首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adoptive transfer of antigen-specific T cells that have been expanded ex vivo is being actively pursued to treat infections and malignancy in humans. The T cell populations that are available for adoptive immunotherapy include both effector memory and central memory cells, and these differ in phenotype, function, and homing. The efficacy of adoptive immunotherapy requires that transferred T cells persist in vivo, but identifying T cells that can reproducibly survive in vivo after they have been numerically expanded by in vitro culture has proven difficult. Here we show that in macaques, antigen-specific CD8(+) T cell clones derived from central memory T cells, but not effector memory T cells, persisted long-term in vivo, reacquired phenotypic and functional properties of memory T cells, and occupied memory T cell niches. These results demonstrate that clonally derived CD8+ T cells isolated from central memory T cells are distinct from those derived from effector memory T cells and retain an intrinsic capacity that enables them to survive after adoptive transfer and revert to the memory cell pool. These results could have significant implications for the selection of T cells to expand or to engineer for adoptive immunotherapy of human infections or malignancy.  相似文献   

2.
CD8+ T cell depletion renders CD28-deficient mice susceptible to experimental autoimmune encephalomyelitis (EAE). In addition, CD8-/-CD28-/- double-knockout mice are susceptible to EAE. These findings suggest a role for CD8+ T cells in the resistance of CD28-deficient mice to disease. Adoptive transfer of CD8+CD28- T cells into CD8-/- mice results in significant suppression of disease, while CD8+CD28+ T cells demonstrate no similar effect on the clinical course of EAE in the same recipients. In vitro, CD8+CD28- but not CD8+CD28+ T cells suppress IFN-gamma production of myelin oligodendrocyte glycoprotein-specific CD4+ T cells. This suppression requires cell-to-cell contact and is dependent on the presence of APCs. APCs cocultured with CD8+CD28- T cells become less efficient in inducing a T cell-dependent immune response. Such interaction prevents upregulation of costimulatory molecules by APCs, hence decreasing the delivery of these signals to CD4+ T cells. These are the first data establishing that regulatory CD8+CD28- T cells occur in normal mice and play a critical role in disease resistance in CD28-/- animals.  相似文献   

3.
CD8+ T cells play a central role in the resolution and containment of viral infections. A key effector function of CD8+ T cells is their cytolytic activity toward infected cells. Here, we studied the regulation of cytolytic activity in naive, effector, and central versus effector memory CD8+ T cells specific for the same glycoprotein-derived epitope of lymphocytic choriomeningitis virus. Our results show that the kinetics of degranulation, assessed by a novel flow cytometric based assay, were identical in effector and both subsets of memory CD8+ T cells, but absent in naive CD8+ T cells. However, immediate cytolytic activity was most pronounced in effector T cells, low in effector memory T cells, and absent in central memory T cells, correlating with the respective levels of cytolytic effector molecules present in lytic granules. These results indicate that an inherent program of degranulation is a feature of antigen-experienced cells as opposed to naive CD8+ T cells and that the ability of CD8+ T cells to induce target cell apoptosis/death is dependent on granule protein content rather than on the act of degranulation itself. Furthermore, these results provide a potential mechanism by which central memory CD8+ T cell-mediated death of antigen-presenting cells within the lymph node is avoided.  相似文献   

4.
Regulatory CD4+CD25+ T cells restrict memory CD8+ T cell responses   总被引:16,自引:0,他引:16       下载免费PDF全文
CD4+ T cell help is important for the generation of CD8+ T cell responses. We used depleting anti-CD4 mAb to analyze the role of CD4+ T cells for memory CD8+ T cell responses after secondary infection of mice with the intracellular bacterium Listeria monocytogenes, or after boost immunization by specific peptide or DNA vaccination. Surprisingly, anti-CD4 mAb treatment during secondary CD8+ T cell responses markedly enlarged the population size of antigen-specific CD8+ T cells. After boost immunization with peptide or DNA, this effect was particularly profound, and antigen-specific CD8+ T cell populations were enlarged at least 10-fold. In terms of cytokine production and cytotoxicity, the enlarged CD8+ T cell population consisted of functional effector T cells. In depletion and transfer experiments, the suppressive function could be ascribed to CD4+CD25+ T cells. Our results demonstrate that CD4+ T cells control the CD8+ T cell response in two directions. Initially, they promote the generation of a CD8+ T cell responses and later they restrain the strength of the CD8+ T cell memory response. Down-modulation of CD8+ T cell responses during infection could prevent harmful consequences after eradication of the pathogen.  相似文献   

5.
Currently there are few reliable cell surface markers that can clearly discriminate effector from memory T cells. To determine if there are changes in O-glycosylation between these two cell types, we analyzed virus-specific CD8 T cells at various time points after lymphocytic choriomeningitis virus infection of mice. Antigen-specific CD8 T cells were identified using major histocompatibility complex class I tetramers, and glycosylation changes were monitored with a monoclonal antibody (1B11) that recognizes O-glycans on mucin-type glycoproteins. We observed a striking upregulation of a specific cell surface O-glycan epitope on virus-specific CD8 T cells during the effector phase of the primary cytotoxic T lymphocyte (CTL) response. This upregulation showed a strong correlation with the acquisition of effector function and was downregulated on memory CD8 T cells. Upon reinfection, there was again increased expression of this specific O-glycan epitope on secondary CTL effectors, followed once more by decreased expression on memory cells. Thus, this study identifies a new cell surface marker to distinguish between effector and memory CD8 T cells. This marker can be used to isolate pure populations of effector CTLs and also to determine the proportion of memory CD8 T cells that are recruited into the secondary response upon reencounter with antigen. This latter information will be of value in optimizing immunization strategies for boosting CD8 T cell responses.  相似文献   

6.
CD4+CD28- costimulation-independent T cells in multiple sclerosis   总被引:3,自引:0,他引:3       下载免费PDF全文
Multiple lines of evidence suggest that CD4+ lymphocytes initiate autoimmune responses against myelin antigens in multiple sclerosis (MS). The increased frequency of activated myelin-specific cells in MS patients indicates that the activation of autoreactive cells represents a central event in the pathogenesis of the disease. We identified a CD4+ subpopulation that is characterized phenotypically by the persistent absence of surface CD28 expression and functionally by CD28-independent activation and Th1 cytokine secretion. Owing to their costimulation-independent activation and their expression of a full agonist signaling activation pattern, CD4+CD28- cells have the potential to initiate autoimmune responses in the central nervous system, a compartment devoid of professional antigen presenting cells. Long-term memory CD4+CD28- cells produce high amounts of IFN-gamma and maximally upregulate IFN-gamma and IL-12Rbeta2 chain expression in the absence of costimulation. They exhibit prominent growth characteristics and increased survival after activation, likely related to their persistent lack of CTLA-4 surface expression. The CD4+CD28- population is expanded in a subgroup of MS patients. Myelin basic protein-specific cells detected in this cell subset may play an important role in the inflammatory response within the central nervous system.  相似文献   

7.
Survival and intermittent proliferation of memory CD4(+) and CD8(+) T cells appear to be controlled by different homeostatic mechanisms. In particular, contact with interleukin (IL)-15 has a decisive influence on memory CD8(+) cells, but not memory CD4(+) cells. Past studies of memory CD4(+) cells have relied heavily on the use of naturally occurring memory phenotype (MP) cells as a surrogate for antigen (Ag)-specific memory cells. However, we show here that MP CD4(+) cells contain a prominent subset of rapidly proliferating major histocompatibility complex (MHC) II-dependent cells. In contrast, Ag-specific memory CD4 cells have a slow turnover rate and are MHC II independent. In irradiated hosts, these latter cells ignore IL-15 and expand in response to the elevated levels of IL-7 in the lymphopenic hosts. In contrast, in normal nonlymphopenic hosts where IL-7 levels are low, memory CD4 cells are heavily dependent on IL-15. Significantly, memory CD4(+) responsiveness to endogenous IL-15 reflects marked competition from other cells, especially CD8(+) and natural killer cells, and increases considerably after removal of these cells. Therefore, under normal physiological conditions, homeostasis of CD8(+) and CD4(+) memory cells is quite similar and involves IL-15 and IL-7.  相似文献   

8.
Naturally occurring CD4+CD25+ regulatory T cells appear important to prevent activation of autoreactive T cells. This article demonstrates that the magnitude of a CD8+ T cell-mediated immune response to an acute viral infection is also subject to control by CD4+CD25+ T regulatory cells (Treg). Accordingly, if natural Treg were depleted with specific anti-CD25 antibody before infection with HSV, the resultant CD8+ T cell response to the immunodominant peptide SSIEFARL was significantly enhanced. This was shown by several in vitro measures of CD8+ T cell reactivity and by assays that directly determine CD8+ T cell function, such as proliferation and cytotoxicity in vivo. The enhanced responsiveness in CD25-depleted animals was between three- and fourfold with the effect evident both in the acute and memory phases of the immune response. Surprisingly, HSV infection resulted in enhanced Treg function with such cells able to suppress CD8+ T cell responses to both viral and unrelated antigens. Our results are discussed both in term of how viral infection might temporarily diminish immunity to other infectious agents and their application to vaccines. Thus, controlling suppressor effects at the time of vaccination could result in more effective immunity.  相似文献   

9.
HIV infection selectively targets CD4+ effector memory T (T EM) cells, resulting in dramatic depletion of CD4+ T cells in mucosal effector sites in early infection. Regeneration of the T EM cell compartment is slow and incomplete, even when viral replication is controlled by antiretroviral therapy (ART). Here, we demonstrate that IL-15 dramatically increases in vivo proliferation of rhesus macaque (RM) CD4+ and CD8+ T EM cells with little effect on the naive or central memory T (T CM) cell subsets, a response pattern that is quite distinct from that of either IL-2 or IL-7. T EM cells produced in response to IL-15 did not accumulate in blood. Rather, 5-bromo-2'-deoxyuridine (BrdU) labeling studies suggest that many of these cells rapidly disperse to extralymphoid effector sites, where they manifest (slow) decay kinetics indistinguishable from that of untreated controls. In RMs with uncontrolled SIV infection and highly activated immune systems, IL-15 did not significantly increase CD4+ T EM cell proliferation, but with virologic control and concomitant reduction in immune activation by ART, IL-15 responsiveness was again observed. These data suggest that therapeutic use of IL-15 in the setting of ART might facilitate specific restoration of the CD4 + T cell compartment that is the primary target of HIV with less risk of exhausting precursor T cell compartments or generating potentially deleterious regulatory subsets.  相似文献   

10.
The relationship between the number of circulating CD4+ T cells and the presence of particular CD8+ T cell subsets was analyzed by flow cytometry on PBL from asymptomatic HIV-1-infected patients whose specimens were collected every 2 mo for a total period of 32 mo. Only slight variations were detected in the absolute number of lymphocytes and percentage of CD3+ lymphocytes, whereas both CD4+ and CD8+ T cell subsets showed wide intrapatient variation. Variations in the number of CD8+CD28+ cells paralleled those of the CD4+ T cell subset in each patient tested, while the presence of CD8+CD28- T cells correlated inversely with CD4+ and CD8+CD28+ T cells. These data show that changes in the number of circulating CD4+-and CD8+CD28+ T cells are strongly related to the presence of CD8+CD28- T cells in these patients. Insight into the significance of CD8+CD28- T cell expansion will allow us to understand the mechanisms and significance of the HIV-1- driven change in CD4+CD8+ T cell homeostasis and the basic immunopathology of HIV disease.  相似文献   

11.
目的 检测乙肝患者外周血CD4^+淋巴细胞表面HLA-DR和CD8^+淋巴细胞表面CD28的表达情况,评价乙肝患者的细胞免疫状态。方法 荧光抗体CD4-PECY5、HLA-DR-FITC和CD8-PE、CD28-FITC标记淋巴细胞,流式细胞仪分别测定患者CD4^+淋巴细胞表面HLA-DR和CD8^+淋巴细胞表面CD28表达的百分率,并与HBV-DNA结果比较。结果 ①与正常对照组比较,乙肝患者组外周血CD4^+淋巴细胞表面HLA-DR的表达显著升高(P〈0.001),CD8^+淋巴细胞表面CD28的表达显著降低(P〈0.01);②乙肝患者DNA阳性(〉4000拷贝/ml)与阴性(〈4000拷贝/ml)组CD4^+淋巴细胞表面HLA-DR和CD8^+淋巴细胞表面CD28的表达比较均无显著性差异(P〉0.1)。结论 乙肝患者外周血CD4^+细胞的免疫活化增强,CD8^+细胞与抗原递呈细胞结合的作用减弱;淋巴细胞的活化情况与病毒复制情况及含量多少无关。  相似文献   

12.
Here, we show that interleukin-1 (IL-1) enhances antigen-driven CD8 T cell responses. When administered to recipients of OT-I T cell receptor transgenic CD8 T cells specific for an ovalbumin (OVA) peptide, IL-1 results in an increase in the numbers of wild-type but not IL1R1−/− OT-I cells, particularly in spleen, liver, and lung, upon immunization with OVA and lipopolysaccharide. IL-1 administration also results in an enhancement in the frequency of antigen-specific cells that are granzyme B+, have cytotoxic activity, and/ or produce interferon γ (IFN-γ). Cells primed in the presence of IL-1 display enhanced expression of granzyme B and increased capacity to produce IFN-γ when rechallenged 2 mo after priming. In three in vivo models, IL-1 enhances the protective value of weak immunogens. Thus, IL-1 has a marked enhancing effect on antigen-specific CD8 T cell expansion, differentiation, migration to the periphery, and memory.A major goal in developing protective immune responses is to obtain robust CD8 T cell expansion, effector differentiation, and memory generation using simple protein antigens as immunogens. We have previously reported that IL-1 strikingly enhances CD4 T cell responses when administered to mice during the period immediately after priming (Ben-Sasson et al., 2009), and thus wished to determine whether it would have a comparable effect on CD8 cells.IL-1’s effect on CD4 T cells was observed in vivo, was direct, and largely reflected enhanced survival rather than increased proliferative rate. Furthermore, when wild-type and IL1R1−/− CD4 TCR transgenic T cells specific for an OVA peptide were jointly transferred to IL1R1−/− recipients, only the wild-type cells responded to IL-1 with enhanced antigen-driven expansion (Ben-Sasson et al., 2009). This result indicates that IL-1 acts directly on the antigen-responding CD4 cell. Of a wide range of cytokines, including IL-2, -4, -6, -7, -9, -15, -18, -21, and -33, as well as TNF, only IL-1α and IL-1β showed such profound enhancement activity (Ben-Sasson et al., 2009). The IL-1 effect was observed in both IL-6– and in CD28-deficient recipients. Neutralizing IL-1 diminished responses to protein plus LPS by ∼60%, implying that endogenous IL-1 enhanced antigen-specific CD4 T cells responses.IL-1 strikingly enhanced antigen-driven expansion in vivo and enhances in vitro expansion of Th17 cells, which express large amounts of IL-1R1 (Guo et al., 2009; Lee et al., 2010), but it had no detectable effect on in vitro expansion of Th1 or Th2 cells. However, administering IL-1 in vivo during CD4 T cell priming, while increasing the proportion of Th17 cells among responders, also causes striking expansion of both IFN-γ and IL-4–producing cells (Ben-Sasson et al., 2009).The role of IL-1 in regulating CD8 T cell responses has not been clear. Some have reported that IL-1 enhances in vitro expansion of CD8 cells responding to polyclonal stimulants (Mizuochi et al., 1988; Hope et al., 2001). Where studied, it appears that the in vitro effects of IL-1 have been limited to cells expressing large amounts of IL-1R1 (Klarnet et al., 1989; Nagoya et al., 1994). In one instance, enhanced capacity to produce IFN-γ was observed (Fischer et al., 1990). However, others have failed to observe IL-1–mediated enhancement of in vitro TCR-driven CD8 T cell expansion (Halvorsen et al., 1987; Panzer et al., 1990; Curtsinger et al., 1999).IL1R1−/− mice have been reported to have diminished CD8 responses to infection with LCMV (Joeckel et al., 2012), influenza (Ichinohe et al., 2009), Mycobacterium tuberculosis (Fremond et al., 2007), vaccinia (Staib et al., 2005), and certain tumors (Elkabets et al., 2009; Ghiringhelli et al., 2009). In addition, Myd88−/− and/or IRAK-4−/− mice, both of which have defective IL-1–mediated signaling, have impaired responses to LCMV (Lye et al., 2008), vaccinia (Zhao et al., 2009), and malaria (Gowda et al., 2012). CD8 T cells specific for LCMV appearing in infected IL1R1−/− mice were reported not to express granzyme B (Joeckel et al., 2012). Furthermore, vaccinia that fail to display a virally encoded soluble IL-1β receptor elicit greater protection and improved CD8 memory responses (Staib et al., 2005) implying that neutralizing endogenous IL-1 normally limits immunity to vaccinia. However, in these infection models, the cell target of IL-1 was not established.We sought to determine the importance of IL-1 in in vivo priming and differentiation of antigen-specific CD8 T cells. To that end, we transferred WT OT-I cells to WT or IL1R1−/− C57BL/6 recipients that were then immunized with OVA plus LPS. IL-1R1−/− recipients showed increases of WT OT-I T cells comparable to WT recipients in response to IL-1 in lymph nodes and spleen, but not in liver and lung. IL-1 administration also resulted in a striking enhancement in the frequency of granzyme B+ cells, in cytotoxic activity, and in cells that produced IFN-γ in response to PMA and ionomycin. Mice primed in the presence of IL-1 developed secondary CD8 T cells responses marked by enhanced expression of granzyme B and augmented capacity to produce IFN-γ when rechallenged 2 mo after priming. In three in vivo models, IL-1 enhanced the protective value of weak immunogens. Thus, IL-1 has a striking effect on enhancing antigen-specific CD8 T cell expansion, differentiation, migration to the periphery, and memory.  相似文献   

13.
Migratory properties of naive, effector, and memory CD8(+) T cells   总被引:20,自引:0,他引:20  
It has been proposed that two different antigen-experienced T cell subsets may be distinguishable by their preferential ability to home to lymphoid organs (central memory cells) or nonlymphoid tissues (effector memory/effector cells). We have shown recently that murine antigen-primed CD8(+) T cells cultured in interleukin (IL)-15 (CD8(IL-15)) resemble central memory cells in phenotype and function. In contrast, primed CD8(+) T cells cultured in IL-2 (CD8(IL-2)) become cytotoxic effector cells. Here, the migratory behavior of these two subsets was investigated. Naive, CD8(IL-15) cells and, to a lesser degree, CD8(IL-2) cells localized to T cell areas in the spleen, but only naive and CD8(IL-15) cells homed to lymph nodes (LNs) and Peyer's patches. Intravital microscopy of peripheral LNs revealed that CD8(IL-15) cells, but not CD8(IL-2) cells, rolled and arrested in high endothelial venules (HEVs). Migration of CD8(IL-15) cells to LNs depended on L-selectin and required chemokines that bind CC chemokine receptor (CCR)7. Both antigen-experienced populations, but not naive T cells, responded to inflammatory chemokines and accumulated at sites of inflammation. However, CD8(IL-2) cells were 12 times more efficient in migrating to inflamed peritoneum than CD8(IL-15) cells. Furthermore, CD8(IL-15) cells proliferated rapidly upon reencounter with antigen at sites of inflammation. Thus, central memory-like CD8(IL-15) cells home avidly to lymphoid organs and moderately to sites of inflammation, where they mediate rapid recall responses, whereas CD8(IL-2) effector T cells accumulate in inflamed tissues, but are excluded from most lymphoid organs.  相似文献   

14.
15.
Transgenic (TG) mice expressing a high copy number of interleukin (IL)-7 cDNA under the control of the major histocomaptability complex (MHC) class II promoter display a 10-20-fold increase in total T cell numbers. Here, we show that the increase in T cell numbers in IL-7 TG mice is most apparent at the level of memory phenotype CD44hi CD122hi CD8+ cells. Based on studies with T cell receptor (TCR) TG mice crossed to IL-7 TG mice, increased levels of IL-7 may provide costimulation for TCR recognition of self-MHC ligands and thus cause naive CD8+ cells to proliferate and differentiate into memory phenotype cells. In addition, a marked increase in CD44hi CD122hi CD8+ cells was found in IL-7 TG IL-15(-) mice. Since these cell are rare in normal IL-15(-) mice, the dependency of memory phenotype CD8+ cells on IL-15 can be overcome by overexpression of IL-7.  相似文献   

16.
17.
18.
T cell receptor engagement with CD28 costimulation is generally required for naive T cell activation, whereas reactivation of memory cells is less dependent on CD28 costimulation. We studied this process in chronic beryllium disease, in which the frequency of antigen-specific CD4+ T cells in the lung is large and circulating antigen-specific cells are also detectable. In the lung, a large fraction of CD4+ T cells stopped expressing CD28 mRNA and protein, and this change in phenotype correlated with lung inflammation. In the presence of concentrations of CTLA-4Ig that inhibited the CD28-B7 interaction, beryllium-specific CD4+ T cells in lung were still able to proliferate and secrete IFN-gamma in response to beryllium in culture. This functional independence of CD28 costimulation included lung CD28+ effector cells. Although lung CD4+CD28- cells retained the ability to secrete Th1-type cytokines in response to beryllium, they showed less proliferative capacity and were more susceptible to cell death compared with CD28+ T cells. In contrast to lung cells, inhibition of the CD28-B7 interaction markedly reduced responses of beryllium-specific T cells in blood. Taken together, these findings suggest transition within memory CD4+ T cells from CD28 dependence in central memory cells to functional independence and then loss of CD28 expression in effector cells.  相似文献   

19.
CD4(+)CD25(+) regulatory T (Treg) cells suppress naive T cell responses, prevent autoimmunity, and delay allograft rejection. It is not known, however, whether Treg cells suppress allograft rejection mediated by memory T cells, as the latter mount faster and stronger immune responses than their naive counterparts. Here we show that antigen-induced, but not naive, Treg cells suppress allograft rejection mediated by memory CD8(+) T cells. Suppression was allospecific, as Treg cells induced by third-party antigens did not delay allograft rejection. In vivo and in vitro analyses revealed that the apoptosis of allospecific memory CD8(+) T cells is significantly increased in the presence of antigen-induced Treg cells, while their proliferation remains unaffected. Importantly, neither suppression of allograft rejection nor enhanced apoptosis of memory CD8(+) T cells was observed when Treg cells lacked CD30 or when CD30 ligand-CD30 interaction was blocked with anti-CD30 ligand Ab. This study therefore provides direct evidence that pathogenic memory T cells are amenable to suppression in an antigen-specific manner and identifies CD30 as a molecule that is critical for the regulation of memory T cell responses.  相似文献   

20.
CD8 is required during positive selection of CD4-/CD8+ T cells   总被引:2,自引:1,他引:2       下载免费PDF全文
Interactions between self-MHC molecules and T cells are necessary for the proper development of mature T cells, in part due to an absolute requirement for self-MHC-TCR interactions. Recently, we showed that CD4-mediated interactions also participate in shaping the T cell repertoire during thymic maturation. We now examine the possible role of the CD8 molecule during in vivo T cell development. Our results demonstrate that perinatal thymi treated with intact anti-CD8 mAb fail to generate CD8 single-positive T cells, while the generation of the other main phenotypes remains unchanged. Most importantly, the use of F(ab')2 anti-CD8 mAb fragments gave identical results, i.e., lack of generation of CD4-/CD8+ cells, with no effect on the generation of CD4+/CD8+. Furthermore, selective blocking of one CD8 allele with F(ab')2 mAbs in F1 mice expressing both CD8 alleles did not interfere with the development of CD4-/CD8+ cells, demonstrating that the absence of CD8+ T cells in homozygous mice is not due to depletion, but rather is caused by a lack of positive selection. This is most likely attributable to a deficient CD8-MHC class I interaction. Our findings strongly advocate that CD8 molecules are vital to the selection process that leads to the development of mature single-positive CD8 T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号