aggregatory response in platelets. That the pro-aggregatory effect is not solely a physical self-assembly process and has ADP dependence, is evident from the reversal of the said response by apyrase. The fact that the response was absent in the case of P2Y12 blocked subjects (CdS nanoparticles being an exception) suggests that the low-affinity P2Y12 receptor may be an important target for the nanoparticles. If on the other hand P2Y1 (the high affinity receptor) was blocked by the specific inhibitor MRS2179, nanoparticles could still induce higher aggregation in normal subjects. No significant nanoparticle induced proaggregatory effect was observed for epinephrine. Inference. It is inferred, that the said platelet effect is mediated through ADP receptors, the probable target being the low affinity purinergic receptor P2Y12. The indication is that P2Y12 is a potential target for a wide class of nanoparticles. However the extent of the induced pro-aggregatory effect may be dependent upon the constitutive material and/or the shape of the nanoparticles. This may have important implications in the use of nano-materials in human drug delivery systems. The fact that clopidogrel prevents this nanoparticle mediated prothrombotic effect (with CdS as an exception) may help making nanodrug administration safer.  相似文献   

7.
P2Y receptor antagonists in thrombosis   总被引:1,自引:0,他引:1  
The dual role of P2Y1 and P2Y12 receptors in platelet aggregation by ADP has been firmly established, based on the action of selective inhibitors, gene targeting in mice and human genetic evidence. Both of these receptor subtypes constitute targets for antithrombotic agents, and compounds with a dual action might also be of interest. However, the agents currently on the market (ticlopidine and clopidogrel), or known to be in development (cangrelor, AZD-6140 and prasugrel), all target the P2Y12 receptor. The thienopyridines (ticlopidine, clopidogrel and prasugrel) irreversibly inactivate the P2Y12 receptor via the covalent binding of an active metabolite generated in the liver, while the other compounds are competitive antagonists. Cangrelor, an ATP derivative, is suitable for intravenous perfusion, whereas AZD-6140 is in clinical development as an orally active agent.  相似文献   

8.
Activation of the P2Y(1) nucleotide receptor in platelets by ADP causes changes in shape and aggregation, mediated by activation of phospholipase C (PLC). Recently, MRS2500(2-iodo-N(6)-methyl-(N)-methanocarba-2'-deoxyadenosine-3',5'-bisphosphate) was introduced as a highly potent and selective antagonist for this receptor. We have studied the actions of MRS2500 in human platelets and compared these effects with the effects of two acyclic nucleotide analogues, a bisphosphate MRS2298 and a bisphosphonate derivative MRS2496, which act as P2Y(1) receptor antagonists, although less potently than MRS2500. Improved synthetic methods for MRS2500 and MRS2496 were devised. The bisphosphonate is predicted to be more stable in general in biological systems than phosphate antagonists due to the non-hydrolyzable CP bond. MRS2500 inhibited the ADP-induced aggregation of human platelets with an IC(50) value of 0.95 nM. MRS2298 and MRS2496 also both inhibited the ADP-induced aggregation of human platelets with IC(50) values of 62.8 nM and 1.5 microM, respectively. A similar order of potency was observed for the three antagonists in binding to the recombinant human P2Y(1) receptor and in inhibition of ADP-induced shape change and ADP-induced rise in intracellular Ca(2+). No substantial antagonism of the pathway linked to the inhibition of cyclic AMP was observed for the nucleotide derivatives, indicating no interaction of these three P2Y(1) receptor antagonists with the proaggregatory P2Y(12) receptor, which is also activated by ADP. Thus, all three of the bisphosphate derivatives are highly selective antagonists of the platelet P2Y(1) receptor, and MRS2500 is the most potent such antagonist yet reported.  相似文献   

9.
Activation by ADP of both P2Y(1) and P2Y(12) receptors in platelets contributes to platelet aggregation, and antagonists at these receptor subtypes have antithrombotic properties. In an earlier publication, we have characterized the SAR as P2Y(1) receptor antagonists of acyclic analogues of adenine nucleotides, containing two phosphate groups on a symmetrically branched aliphatic chain, attached at the 9-position of adenine. In this study, we have focused on antiaggregatory effects of P2Y antagonists related to a 2-chloro-N(6)-methyladenine-9-(2-methylpropyl) scaffold, containing uncharged substitutions of the phosphate groups. For the known nucleotide (cyclic and acyclic) bisphosphate antagonists of P2Y(1) receptors, there was a significant correlation between inhibition of aggregation induced by 3.3 microM ADP in rat platelets and inhibition of P2Y(1) receptor-induced phospholipase C (PLC) activity previously determined in turkey erythrocytes. Substitution of the phosphate groups with nonhydrolyzable phosphonate groups preserved platelet antiaggregatory activity. Substitution of one of the phosphate groups with O-acyl greatly reduced the inhibitory potency, which tended to increase upon replacement of both phosphate moieties of the acyclic derivatives with uncharged (e.g., ester) groups. In the series of nonsymmetrically substituted monophosphates, the optimal antagonist potency occurred with the phenylcarbamate group. Among symmetrical diester derivatives, the optimal antagonist potency occurred with the di(phenylacetyl) group. A dipivaloyl derivative, a representative uncharged diester, inhibited ADP-induced aggregation in both rat (K(I) 3.6 microM) and human platelets. It antagonized the ADP-induced inhibition of the cyclic AMP pathway in rat platelets (IC(50) 7 microM) but did not affect hP2Y(1) receptor-induced PLC activity measured in transfected astrocytoma cells. We propose that the uncharged derivatives are acting as antagonists of a parallel pro-aggregatory receptor present on platelets, that is, the P2Y(12) receptor. Thus, different substitution of the same nucleoside scaffold can target either of two P2Y receptors in platelets.  相似文献   

10.
The effects of a potent P2Y1 receptor antagonist, N6-methyl-2'-deoxyadenosine-3',5'-bisphosphate (MRS2179) on adenosine-5'-diphosphate (ADP)-induced platelet aggregation in vitro, ex vivo and on the bleeding time in vivo were determined. In suspensions of washed platelets, MRS2179 inhibited ADP-induced platelet shape change, aggregation and Ca2+ rise but had no effect on ADP-induced inhibition of adenylyl cyclase. Binding studies using the new radioligand [33P]MRS2179 showed that washed human platelets displayed 134+/-8 binding sites per platelet with an affinity (Kd) of 109+/-18 nM. Finally, intravenous injection of MRS2179 resulted in inhibition of rat platelet aggregation in response to ADP and prolonged the bleeding time, in rats or mice, as compared to controls. These results suggest this potent P2Y1 receptor antagonist to be a promising tool to evaluate the in vivo effects of pharmacologically targeting the P2Y1 receptor with a view to antithrombotic therapy.  相似文献   

11.
Platelet purinergic receptors   总被引:13,自引:0,他引:13  
Activation of P2Y(1) and P2Y(12) receptors, through secreted ADP that is stimulated by agonists such as thrombin, thromboxane and collagen, is a major mechanism of platelet activation. P2X(1) receptors also participate in platelet shape change and potentiation of calcium mobilization. The cloning of the P2Y(12) receptor and its subsequent knockout in mice promises further understanding of its downstream signaling events.  相似文献   

12.
Prasugrel is a novel orally active thienopyridine with faster, higher and more reliable inhibition of platelet aggregation than clopidogrel reflecting its metabolism in vivo to an active metabolite with selective P2Y(12) antagonistic activity. Several lines of evidence support the contention that prasugrel provides selective P2Y(12) receptor antagonistic activity. To date, however, direct evidence of P2Y(12) specific action by prasugrel in vivo is limited. In the present study, effects of prasugrel on ex vivo platelet aggregation were examined in wild type (WT) and P2Y(12)(-/-) mice. In WT mice, prasugrel showed platelet inhibition that was 8.2 times more potent than clopidogrel. In P2Y(12)(-/-) mice, ADP induced platelet aggregation was minimal, and its extent was similar to that in prasugrel-treated WT mice. In addition, no further inhibition of platelet aggregation was observed after administration of prasugrel to P2Y(12)(-/-) mice. Furthermore, prasugrel-treated WT mice showed similar aggregation patterns using collagen- and murine PAR-4 agonist peptide to those of P2Y(12)(-/-) mice treated with vehicle or prasugrel. Overall, these results clearly provide additional in vivo evidence that prasugrel has selective P2Y(12) antagonistic activity.  相似文献   

13.
1. In the present study we have investigated the roles of P2Y(1) and P(2T) receptor subtypes in adenosine 5'-diphosphate (ADP)-induced aggregation of human platelets in heparinized platelet rich plasma. 2. The response to ADP can be characterized as the initial rate or the maximum or final extent of aggregation. The response profile is determined by the concentration of ADP used, being transient at lower and sustained at higher concentrations. 3. The P2Y(1) receptor antagonist, adenosine-3'-phosphate-5'-phosphate (A3P5P) competitively antagonized the initial rate of aggregation (pK(B) 5. 47) and transformed the response profile to a slowly developing but sustained response. Both maximum and final extents were also inhibited by A3P5P although not in a competitive manner (Schild slope <1). 4. The P(2T) receptor antagonist, AR-C67085, competitively antagonized the final extent of aggregation (pK(B) 8.54), transforming the response profile to one of rapid, transient aggregation. Its effect on maximum extent (the most widely used index of aggregation) was complex, and further supported the involvement of both receptor subtypes in the aggregation response. 5. ADP-induced aggregation is a complex phenomenon, the nature of which is determined by the relative occupancy of the two receptor subtypes. While P2Y(1) receptor activation causes a rapid and transient aggregation, the extent of sustained aggregation is determined by the level of P(2T) receptor occupancy. Hence, detailed analysis of the aggregation response is essential to correctly define the purinergic pharmacology of the platelet and interpretation of results is critically dependent on the response index chosen.  相似文献   

14.
The interaction of adenosine-5'-diphosphate (ADP) with its platelet receptors (P2Y(1) and P2Y(12)) plays a very important role in thrombogenesis. The thienopyridine ticlopidine was the first specific antagonist of the platelet P2Y(12) ADP receptor to be tested in randomized clinical trials for the prevention of arterial thrombotic events. Although ticlopidine reduces the incidence of vascular events in patients at risk, it also unfortunately has some significant drawbacks: a relatively high incidence of toxic effects, which may be fatal in some cases; delayed onset of action; and a high interindividual variability in response. A second thienopyridine, clopidogrel, has superseded ticlopidine, because it is also an efficacious antithrombotic drug and is less toxic than ticlopidine. However, clopidogrel is not completely free from faults: severe toxic effects, albeit occurring much less frequently than with ticlopidine, may still complicate its administration to patients; the onset of pharmacologic action can be accelerated by the use of large loading doses, but may still not be optimal; the high interpatient variability in response remains an important issue. These concerns justify the continued search for agents that can further improve the clinical outcome of patients with atherosclerosis through greater efficacy and/or safety. A new thienopyridyl compound, prasugrel, which is characterized by higher potency and faster onset of action compared with clopidogrel, is currently under clinical evaluation. Two direct and reversible P2Y(12) antagonists, cangrelor and AZD6140, feature very rapid onset and reversal of platelet inhibition, which make them attractive alternatives to thienopyridines, especially when rapid inhibition of platelet aggregation or its quick reversal are required. Along with new the P2Y(12) antagonists, inhibitors of the other platelet receptor for ADP, the antagonists P2Y(1), are under development and may prove to be effective antithrombotic agents.  相似文献   

15.
Human platelets express two P2Y receptors: G(q)-coupled P2Y(1), and G(i)-coupled P2Y(12). Both P2Y(1) and P2Y(12) are ADP receptors on human platelets and are essential for ADP-induced platelet aggregation that plays pivotal roles in thrombosis and hemostasis. Numerous constitutively active G protein-coupled receptors have been described in natural or recombinant systems, but in the P2Y receptors, to date, no constitutive activity has been reported. In our effort to identify G protein coupling domains of the human platelet ADP receptor, we constructed a chimeric hemagglutinin-tagged human P2Y(12) receptor with its C terminus replaced by the corresponding part of human P2Y(1) receptor and stably expressed it in Chinese hamster ovary-K1 cells. It is interesting that the chimeric P2Y(12) mutant exhibited a high level of constitutive activity, as evidenced by decreased cAMP levels in the absence of agonists. The constitutive activation of the chimeric P2Y(12) mutant was dramatically inhibited by pertussis toxin, a G(i) inhibitor. The constitutively active P2Y(12) mutant retained normal responses to 2-methylthio-ADP, with an EC(50) of 0.15 +/- 0.04 nM. The constitutively active P2Y(12) mutant caused Akt phosphorylation that was abolished by the addition of pertussis toxin. Pharmacological evaluation of several P2Y(12) antagonists revealed (E)-N-[1-[7-(hexylamino)-5-(propylthio)-3H-1,2,3-triazolo-[4,5-d]-pyrimidin-3-yl]-1,5,6-trideoxy-beta-d-ribo-hept-5-enofuranuronoyl]-l-aspartic acid (AR-C78511) as a potent P2Y(12) inverse agonist and 5'-adenylic acid, N-[2-(methylthio)ethyl]-2-[(3,3,3-trifluoropropyl)thio]-, monoanhydride with (dichloromethylene)bis[phosphonic acid] (AR-C69931MX) as a neutral antagonist. In conclusion, this is the first report of a cell line stably expressing a constitutively active mutant of human platelet P2Y(12) receptor and the identification of potent inverse agonist.  相似文献   

16.
17.
This study was designed to investigate the effect of davallialactone, which was isolated from the mushroom Inonotus xeranticus, on platelet aggregation induced by collagen, thrombin and ADP. We found that davallialactone dose-dependently inhibited platelet aggregation that was stimulated either by collagen (2.5 microg/ml), a potent ligand of integrin alpha2beta1 and glycoprotein VI, or by thrombin (0.1U/ml), a potent agonist of the protease-activated receptors (PARs) PAR1 and PAR3. In addition, davallialactone inhibited platelet aggregation induced by ADP, an agonist of P2Y receptor. To understand the mechanism of anti-platelet activity, we determined whether davallialactone affected the downstream signaling in collagen-activated platelets. Using the fura-2/AM fluorometric assay, we found that davallialactone dose-dependently inhibited intracellular calcium concentration levels ([Ca2+]i). Moreover, davallialactone inhibited the phosphorylation of extracellular signal-regulated protein kinase (ERK)-2 and p38 mitogen-activated protein kinase (MAPK), in a dose-dependent manner. The tyrosine phosphorylation of 60 and 85kDa proteins, which were activated by collagen, were differentially inhibited by davallialactone. Taken together, these data suggest that davallialactone may have potential anti-platelet aggregation activity via suppression of intracellular downstream signaling pathways.  相似文献   

18.
ADP is one of the most important mediators of both physiologic hemostasis and thrombosis. Development and utilization of agents that block ADP receptors on the platelet membrane, namely thienopyridines, has represented a major advancement for treatment of patients undergoing percutaneous coronary interventions and those with acute coronary syndromes. Currently, clopidogrel, a second-generation thienopyridine that inhibits the ADP P2Y(12) receptor, represents the treatment of choice, in addition to aspirin, for the prevention of stent thrombosis. Further, long-term adjunctive use of this ADP P2Y(12) receptor antagonist is also associated with improved clinical outcomes in high-risk patients, and represents the standard of care for these patients. Despite the unambiguous clinical benefit associated with clopidogrel, accumulating experience with this drug has also led to identification of some of its drawbacks, which are related to inadequate platelet inhibition with standard dosage regimens as well as to its irreversible antiplatelet effects. This has led to the questioning of currently recommended clopidogrel dosage regimens as well as to the development of novel and more potent ADP P2Y(12) receptor antagonists, some of which are also reversible agents. Numerous studies are currently ongoing with the objective of demonstrating how more potent platelet inhibition using higher loading and maintenance dose regimens of clopidogrel or novel ADP P2Y(12) receptor antagonists - such as prasugrel, ticagrelor (AZD 6140) and cangrelor - will affect clinical outcomes. This article reviews the current knowledge of platelet ADP P2Y(12) receptor antagonism and the projected developments in this field.  相似文献   

19.
Essex DW  Li M 《Current drug targets》2006,7(10):1233-1241
Platelets contain several glycoprotein receptors including the adhesion receptor glycoprotein Ib and the fibrinogen receptor glycoprotein IIbIIIa, also know as the alphaIIb betaIIIa integrin. Both of these receptors contain thiol groups and vicinal thiols representing redox sensitive sites are present in alphaIIb betaIIIa. Disulfide isomerases such as protein disulfide isomerase (PDI) that are on or recruited to the platelet surface have a role in platelet aggregation. Dynamic rearrangement of disulfide bonds in receptor signaling and platelet activation is a developing concept that requires an attacking thiol. Biochemically, a role for disulfide isomerization is suggested as the alphaIIb betaIIIa integrin undergoes major structural changes upon activation centered around a disulfide knot in the integrin. Additionally, the P2Y12 ADP receptor is involved in platelet activation by most platelet agonists and contains extracellular thiols, making it a possible site for redox modification of platelet aggregation. Various forms of redox modulation of thiols or disulfides in platelet glycoproteins exist. These include modification by low molecular weight thiols such as reduced glutathione or homocysteine, oxidized glutathione or by nitric oxide (NO) derived from s-nitrosothiols. Levels of these redox compounds change in various disease states and in some cases physiologic concentrations of these compounds have been shown to modify platelet responsiveness. Additionally, platelets themselves contain a transplasma membrane redox system capable of reducing extracellular disulfide bonds. It is likely that a redox homeostasis exists in blood with the redox environment being controlled in a way analogous to the control of ionized calcium levels or the pH of blood. Changes in this homeostasis induced by disease states or pharmacologic agents that modify the platelet redox environment will modify platelet function.  相似文献   

20.
ADP produces a series of responses in rabbit platelets such as shape changes, aggregation and intracellular Ca2+ mobilization. In human platelets, the P2X1 receptor mediates a rapid increase in intracellular Ca2+ concentration ([Ca2+]i) upon stimulation with ADP. We investigated whether this phenomenon is also present in rabbit platelets. We found that the P2X1 receptor-mediated response was absent because there was (1) no elevation of [Ca2+]i in response to alpha,beta-methylene-ATP, a selective P2X1 receptor agonist, in fura-2-loaded platelets; (2) no change in the ADP-induced [Ca2+]i increase and platelet aggregation after P2X1 receptor desensitization with alpha,beta-methylene-ATP; (3) complete inhibition of the ADP-induced [Ca2+]i elevation by the P2Y1 receptor specific antagonist, A3'P5'PS, with a similar ID50 value both in the presence and absence of external Ca2+. These results indicate that ADP-induced [Ca2+]i elevation is mainly mediated by P2Y1 receptors in rabbit platelets. We conclude that the P2X1 receptor does not play a significant role in the ADP-induced platelet shape changes and aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号