首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The intravenous sensitization of C57BL/6 (B6) mice with class I H-2-disparate B6-C-H-2bm1 (bm1) spleen cells resulted in the abrogation of CD8+ T cell-mediated anti-bm1 (proliferative and interleukin 2-producing) T helper (Th) cell activities. In vitro stimulation of lymphoid cells from these mice with bm1 cells, however, generated a reduced, but appreciable, anti-bm1 cytotoxic T lymphocyte (CTL) response. Moreover, the anti-bm1 CTL response, upon stimulation with [bm1 x B6-C-H-2bm12 (bm12)]F1 spleen cells, was enhanced when compared with the response induced upon stimulation with bm1 cells. These in vitro results were reflected on in vivo graft rejection responses; bm1 skin grafts engrafted in the bm1-presensitized B6 mice exhibited prolonged survival, whereas (bm1 x bm12)F1 grafts placed collateral to bm1 grafts (dual engrafted mice) inhibited the tolerance to bm1. In the B6 mice 1-2 d after rejecting the bm1 grafts, anti-bm1 Th activities remained marginal, whereas potent anti-bm1 CTL responses were found to be generated from their spleen cells. Administration in vivo of anti-CD4 antibody into bm1-presensitized, dual graft-engrafted mice prolonged bm1 graft survival and interfered with enhanced induction of anti-bm1 CTL activity. These results indicate that anti-class I alloantigen (bm1) tolerance as induced by intravenous presensitization with the relevant antigens is not ascribed to the elimination of CD8+ CTL precursors, but to the specific inactivation of CD8+ Th cells, whose function can be bypassed by activating third-party Th cells.  相似文献   

2.
In many cases, induction of CD8(+) CTL responses requires CD4(+) T cell help. Recently, it has been shown that a dominant pathway of CD4(+) help is via antigen-presenting cell (APC) activation through engagement of CD40 by CD40 ligand on CD4(+) T cells. To further study this three cell interaction, we established an in vitro system using dendritic cells (DCs) as APCs and influenza hemagglutinin (HA) class I and II peptide-specific T cell antigen receptor transgenic T cells as cytotoxic T lymphocyte precursors and CD4(+) T helper cells, respectively. We found that CD4(+) T cells can provide potent help for DCs to activate CD8(+) T cells when antigen is provided in the form of either cell lysate, recombinant protein, or synthetic peptides. Surprisingly, this help is completely independent of CD40. Moreover, CD40-independent CD4(+) help can be documented in vivo. Finally, we show that CD40-independent T cell help is delivered through both sensitization of DCs and direct CD4(+)-CD8(+) T cell communication via lymphokines. Therefore, we conclude that CD4(+) help comprises at least three components: CD40-dependent DC sensitization, CD40-independent DC sensitization, and direct lymphokine-dependent CD4(+)-CD8(+) T cell communication.  相似文献   

3.
Induction of cytotoxic T lymphocyte (CTL) responses against minor histocompatibility antigens is dependent upon the presence of T cell help and requires the interaction of CD40 on dendritic cells (DCs) with CD40 ligand on activated T helper cells (Th). This study demonstrates that CD40 is neither involved in Th-dependent nor Th-independent antiviral CTL responses. Moreover, the data show that DC maturation occurs in vivo after viral infection in the absence of CD40 and Th. This maturation did not require viral infection of DCs but was mediated by peptide-specific CD8(+) T cells. Surprisingly, naive CD8(+) T cells were able to trigger DC maturation within 24 h after activation in vivo and in vitro. Moreover, peptide-activated CD8(+) T cells were able to induce maturation in trans, as DCs that failed to present the relevant antigen in vivo also underwent maturation. Upon isolation, the in vivo-stimulated DCs were able to convert a classically Th-dependent CTL response (anti-HY) into a Th-independent response in vitro. Thus, antiviral CD8(+) T cells are sufficient for the maturation of DCs in the absence of CD40.  相似文献   

4.
B7-DC, one of the recently described B7 family members, has the capacity to inhibit T cell responses via engagement of the immunoreceptor tyrosine-based inhibitory motif-containing inhibitory PD-1 receptor as well as enhance responses via an as yet unidentified costimulatory receptor. B7-DC is highly homologous to a coinhibitory B7 family member, B7-H1, which also binds PD-1. It is currently unclear which B7-DC function-costimulation or inhibition-predominates in vivo. To study in vivo functions of B7-DC, we evaluated immune responses in B7-DC knockout (KO) mice. Although not eliminated, interferon-gamma (IFN-gamma) production by CD4 T cells and IFN-gamma-dependent humoral responses were reduced in B7-DC KO mice relative to wild type mice. Antigen-specific CD8 T cell responses and cytotoxic T lymphocyte (CTL) activity were also diminished in B7-DC KO mice. Hepatic tumors grew more quickly in B7-DC KO mice, associated with a decrease in intrahepatic tumor-specific CD8 T cells. These results highlight the contrasting in vivo roles of B7-DC and B7-H1 and indicate that B7-DC functions as a tuning molecule, selectively augmenting T helper 1 and CTL responses.  相似文献   

5.
We used well-gassed hanging drop (20 microliters) cultures with high concentrations of purified T cells from normal BALB/c mice to examine whether dendritic cells (DC) can induce primary antiviral proliferative T cell responses and generate virus-specific CTL. We found that DC exposed to infectious influenza virus in vitro or in vivo in small numbers (0.1-1%) resulted in strong proliferation of responder T cells within 3 d, and this was strongly inhibited by antibodies to class II MHC molecules. In addition, in 5-d cultures, the influenza-treated DC generated CTL specifically able to lyse influenza-infected syngeneic target cells bearing MHC class I antigens. The most potent nucleoprotein (NP) epitope recognized by BALB/c CTL is peptide 147-158 (Arg156-) and influenza-infected DC in vitro stimulated CTL recognizing this peptide, thus mimicking the response in mice primed by intranasal influenza infection. We also induced T cell proliferation and virus-specific CTL in cultures of normal T cells by stimulating with DC pulsed with the natural NP sequence 147-158 or the potent peptide 147-158 (Arg156-). Small numbers of peritoneal exudate cells, after activation with Con A to produce class II MHC expression and after removal of DC with a specific mAb (33DI), did not lead to primary CTL generation but initiated secondary stimulation in vitro. Our results using the hanging drop culture method and DC as APC have implications for studying the T cell repertoire for viral components in humans without the necessity of previous immunization.  相似文献   

6.
Activation of tumor-associated CD8(+) cytotoxic T lymphocytes (CTLs) often requires antigen representation, e.g., by dendritic cells (DCs), and CD4(+) T cell help. Previously, we showed that CTL-mediated tumor immunity required interleukin 4 (IL-4) during the immunization but not effector phase. To determine the source and target cells of IL-4, we performed adoptive T cell transfers using CD4(+) and CD8(+) T cells from IL-4(-/-) and IL-4R(-/-) mice and analyzed CTL generation. Even though necessary for CTL generation, CD4(+) T cells did not need to express IL-4 or IL-4R. Surprisingly, CTL generation required IL-4 but not IL-4R expression by CD8(+) T cells. As IL-4 (a) was expressed by naive CD8(+) T cells within 24 h after antigen encounter, (b) IL-4 induced DC maturation, and (c) CTL development was impaired in T cell-reconstituted IL-4R(-/-) mice, CD8(+) T cell-derived IL-4 appears to act on DCs. We conclude that CD4(+) and CD8(+) T cells provide different signals for DC activation during CTL generation.  相似文献   

7.
This study documents that virus-specific CTL can persist indefinitely in vivo. This was accomplished by transferring Thy-1.1 T cells into Thy-1.2 recipient mice to specifically identify the donor T cell population and to characterize its antigenic specificity and function by using a virus-specific CTL assay. Thy-1.1+ T cells from mice previously immunized with lymphocytic choriomeningitis virus (LCMV) were transferred into Thy-1.2 mice persistently infected with LCMV. The transferred LCMV-specific CTL (Thy-1.1+ CD8+) eliminate virus from the chronically infected carriers and persist in the recipient mice in small numbers, comprising only a minor fraction of the total T cells. Upon re-exposure to virus, these long-lived "resting" CD8+ T cells proliferate in vivo to become the predominant cell population. These donor CD8+ T cells can be recovered up to a year post-transfer and still retain antigenic specificity and biological function. They kill LCMV infected H-2-matched cells in vitro and can eliminate virus upon transfer into a second infected host. In addition, these long-lived CD8+ T cells appear not to be dependent on help from CD4+ T cells, since depletion of CD4+ T cells has minimal or no effect on their biological properties (proliferation, CTL response, viral clearance). These donor CTL also exhibit an immunodominance over the host-derived LCMV-specific CTL response. When both host and donor T cells are present, the donor CTL response is dominant over the potential CTL response of the cured carrier host. Taken together, these results suggest that virus-specific CTL can persist for the life span of the host as memory cells.  相似文献   

8.
Mice depleted in vivo of CD4+ Th cells by treatment with mAb GK1.5 were found to be resistant to the lymphoproliferative/immunodeficiency disease (MAIDS) induced in intact mice by infection with the mixture of LP-BM5 murine leukemia viruses. Depleted mice did not develop lymphadenopathy or splenomegaly, had normal serum IgM levels, normal CTL responses to alloantigens, and were able to generate PFC responses to Th-independent antigens even though frequencies of virus-producing spleen cells were comparable in depleted and intact mice. Depletion of CD4+ Th cells after infection resulted in a reversal of many abnormalities exhibited by infected controls; spleen weights, serum IgM levels, and allogeneic CTL responses of treated mice were comparable to those of uninfected controls. These results demonstrate that dysfunction of CD4+ Th cells is central to the induction and progression of both T and B cell abnormalities in MAIDS.  相似文献   

9.
Dendritic cells (DC) are highly specialised, bone marrow (BM)-derived antigen-presenting cells (APC) that initiate and regulate immune responses. They provide costimulatory signals (in particular, CD40 and the CD28 ligands CD80 and CD86) necessary for naive T cell activation. Functional expression of CD80 and CD86 is blocked by the fusion protein cytotoxic T lymphocyte antigen 4-immunoglobulin (CTLA4Ig), that promotes tolerance induction in animals. Here, replicating mouse (B10; H2b) myeloid DC progenitors, were retrovirally transduced to express CTLA4Ig using the centrifugal enhancement method. Gene product was detected by immunocyto- or histochemistry. Maximal DC transduction efficiency was 62%. Compared with control, zeomycin-resistance gene (Zeo)-transduced DC, CTLA4Ig-expressing cells showed markedly impaired capacity to stimulate naive allogeneic (C3H; H2k) T cell proliferation and cytotoxic T lymphocyte (CTL) generation. Their ability to induce alloantigen-specific T cell hyporesponsiveness was reversed by exogenous IL-2 in secondary mixed leukocyte reactions (MLR). Following local (s.c.) transfer to allogeneic recipients, the genetically modified DC trafficked to T cell areas of draining lymphoid tissue, where transgene expression was detected. Ex vivo analysis of proliferative and CTL responses revealed donor-specific inhibition of alloimmune reactivity by the CTLA4Ig-transduced DC. This effect was associated with marked inhibition of interferon (IFN)-gamma production, but significant augmentation of IL-4 and IL-10 secretion. Thus, retroviral transduction of DC permits in vivo delivery of CTLA4Ig to the precise microenvironment where antigen (Ag) presentation occurs. Comparatively nonimmunogenic retroviral vectors, that allow permanent transgene expression in DC, and promote localized delivery of the immunosuppressive transgene product, promote immune deviation and Ag-specific T cell hyporesponsiveness.  相似文献   

10.
In recent years, vaccination strategies using antigen-presenting cells (APC) have been under investigation. Antigen delivery using genetic immunization through ex vivo transduction of dendritic cells (DC) is supposed to enhance the induction of antitumor responses in humans by activating a broad range of peptide-specific CD8+ T cells. In this study, we compared the potential of adenoviral (Ad)-transduced versus peptide-pulsed DC to induce melanoma-antigen (Ag)-specific T-cell responses in vitro. Whereas gp100-peptide-pulsed DC induced long-lasting specific CD8+ T-cell responses against single peptides, Ad-transduced DC induced broad and strong, specific immunity against various peptides of the gp100-Ag. Surprisingly, several restimulations led to decreasing gp100-specific and in parallel to increasing anti-adenoviral T-cell responses. Nevertheless, those anti-adenoviral T-cell responses provided an "adjuvant" effect by inducing an early release of high amounts of IL-2/IFN-gamma, therewith enhancing CTL induction in the initiation phase. Based on these data, we suggest a prime/boost vaccination strategy in melanoma patients--combining the use of Ad-DC and peptide-pulsed DC--to obtain efficient and long-term antitumor T-cell responses.  相似文献   

11.
树突状细胞(DC)是现今被认为最具潜能的专职抗原呈递细胞.应用不同方法在体内诱导细胞毒T细胞(CTL)来识别肿瘤相关抗原的肿瘤免疫治疗研究已有报告.然而,在体内免疫治疗的有效性可能仅限制在局部或系统抑制CTL产生和功能.为了检测LPS刺激人单核细胞的DC来抑制自体CD4^+CD25^+T细胞能力,使用HLA-A2限制性p53264-272肽作为肿瘤抗原,用LPS(DC-LPS^+)或不用LPS(DC-LPS^-)产生的DC分别与自体T细胞共同培养.结果显示:在DC-LPS^+活化的T细胞的CD4^+CD25^+T细胞群比DC-LPS^-活化的T细胞要低.这个结果提示,DC-LPS^+与CD4^+CD25^+T细胞群有关联,而且这种特性可能是由于T细胞对肿瘤相关抗原的调节作用.  相似文献   

12.
We previously described mRNA electroporation as an efficient gene delivery method to introduce tumor-antigens (Ag) into murine immature dendritic cells (DC). Here, we further optimize the protocol and evaluate the capacity of mRNA-electroporated DC as a vaccine for immunotherapy. First, the early DC maturation kinetics and the effect of different lipopolysaccharide incubation periods on the phenotypic maturation profile of DC are determined. Next, we show that either immature or mature DC are equally well electroporated and express and present the transgene at a comparable level after electroporation. We point out that the mRNA electroporation results in a negative effect on the interleukin (IL)-12p70, IL-6, and tumor necrosis factor-alpha secretion after maturation. Nevertheless, mRNA-electroporated DC induce an effective cytotoxic T lymphocyte (CTL) response in vivo. Mature electroporated DC are significantly more potent in eliciting an Ag-specific CD8+ CTL response compared to their immature electroporated counterparts. In addition, a significant improvement in CTL response is obtained both in the primary and in the memory effector phases when CD4+CD25+ regulatory T cells (Treg) are depleted in vivo prior to immunization. These findings are further substantiated in tumor protection experiments and hold convincing evidence for the merit of Treg cell depletion prior to immunization with mRNA-electroporated DC.  相似文献   

13.
Recent evidence suggests that in addition to their well known stimulatory properties, dendritic cells (DCs) may play a major role in peripheral tolerance. It is still unclear whether a distinct subtype or activation status of DC exists that promotes the differentiation of suppressor rather than effector T cells from naive precursors. In this work, we tested whether the naturally occurring CD4+ CD25+ regulatory T cells (Treg) may control immune responses induced by DCs in vivo. We characterized the immune response induced by adoptive transfer of antigen-pulsed mature DCs into mice depleted or not of CD25+ cells. We found that the development of major histocompatibility complex class I and II-restricted interferon gamma-producing cells was consistently enhanced in the absence of Treg. By contrast, T helper cell (Th)2 priming was down-regulated in the same conditions. This regulation was independent of interleukin 10 production by DCs. Of note, splenic DCs incubated in vitro with Toll-like receptor ligands (lipopolysaccharide or CpG) activated immune responses that remained sensitive to Treg function. Our data further show that mature DCs induced higher cytotoxic activity in CD25-depleted recipients as compared with untreated hosts. We conclude that Treg naturally exert a negative feedback mechanism on Th1-type responses induced by mature DCs in vivo.  相似文献   

14.
The generation of an in vitro major histocompatibility complex class I specific response of CD4-CD8- T cell receptor (TCR) alpha beta cytotoxic T lymphocytes (CTL) and their allogeneic tumor rejection were investigated. Inocula of BALBRL male 1 were rejected in C57BL/6 (B6) mice treated with minimum essential medium (MEM) (control), anti-L3T4 (CD4) monoclonal antibody (mAb) or anti-Lyt-2.2 (CD8) mAb and CTL against the tumor were generated in vitro. No rejection and no induction of CTL were observed in B6 mice treated with anti-L3T4 (CD4) plus anti-Lyt-2.2 (CD8) mAb. CTL with the classical Thy-1+ CD3+CD4-CD8+ TCR alpha beta phenotype were generated in mixed lymphocyte tumor cell culture (MLTC) spleen cells from B6 mice treated with MEM (control) or anti-L3T4 (CD4) mAb, whereas CTL with an unusual Thy-1+CD3+CD4-CD8- TCR alpha beta phenotype were generated in MLTC spleen cells from anti-Lyt-2.2 (CD8) mAb-treated B6 mice. Both types of CTL were reactive with both H-2Kd and Dd (Ld) class I antigen. These findings suggest that when CD4+ cells were blocked by anti-L3T4 (CD4) mAb, CD8+ CTL mediated rejection, and when CD8+ cells were blocked by anti-Lyt-2.2 (CD8) mAb, CD4+ cells were capable of mediating rejection, although less efficiently than CD8+ cells, by inducing CD4-CD8- TCR alpha beta CTL. The finding that adoptive transfer of CD4 and CD8-depleted MLTC spleen cells, obtained from anti-Lyt-2.2 (CD8) mAb-treated B6 mice that had rejected BALBRL male 1, resulted in rejection of BALBRL male 1 inoculated into B6 nu/nu mice confirmed the above notion. CTL clones with the CD4-CD8- TCR alpha beta phenotype specific for Ld were established.  相似文献   

15.
本研究探讨经亚硒酸钠(Na2SeO3)处理、K562细胞裂解物冲击致敏的外周血衍生的树突状细胞(DC)的生物学特性和体外诱导抗原特异性细胞毒性T淋巴细胞(CTL)应答的能力。健康人外周血单个核细胞(PBMNC)于体外在含3种细胞因子(rhGM—CSF、rhIL-4、TNF-α)的RPMI1640+10%FBS培养液中培养4天,收获贴壁细胞,实验分4组:DCⅠ组:仅含DC;DCⅡ组:DC+Se(0.5μmol/L);DCⅢ组:DC+K562细胞裂解液;DCⅣ组:在DCⅢ组中加入Se(0.5μmol/L)。在培养的第7天于倒置显微镜下进行活细胞观察。用流式细胞术(FCM)检测细胞表型CD1a、CD40、CD83、CD86。乳酸脱氢酶(LDH)释放试验检测CTL效应。用酶联免疫吸附试验(ELISA)测定IL-12含量。结果表明:各组DC均具有典型树突状细胞形态,均较培养前集落增多。DCⅠ组和DCⅡ组的细胞形态及数量无明显差异,DCⅢ组和DCⅣ组的细胞集落数量增加,悬浮细胞比例增加。各组DC细胞的CD1a、CD40、CD83、CD86表达率较PBMNC明显增高(P〈0.01),各组间DC细胞的CD1a和CD40的表达率无明显差异,DCⅢ组和DCⅣ组的CD83和CD86的表达率均高于DCⅠ组和DCⅡ组(P〈0.01),DCⅠ和DCⅡ以及DCⅢ和DCⅣ两组之间CD83和CD86表达率均无明显差异。在效靶比例为25:1时,各组DC致敏的T淋巴细胞对K562细胞的杀伤率为15.3±2.3%、26.3±3.7%、28.2±4.5%和36.2±3.7%,均明显高于未经DC致敏的单独T淋巴细胞组(5.9±2.4%)(P〈0.01),DCⅣ组的CTL效应最强,高于DCⅠ、Ⅱ、Ⅲ组(P〈0.01),DCⅡ和DCⅢ组的CTL效应也高于DCⅠ组(P〈0.01),而DCⅡ和DCⅢ两组间CTL效应程度无明显差异(P〉0.05);各组DC与T淋巴细胞共培养的上清液中IL-12水平为256.96±64.2、328.12±43.9、322.98±53.5和353.85±46.2pg/ml,均显著高于未经DC致敏的单独T淋巴细胞组(35?  相似文献   

16.
目的研究体外诱导脐血CD8+细胞毒性T淋巴细胞(CTL)特异性杀伤白血病细胞的作用,探讨脐血淋巴细胞用于特异性免疫治疗的可行性.方法联合细胞因子体外诱导10份脐血单个核细胞(MNC)分化为树突细胞(DC),同时负载U937冻融抗原;成熟DC刺激同源的脐血T淋巴细胞成为CTL,经MACS磁珠分选出CD8+CTL.倒置显微镜、扫描电子显微镜及流式细胞术等方法检测DC细胞特性.MTT法测定细胞杀伤活性.结果10份脐血标本均可培养出形态典型、功能成熟的DC.CD8+CTL、CD8-CTL和淋巴细胞(TL)组对U937细胞不同效靶比的杀伤率以CD8+CTL组最高;CD8+CTL在401效靶比时对靶细胞U937细胞的杀伤率高于对K562细胞的杀伤率[分别为(66.36±12.43)%和(41.97±14.24)%,(P《0.05)];而CD8-CTL在401效靶比时对U937细胞和K562细胞的杀伤率差异无统计学意义[分别为(34.47±8.19)%和(22.45±4.00)%(P》0.05)].结论用负载U937细胞抗原的成熟脐血DC,诱导出脐血淋巴细胞特异性的CD8+CTL;CD8+CTL对U937细胞的杀伤活性强于CD8-CTL;CD8+CTL对U937细胞的杀伤活性具有特异性.  相似文献   

17.
T cell-mediated immune response against autologous melanoma cells was analyzed, at population and clonal levels, in 31 patients with recurrent and/or metastatic disease. Fresh PBL and lymph node lymphocytes (LNL) from melanoma-involved nodes were not cytotoxic against the respective melanoma cells. When activated in in vitro coculture (IVC) against the autologous melanoma cells in the presence of IL-2, a majority of the activated PBL and LNL became cytotoxic against the autologous targets. The activated effector cells were cloned in limiting dilution microcultures, and growing clones were phenotypically defined and were functionally characterized for cytotoxicity and for potential regulatory function. Functional T cell clones were obtained from 15 of 31 cases. Of these, CTL responses exhibiting cytotoxicity restricted against the autologous melanoma were seen in four cases. All four CTL clones were CD3+, CD8+, and CD4-. Three of these four CTL clones were studied extensively. All three of these CTL clones expressed MHC class I-restricted cytotoxicity. mAb anti-CD3 blocked cytotoxicity in two and enhanced cytotoxicity in the other. Neither autologous sera nor autologous nonactivated fresh PBL modulated the cytotoxic functions of the CTL clones at the effector phase. T cell lines exhibiting regulatory function were obtained in 11 cases. The regulatory T cell lines were CD3+, CD4+, and CD8-. In three cases CD4+ clones amplified the cytotoxic response in the PBL in coculture, while in eight other cases the T cell lines downregulated the cytotoxic responses. Such T cell-mediated down-regulations were either restricted to the autologous system, induced by D/DR antigens expressed by the autologous or allogeneic melanoma cells, or induced by stimulus other than D/DR antigens. Taken together, these findings clearly demonstrate the existence of T cell-mediated cytotoxic and regulatory responses against human melanoma.  相似文献   

18.
We have observed that a peptide corresponding to an immunodominant epitope of the HIV-1 envelope protein recognized by class I MHC-restricted CD8+ CTL can also induce T cell help for itself. The help is necessary for restimulation of CTL precursors in vitro with peptide alone in the absence of exogenous lymphokines, can be removed by depletion of CD4+ T cells, and can be replaced by exogenous IL-2. Whereas the CTL in BALB/c or B10. D2 mice are restricted by the class I molecule Dd, the Th cells are restricted by the class II molecule Ad, and the help can be blocked by anti-Ad mAb. To examine the genetic regulation of the induction of help, we studied B10.A mice that share the class I Dd molecule, but have different class II molecules, Ak and Ek. Spleen cells of immune B10.A mice behave like CD4-depleted BALB/c spleen cells in that they cannot be restimulated in vitro by the peptide alone, but can with peptide plus IL-2. Therefore, in the absence of exogenous lymphokines, peptide-specific help is necessary for restimulation with this immunodominant CTL epitope peptide, and in H-2d mice, this peptide stimulates help for itself as well as CTL. We speculate on the implications of these findings for the immunodominance of this peptide in H-2d mice, and for the selective advantage of pairing certain class I and class II molecules in an MHC haplotype.  相似文献   

19.
Since transfection of dendritic cells (DC) plays a key role in DNA vaccination, in vivo expansion of DC might be a tool to increase vaccine efficacy. We asked whether Fms-like tyrosine kinase-3 ligand (Flt-3L), a growth factor for DC, can be used as an adjuvant for DNA vaccination. Beta-galactosidase (beta-gal) was used as a model antigen in C57BL/6 mice. Mice were immunized i.m. with DNA coding for beta-gal with or without additional injection of Flt-3L. In both cases, antigen-specific CD4+ and CD8+ T cells were detectable after vaccination. Compared with DNA alone, additional administration of Flt-3L led to a significant increase in the antigen-specific proliferative response. However, increased cytotoxicity by T cells was not observed. The cytokines secreted by splenocytes of immunized mice upon in vitro stimulation with antigen had a TH2 profile. Humoral responses against beta-gal preferentially consisted of IgG1 antibodies. Analysis of DC from Flt-3L-treated mice revealed an immature phenotype with low or absent expression levels of CD80, CD86 and CD40. We conclude that Flt-3L does not generally skew immune responses towards a TH1 type. More likely, factors determined by the antigen and/or the vaccination procedure itself are crucial for the resulting type of immune response. Flt-3L - under circumstances such as the one we have investigated - can also lead to suppression of TH1 T cell immunity, possibly by expansion of immature/unactivated DC.  相似文献   

20.
Therapeutic vaccination aims at a strong stimulation of antigen-specific CD8(+) T-cells, so that they differentiate into effectors active in vivo against antigenic targets. Two adenovirus vectors (Ad) encoding two HLA-A*0201-restricted HIV epitope sequences (pol 476 and pol 589) were constructed. The Ad differ by the presence or absence of a ubiquitin monomer sequence (AdUb(+) and AdUb(-)). The effect of transgene product ubiquitination was analyzed on (1) in vivo, the immunization of Ad vaccinated HLA-A*0201 humanized HHD mice and (2) in vitro, the presentation of the transgene encoded peptides by transduced human dendritic cells (DC). In vivo, we found that immunization of humanized HHD mice with AdUb(+) elicited a transgene product-specific interferon (INF)-gamma CD8(+) T-cell response detectable by enzyme-linked immunospot (ELISPOT), whereas the AdUb(-) construction did not. Antigen-specific cytotoxic T lymphocytes (CTL) were also generated in HHD mice immunized with AdUb(+) and not with AdUb(-). In vitro, using human AdUb(+)-transduced DC, a sizeable expansion of pol 476 and pol 589 tetramer positive CD8(+) T cells as well as CD8(+) CTL were obtained in healthy donors. Compared to AdUb(-)-transduced DC, AdUb(+)-transduced DC triggered a higher number of pol 476-specific IFN-gamma-secreting CD8(+) T cells. In agreement, AdUb(+) transduced DC, used as target in a (51)Cr-release assay, were more efficiently lysed by peptide-specific CTL than AdUb(-)-transduced DC. In conclusion, the addition of an ubiquitin sequence to the adenoviral transgene, used as an antigen source, resulted in both in vivo enhanced CD8(+) T-cell immunogenicity in HHD mice and in vitro increased HLA class I-restricted presentation of encoded peptides by human DC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号