首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diet,fatty acids,and regulation of genes important for heart disease   总被引:3,自引:0,他引:3  
Diets rich in omega-3 polyunsaturated fatty acids (n-3 PUFAs), such as alpha-linoleic acid, eicosapentaenoic acid, and docosahexaenoic acid, are associated with decreased incidence and severity of coronary heart disease. Similarly, conjugated linoleic acids (CLAs), which are found in meat and dairy products, have beneficial effects against atherosclerosis, diabetes, and obesity. The effects of n3-PUFAs and CLAs are in contrast to fatty acids with virtually identical structures, such as linoleic acid and arachidonic acid (ie, n-6 PUFAs). This article discusses the possibility that cognate receptors exist for fatty acids or their metabolites that are able to regulate gene expression and coordinately affect metabolic or signaling pathways associated with coronary heart disease. Three nuclear receptors are emphasized as fatty acid receptors that respond to dietary and endogenous ligands: peroxisome proliferator activated receptors, retinoid X receptors, and liver X receptors.  相似文献   

2.
Omega 3 – Omega 6: What is right for the liver?   总被引:2,自引:0,他引:2  
Linoleic and alpha-linolenic acids are the fatty acids designated as "essential" since they are not synthesized by mammalian cells and must be provided in the diet. The recent dietary shift towards the consumption of n-6 (omega-6) at the expense of n-3 (omega-3) polyunsaturated fatty acids (PUFAs) is thought to be a primary cause of many diseases related to the Western diet. The body converts linoleic acid to arachidonic acid and derives eicosapentaenoic acid from alpha-linolenic acid. Ideally the effects of these fatty acids and their eicosanoid derivatives are tailored to the specific biological needs of the body. The balance between n-3 and n-6 PUFAs is essential for metabolism and maintenance of the functions of both classes. The availability of n-3 long chain PUFAs plays a major role in regulating both fat accumulation and its elimination by the liver. Derangement of hepatic n-6:n-3 PUFA ratio impacts on the histological pattern of fatty liver through modulation of the amount of intrahepatic lipids. Moreover, the influence of PUFAs and their eicosanoid products on hepatic microcirculation and ischemia/reperfusion injury has been demonstrated in many studies. This concise review article will focus on the role of PUFAs and eicosanoids in hepatic steatosis, microcirculation and ischemia/reperfusion injury.  相似文献   

3.
N-6 fatty acids are essential for normal growth, development and health, and so extreme care is necessary before deciding that they are harmful. Theoretical and epidemiological evidence suggests the involvement of n-6 polyunsaturated fatty acids (PUFAs) in disease progression or prevention; however, n-6 function cannot be considered in isolation but needs to be seen as part of the complex of nutrient interactions with n-3 fatty acids (which compete for the same enzymatic pathways) and antioxidants. Insulin sensitivity might be the common factor relating disease to fatty acid metabolism both within and between the fatty acid pathways. High linoleate to arachidonate concentrations have been observed in insulin resistance, diabetic complications and some tumours, but these are multifactorial processes that include many lifestyle determinants and it is therefore wrong to condemn only n-6 fatty acids in their etiology. The results based on the criteria for assessing diet and disease are still insufficient to declare n-6 fatty acids a serious health risk; at most, the verdict should be "not proven". The question may never be conclusively answered not only because prospective dietary intervention trials (unlike those with n-3 fish oil capsules) are fraught with dosage and compliance problems, but also because of high background linoleate consumption. Tissue fatty acid composition may be a suitable biomarker for PUFA intake but there are many theoretical and methodological problems concerning other suitable markers because of the multiplicity of their biological effects. Before making evidence-based dietary recommendations, future research should consider: 1) how n-3 and n-6 dietary PUFAs affect the physiological balance (dose-response) of their derivatives such as eicosanoids and the newly-discovered fatty acid amides; 2) the metabolic interactions between n-6 and n-3 fatty acid pathways (including gene-nutrient effects); 3) the need for antioxidant cover (quantity and quality); 4) prospective intervention trials.  相似文献   

4.
Dietary fats play a critical role in atherogenesis and thrombosis. Both the amount of fat consumed and its composition affect various events associated with coronary artery disease. Dietary unsaturated fatty acids appear to reduce the incidence of these events, in particular polyunsaturated fatty acids (PUFAs), which exert markedly different effects on risk factors related to heart disease. The omega-3 (n-3) PUFAs, at high levels of dietary intake, significantly reduce hyperlipidemia and the production of the prothrombotic substance thromboxane, and they enhance the production of the platelet-antiaggregatory substance prostacyclin. Data from clinical trials indicate a significant reduction of levels of very low density lipoprotein (VLDL). The n-3 PUFAs also depress hepatic fatty acid and triglyceride synthesis and VLDL secretion. The n-3 PUFAs of fish oils displace arachidonic acid from tissue phospholipids and concomitantly increase n-3 PUFA levels, which inhibit thromboxane synthesis. Most significantly, in human subjects the antiaggregatory prostacyclin PGI3 is also synthesized and the net effect is enhanced antiaggregatory/antiadhesive activity. In addition, the chemotactic platelet adhesion-promoting substance leukotriene B4 is suppressed. These composite effects reduce atherogenesis and thrombosis. Fish oil n-3 PUFAs may also reduce blood pressure and blood viscosity. Through the combined vasodilatory effects via prostacyclin (PGI2 and PGI3), fish oils may improve peripheral circulation and thereby facilitate VLDL removal. The n-3 PUFAs of fish oils, by altering membrane fluidity in a specific manner, alter the activities of membrane-bound enzymes and may change receptor activity, specificity and signal transduction. Overall, these data indicate a beneficial role for n-3 PUFAs as part of a dietary approach to minimizing coronary artery disease.  相似文献   

5.
The marine-derived long chain omega-3 (n-3) polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have a broad spectrum of cardioprotective effects. Over the past three decades, accumulated evidence from both observational and interventional studies have demonstrated that increased intake of fish or fish-derived n-3 PUFAs decreases risk of major cardiovascular disease ( CVD) events. The benefits of eating fish appear to outweigh the potential risk of mercury exposure from consuming fish. Their use, therefore, has been included in the guidelines to prevent CVD in both the general population and in patients with a history of CVD. However, several questions remain regarding their effectiveness in primary prevention, the potential pro-arrhythmic effect, and the optimal dosage needed to achieve the reduction of CVD risk and targeted subpopulation. This article summarizes the most recent scientific data for n-3 PUFAs in the prevention of CVD and risk factors with the aim to address those uncertain areas.  相似文献   

6.
Because of the ability of certain long-chain polyunsaturated fatty acids (PUFAs) to prevent lethal cardiac arrhythmias, we have examined the effects of various long-chain fatty acids on the contraction of spontaneously beating, isolated, neonatal rat cardiac myocytes. The omega 3 PUFA from fish oils, eicosapentaenoic acid [EPA; C20:5 (n-3)] and docosahexaenoic acid [DHA; C22:6 (n-3)], at 2-10 microM profoundly reduced the contraction rate of the cells without a significant change in the amplitude of the contractions. The fatty acid-induced reduction in the beating rate could be readily reversed by cell perfusion with fatty acid-free bovine serum albumin. Addition of either oxygenase inhibitors or antioxidants did not alter the effect of the fatty acids. Arachidonic acid [AA; C20:4 (n-6)] produced two different effects on the beating rate, an increase or a decrease, or it produced no change. In the case of the increased or unchanged beating rate in the presence of AA, addition of AA oxygenase inhibitors subsequently reduced the contraction rate. The nonmetabolizable AA analog eicosatetraynoic acid (ETYA) always reduced the beating rate, as did EPA or DHA. Two other PUFAs, linoleic acid [C18:2 (n-6)] and linolenic acid [C18:3 (n-3)] also exhibited similar but less potent effects compared with EPA or ETYA. In contrast, neither the monounsaturated fatty acid oleic acid [C18:1 (n-9)] nor the saturated fatty acids stearic acid (C18:0), myristic acid (C14:0), and lauric acid (C12:0) affected the contraction rate. The inhibitory effect of these PUFAs on the contraction rate was similar to that produced by the class I antiarrhythmic drug lidocaine. The fatty acids that are able to reduce the beating rate, particularly EPA and DHA, could effectively prevent and terminate lethal tachyarrhythmias (contracture/fibrillation) induced by high extracellular calcium concentrations or ouabain. These results suggest that free PUFAs can suppress the automaticity of cardiac contraction and thereby exert their antiarrhythmic effects.  相似文献   

7.
Dietary fatty acids play significant roles in the cause and prevention of cardiovascular disease (CVD). Trans fatty acids from partially hydrogenated vegetable oils have well-established adverse effects and should be eliminated from the human diet. CVD risk can be modestly reduced by decreasing saturated fatty acids (SFA) and replacing it by a combination of polyunsaturated fatty acids (PUFA) and monounsaturated fatty acids (MUFA). Although the ideal type of unsaturated fat for this replacement is unclear, the benefits of PUFA appear strongest. Both n-6 and n-3 PUFA are essential and reduce CVD risk. However, additional research is needed to better define the optimal amounts of both and to discern the patients and/or general population that would benefit from supplemental n-3 fatty acid intake. Furthermore, consumption of animal products, per se, is not necessarily associated with increased CVD risk, whereas nut and olive oil intake is associated with reduced CVD risk. In conclusion, the total matrix of a food is more important than just its fatty acid content in predicting the effect of a food on CVD risk, and a healthy diet should be the cornerstone of CVD prevention.  相似文献   

8.
As previously shown, dietary n-3 polyunsaturated fatty acids (n-3 PUFAs) suppress connective tissue proliferation in the rat liver wound concurrent with an elevated level of lipid peroxidation. The present study was undertaken to investigate the influence of alpha-lipoic acid (LA), a natural anti-oxidant, on these effects of n-3 PUFAs. Rats were fed with a commercial pellet diet (control group) or with diets enriched with 10% of sunflower oil (n-6 group) or 10% of fish oil (n-3 group) for 8 weeks followed by addition of LA to the same diets for 10 days. Then a liver thermic wound was induced and the administration of LA was continued for 6 days. The proliferation of the connective tissue, the level of lipid peroxidation and their peroxidizability and the content of prostaglandins E2 and F2alpha were measured in the liver wounds. LA prevented the suppression of connective tissue proliferation in the healing wound induced by n-3 PUFAs, avoided the increase in peroxidation of lipids, reduced peroxidizability of lipids and modulated the decrease in PGE2 and PGF2alpha. The results indicate that dietary LA may prevent the suppression of liver wound healing induced by n-3 PUFAs.  相似文献   

9.
目的探讨n-3脂肪酸对饱和脂肪酸诱导的大鼠胰岛素抵抗(IR)肝脏和骨骼肌胰岛素受体(InsR)及葡萄糖转运蛋白4(GluT-4)的作用。方法45只雄性Wistar大鼠分为对照组、高脂组和n-3脂肪酸组。各组饲养11周后测定有关指标。结果(1)与对照组比较,高脂组大鼠体内脂肪相对含量、空腹血糖(FBG)、血清胰岛素(Ins)、甘油三酯(TG)、胆固醇(TC)、胰岛素抵抗指数(IRI)、肝脏TC和TG含量、肌肉中TG含量均显著升高;而肌肉组织中TC含量无显著改变,高脂组肝脏和肌肉InsR含量、肌肉Glut-4蛋白的相对含量均明显下降。(2)n-3脂肪酸组体内脂肪相对含量、FBG、Ins、TG、TC、IRI、肝脏TC和TG含量、肌肉组织中TG含量较高脂组均明显降低,肝脏InsR含量和肌肉GluT-4较高脂组明显升高。结论适量n-3脂肪酸代替饱和脂肪酸的一部分热量后,可增加IR大鼠肝脏InsR含量和肌肉GluT-4蛋白表达。  相似文献   

10.
Various types of polyunsaturated fatty acids (PUFAs) have been suggested to exert different effects on the colon in terms of promotion or inhibition of tumor development. Results of in vitro and in vivo studies are, however, inconsistent and it remains unclear whether or not the cellular effects of PUFAs change along with the malignant transformation of colonic cells. In this study, we used the NIH3T3 cell line and its SIC (sigmoid colon cancer) oncogene transformants to compare the effects of PUFAs on the proliferation of non-malignant and malignant cells. We also determined the cellular utilization of fatty acids in media by a high-performance liquid chromatography method. The addition of exogenous arachidonic acid (ARA, an n-6 fatty acid), eicosapentaenoic acid (EPA, n-3), and docosahexaenoic acid (DHA, n-3) exerted different effects on NIH3T3 cells, and on SIC transformants, in which selective inhibitory effects were observed at media concentrations ranging from 10 to 20 μg/ml. In cells cultured in media supplemented with EPA or DHA at a concentration of 2 μg/ml, which had no effect on cell proliferation, the cellular utilization of linoleic acid (n-6), a precursor of n-3 fatty acids, was inhibited. This inhibition was stronger in SIC transformants than in NIH3T3 cells (P < 0.05). There was no difference in the utilization of fatty acids between the two cell lines cultured in media supplemented with ARA. We conclude that the cellular response to exogenous long-chain PUFAs is modified during the course of malignant transformation, and that EPA and DHA (n-3 PUFAs) appear to have specific inhibitory effects on cancer cells and may thus enhance the host defense against colon cancer. (Received Dec. 10, 1996; accepted July 25, 1997)  相似文献   

11.
Accumulating evidence demonstrates that dietary intake of n-3 polyunsaturated fatty acids (PUFAs) is associated with reduced incidence of cardiovascular events. However, the molecular mechanisms by which n-3 PUFAs prevent atherosclerosis are not fully understood. Here, we examined the effect of eicosapentaenoic acid (EPA), a major n-3 PUFA, on the pathogenesis of atherosclerosis in ApoE-deficient mice. Five-week-old ApoE-deficient male mice were fed on western-type diet supplemented with 5% (w/w) EPA (EPA group, n=7) or not (control group, n=5) for 13 weeks. An analysis of the fatty acid composition of liver homogenates revealed a marked increase of the n-3 PUFA content in the EPA group (n-3/n-6 ratio: 0.20+/-0.01 vs. 2.5+/-0.2, p<0.01). En face Sudan IV staining of the aorta and oil red O-staining of the aortic sinus revealed that EPA significantly suppressed the development of atherosclerotic lesions. We also observed anti-atherosclerotic effects of EPA in LDL-receptor-deficient mice. The lesions of the EPA group contained more collagen (19.6+/-2.4% vs. 32.9+/-3.9%, p<0.05) and smooth muscle cells (1.3+/-0.2% vs. 3.6+/-0.8%, p<0.05) and less macrophages (32.7+/-4.1% vs. 14.7+/-2.0%, p<0.05). Pretreatment with EPA attenuated the up-regulation of VCAM-1, ICAM-1 and MCP-1 in HUVECs as well as the expression of MMP-2 and MMP-9 in macrophage-like cells induced by TNF-alpha. The anti-inflammatory effects of EPA were abrogated when the expression of peroxisome proliferator-activated receptor alpha (PPARalpha) was suppressed. EPA may potentially reduce and stabilize atherosclerotic lesions through its anti-inflammatory effects.  相似文献   

12.
AIMS: Persons with high intake of polyunsaturated fatty acids (PUFAs) have lower cardiovascular morbidity and mortality. The protective effect of PUFAs is mediated by multiple mechanisms, including their antiinflammatory properties. The association of physiological PUFA levels with pro- and antiinflammatory markers has not been established. METHODS AND RESULTS: In 1123 persons (aged 20-98 yr), we examined the relationship between relative concentration of fatty acids in fasting plasma and level of inflammatory markers. Adjusting for age, sex, and major confounders, lower arachidonic and docosahexaenoic acids were associated with significantly higher IL-6 and IL-1ra and significantly lower TGFbeta. Lower alpha-linolenic acid was associated with higher C-reactive protein and IL-1ra, and lower eicosapentaenoic acid was associated with higher IL-6 and lower TGFbeta. Lower docosahexaenoic acid was strongly associated with lower IL-10. Total n-3 fatty acids were associated with lower IL-6 (P = 0.005), IL-1ra (P = 0.004), and TNFalpha (P = 0.040) and higher soluble IL-6r (P < 0.001), IL-10 (P = 0.024), and TGFbeta (P = 0.0012). Lower n-6 fatty acid levels were significantly associated with higher IL-1ra (P = 0.026) and lower TGFbeta (P = 0.014). The n-6 to n-3 ratio was a strong, negative correlate of IL-10. Findings were similar in participants free of cardiovascular diseases and after excluding lipids from covariates. CONCLUSIONS: In this community-based sample, PUFAs, and especially total n-3 fatty acids, were independently associated with lower levels of proinflammatory markers (IL-6, IL-1ra, TNFalpha, C-reactive protein) and higher levels of antiinflammatory markers (soluble IL-6r, IL-10, TGFbeta) independent of confounders. Our findings support the notion that n-3 fatty acids may be beneficial in patients affected by diseases characterized by active inflammation.  相似文献   

13.
Omega-3 fatty acids (n-3) FA are reported to be protective against cardiovascular disease (CVD), notably through their beneficial action on atherosclerosis development. In this context dietary intake of long-chain marine eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is recommended and randomised trials largely support that EPA and DHA intake is associated with a reduction of CVD. However, mechanisms governing the atheroprotective action of n-3 FA are still unclear and numerous studies using mouse models conducted so far do not allow to reach a precise view of the cellular and molecular effects of n-3 FA on atherosclerosis. In the current issue of Atherosclerosis, Chang et al. provide important new information on the anti-atherogenic properties of n-3 FA by analysing the incremental replacement of saturated FA by pure fish oil as a source of EPA and DHA in Ldlr−/− mice fed a high fat/high cholesterol diet.  相似文献   

14.
Dietary fats have important effects on the risk of cardiovascular disease (CVD). Abundant evidence shows that partial replacement of saturated fatty acids (SAFA) with unsaturated fatty acids improves the blood lipid and lipoprotein profile and reduces the risk of coronary heart disease (CHD). Low-fat diets high in refined carbohydrates and sugar are not effective. Very long-chain polyunsaturated n-3 or omega-3 fatty acids (n-3 VLCPUFA) present in fish have multiple beneficial metabolic effects, and regular intake of fatty fish is associated with lower risks of fatal CHD and stroke. Food-based guidelines on dietary fats recommend limiting the consumption of animal fats high in SAFA, using vegetable oils high in monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA), and eating fatty fish. These recommendations are part of a healthy eating pattern that also includes ample intake of plant-based foods rich in fiber and limited sugar and salt.  相似文献   

15.
Saturated fat, carbohydrates and cardiovascular disease   总被引:1,自引:0,他引:1  
The dietary intake of saturated fatty acids (SAFA) is associated with a modest increase in serum total cholesterol, but not with cardiovascular disease (CVD). Replacing dietary SAFA with carbohydrates (CHO), notably those with a high glycaemic index, is associated with an increase in CVD risk in observational cohorts, while replacing SAFA with polyunsaturated fatty acids (PUFA) is associated with reduced CVD risk. However, replacing a combination of SAFA and trans-fatty acids with n-6 PUFA (notably linoleic acid) in controlled trials showed no indication of benefit and a signal toward increased coronary heart disease risk, suggesting that n-3 PUFA may be responsible for the protective association between total PUFA and CVD. High CHO intakes stimulate hepatic SAFA synthesis and conservation of dietary SAFA . Hepatic de novo lipogenesis from CHO is also stimulated during eucaloric dietary substitution of SAFA by CHO with high glycaemic index in normo-insulinaemic subjects and during hypocaloric high-CHO/low-fat diets in subjects with the metabolic syndrome. The accumulation of SAFA stimulates chronic systemic low-grade inflammation through its mimicking of bacterial lipopolysaccharides and÷or the induction of other pro-inflammatory stimuli. The resulting systemic low-grade inflammation promotes insulin resistance, reallocation of energy-rich substrates and atherogenic dyslipidaemia that concertedly give rise to increased CVD risk. We conclude that avoidance of SAFA accumulation by reducing the intake of CHO with high glycaemic index is more effective in the prevention of CVD than reducing SAFA intake per se.  相似文献   

16.
Evidence from epidemiologic and clinical secondary prevention trials suggest that the omega-3 polyunsaturated fatty acids (n-3 PUFAs) may have a significant role in the prevention of coronary heart disease. Dietary sources of n-3 PUFAs include fish oils, rich in eicosapentaenoic acid and docosahexaenoic acid, along with plants rich in a-linolenic acid. Randomized secondary prevention clinical trials with fish oils (eicosapentaenoic acid, docosahexaenoic acid) and a-linolenic acid have demonstrated reductions in risk that compare favorably to those seen in landmark secondary prevention trials with lipid-lowering drugs. Several mechanisms explaining the cardioprotective effect of the n-3 PUFA have been suggested including antiarrhythmic and antithrombotic roles. Although official US guidelines for the dietary intake of n-3 PUFA are not available, several international guidelines have been published. Fish is an important source of the n-3 PUFA in the US diet; however, vegetable sources including grains and oils offer an alternative source for those who are unable to regularly consume fish.  相似文献   

17.
OBJECTIVE: Neutrophils and tumor necrosis factor (TNF) play important roles in the pathogenesis of rheumatoid arthritis (RA). Modulation of TNF receptors (TNFRs) may contribute to the regulation of tissue damage, and n-6 polyunsaturated fatty acids (PUFAs) such as arachidonic acid (AA) can increase the expression of TNFRI and TNFRII on neutrophils. Because the n-3 PUFAs are antiinflammatory in RA, we examined whether, as a novel mechanism of action, n-3 PUFAs can antagonize the AA-induced increase in TNFR expression. METHODS: Human neutrophils were treated with PUFAs and examined for changes in surface expression of TNFRs by flow cytometry. Translocation of protein kinase C (PKC) and activation of ERK-1/2 MAPK were determined by Western blotting. Intracellular calcium mobilization was measured in Fura 2-loaded cells by luminescence spectrometry. RESULTS: Pretreatment of neutrophils with nanomolar levels of n-3 PUFAs, eicosapentaenoic acid, or docosahexaenoic acid led to a marked inhibition of the AA-induced up-regulation of TNFRs I and II. Such pretreatment, however, did not prevent AA from stimulating the activities of PKC and ERK-1/2, which is required for the actions of AA or its ability to mobilize Ca(2+). Nevertheless, treatment with n-3 PUFAs caused the stimulation of serine proteases that could cleave the TNFRs. CONCLUSION: These findings suggest a mechanism by which the n-3 PUFAs inhibit the inflammatory response in RA, by regulating the ability of AA to increase TNFR expression. These results help fill the gaps in our knowledge regarding the mechanisms of action of n-3 PUFAs, thus allowing us to make specific recommendations for the use of n-3 PUFAs in the regulation of inflammatory diseases.  相似文献   

18.
BACKGROUND AND AIM: Although the replacement of saturated with unsaturated dietary fat has been advocated as a means of reducing the risk of cardiovascular disease, diets high in polyunsaturated fatty acids (PUFAs) may increase lipid peroxidation, thus contributing to the pathogenesis of atherosclerosis. As the susceptibility of individual fatty acids to oxidation directly depends on their degree of unsaturation, and the oxidative modification of lipoproteins may be an important determinant of atherogenesis, the aim of this study was to evaluate the susceptibility to auto-oxidation and copper-mediated oxidation of chylomicron remnants (CMRs) enriched in n-3 or n-6 PUFA. METHODS AND RESULTS: The remnants were prepared in vitro from chylomicrons obtained from rats given an oral dose of fish or corn oil, using rat plasma containing lipoprotein lipase. Their propensity to oxidate and the extent of the oxidation were estimated by measuring the formation of conjugated dienes and the detrimental products of lipid peroxidation. The results showed that: 1) the corn oil CMRs contained a relatively high proportion of n-6 PUFA (mainly linoleic acid), whereas the fish oil CMRs contained more n-3 PUFA, mainly eicosapentanoic and docosahexaenoic acids; 2) n-3-rich CMRs have a significantly lower propensity to oxidate than n-6-rich CMRs despite their 50% lower alpha-tocopherol content and 40% higher unsaturation index. CONCLUSION: Our data indicate that the precise allocation of n-3 PUFA within the lipid core of CMRs may play a pivotal role in lowering the susceptibility to oxidation of fish CMRs by overcoming the effects of unfavourable alpha-tocopherol concentration. Eating n-3 rather than n-6 PUFAs seems to make CMRs more resistant against free radical attack, which may contribute to attenuating their potential atherogenic properties.  相似文献   

19.
The fatty acid composition of serum lipids, erythrocytes, platelets, and diet was studied in women with insulin-dependent diabetes (IDDM) and in normal subjects matched for age, sex, body weight, and serum lipid levels. The dietary intake of linoleic acid was higher in IDDM patients than in the normal subjects. The linoleic acid content of serum triglycerides, cholesterol esters, and phospholipids and of red cells and platelets were elevated in patients with IDDM proportionately to their dietary linoleate intake. The linoleic acid content of serum lipids, but not of diet, was significantly correlated with glycosylated hemoglobin A1c in IDDM patients. However, the serum lipid content of arachidonic acid and other n-6 polyunsaturated fatty acids, which are metabolites of linoleic acid, was decreased in IDDM patients, but these metabolites were normal or increased in their cell membranes. The contents of n-3 polyunsaturated fatty acids were decreased in serum and platelet lipids and tended to be increased in erythrocyte membranes of diabetic patients. The results suggest that elongation and desaturation of essential fatty acids, linoleic acid in particular, are decreased in women with IDDM.  相似文献   

20.
Many epidemiological studies have indicated a protective role for a diet rich in fruits and vegetables against the development and progression of cardiovascular disease (CVD), one of the leading causes of morbidity and mortality worldwide. Physical inactivity and unhealthy eating contribute to these conditions. This article assesses the scientific rationale of benefits of physical activity and good nutrition on CVD, especially on atherosclerosis-related diseases. Compelling evidence has accumulated on the role of oxidative stress in endothelial dysfunction and in the pathogenesis of CVD. Reduced nitric oxide (NO) bioavailability due to oxidative stress seems to be the common molecular disorder comprising stable atherosclerotic narrowing lesions. Energy expenditure of about 1000 kcal (4200 kJ) per week (equivalent to walking 1 h 5 days a week) is associated with significant health benefits. Such benefits can be achieved through structured or nonstructured physical activity, accumulated throughout the day (even through short 10-min bouts) on most days of the week. Some prospective studies showed a direct inverse association between fruit and vegetable intake and the development of CVD incidents such as acute plaque rupture causing unstable angina or myocardial infarction and stroke. Many nutrients and phytochemicals in fruits and vegetables, including fiber, potassium, and folate, could be independently or jointly responsible for the apparent reduction in CVD risk. Novel findings and critical appraisal regarding antioxidants, dietary fibers, omega-3 polyunsaturated fatty acids (n-3 PUFAs), nutraceuticals, vitamins, and minerals, are presented here in support of the current dietary habits together with physical exercise recommendations for prevention and treatment of CVD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号