首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
In rats, the widely used insecticide fipronil increases the clearance of thyroxine (T(4)). This effect is associated with a high plasma concentration of fipronil sulfone, the fipronil main metabolite in several species including rats and humans. In sheep, following fipronil treatment, fipronil sulfone plasma concentration and thyroid disruption are much lower than in rats. We postulated that fipronil biotransformation into fipronil sulfone by hepatic cytochromes P450 (CYP) could act as a potential thyroid disruptor. The aim of this study was to determine if fipronil sulfone treatment could reproduce the fipronil treatment effects on T(4) clearance and CYP induction in rats. Fipronil and fipronil sulfone treatments (3.4 μmol/kg/day per os, 14 days) increased total and free T(4) clearances to the same extent in THX + T(3), euthyroid-like rats. Both treatments induced a 2.5-fold increase in Ugt1a1 and Sult1b1 messenger RNA (mRNA) expressions and a twofold increase in UGT1A activity suggesting that T(4) elimination was mediated, at least in part, by hepatic uridine 5'-diphospho-glucuronosyltransferases (UGT) and/or sulfotransferases (SULT) induction. Both treatments induced a 10-fold increase in Cyp3a1 and Cyp2b2 mRNA expressions concomitant with a threefold increase in CYP3A immunoreactivity and a 1.7-fold increase in antipyrine clearance, a biomarker of CYP3A activity. All these results showed that fipronil sulfone treatment could reproduce the fipronil treatment effects on T(4) clearance and hepatic enzyme induction in rats. The potential of fipronil sulfone to act as a thyroid disruptor is all the more critical because it persists much longer in the organism than fipronil itself.  相似文献   

4.
5.
Antiepileptic agents are known to cause adverse effects in human liver, including steatosis. Clobazam (CLB), a 1,5-benzodiazepine, is clinically used as an antiepileptic agent. In the previous study, 4-week treatment with CLB induced hepatomegaly in male rats. In the present study, the human risk of hepatomegaly was assessed and the causative mechanism in terms of cell proliferation and apoptosis, oxidative stress, and drug-metabolizing enzyme induction was elucidated by toxicological approach. Male SD rats were treated orally with 400 mg/kg CLB for 1, 3, 7, 14, or 28 days. The 28-day treatment was followed by 7 or 14 days of withdrawal. At the end of each treatment, the liver and plasma of each rat were examined. Liver weight increased from Day 3 of CLB treatment. This increase was mostly accompanied by hepatic centrilobular hypertrophy and proliferation of smooth endoplasmic reticulum (SER), and by an increase in microsomal proteins. Cyp2b1, Cyp3a1, Cyp3a2, and Ugt2b2 mRNA levels in the liver were upregulated as compared to the control group throughout the dosing period. On the other hand, the thiobarbituric acid reactive substance (TBARS) formulation, hepatocyte proliferation, and apoptosis, assumed to play roles in laying groundwork for effective induction of metabolizing enzymes, were increased only at the acute phase of treatment. These results suggested that CLB-induced hepatomegaly in male rats is mainly attributable to microsomal enzyme induction associated with Cyp2b1, Cyp3a1, Cyp3a2, and Ugt2b2 gene upregulation, but does not cause any toxicological concerns.  相似文献   

6.
7.
Fipronil is described as a thyroid disruptor in rat. Based on the hypothesis that this results from a perturbation of hepatic thyroid hormone metabolism, our goal was to investigate the pathways involved in fipronil-induced liver gene expression regulations. First, we performed a microarray screening in the liver of rats treated with fipronil or vehicle. Fipronil treatment led to the upregulation of several genes involved in the metabolism of xenobiotics, including the cytochrome P450 Cyp2b1, Cyp2b2 and Cyp3a1, the carboxylesterases Ces2 and Ces6, the phase II enzymes Ugt1a1, Sult1b1 and Gsta2, and the membrane transporters Abcc2, Abcc3, Abcg5, Abcg8, Slco1a1 and Slco1a4. Based on a large overlap with the target genes of constitutive androstane receptor (CAR) and pregnane X receptor (PXR), we postulated that these two nuclear receptors are involved in mediating the effects of fipronil on liver gene expression in rodents. We controlled that liver gene expression changes induced by fipronil were generally reproduced in mice, and then studied the effects of fipronil in wild-type, CAR- and PXR-deficient mice. For most of the genes studied, the gene expression modulations were abolished in the liver of PXR-deficient mice and were reduced in the liver of CAR-deficient mice. However, CAR and PXR activation in mouse liver was not associated with a marked increase of thyroid hormone clearance, as observed in rat. Nevertheless, our data clearly indicate that PXR and CAR are key modulators of the hepatic gene expression profile following fipronil treatment which, in rats, may contribute to increase thyroid hormone clearance.  相似文献   

8.
This study aimed to reveal age‐related changes in the expression and activity of seven hepatic drug metabolizing enzymes (DMEs) in male wild‐type and breast cancer resistance protein knockout (Bcrp1?/?) FVB mice. The protein expression of four cytochrome P450 (Cyps) (Cyp3a11, 2d22, 2e1, and 1a2), and three UDP‐glucuronosyltransferases (Ugts) (Ugt1a1, 1a6a, and 1a9) in liver microsomes of wild‐type and Bcrp1?/? FVB mice at different ages were determined using a validated ultra high performance liquid chromatography with tandem mass spectrometry (UHPLC–MS/MS) method. The activities and mRNA levels of these DMEs were measured using the probe substrates method and real‐time PCR, respectively. In the liver of wild‐type FVB mice, Cyp3a11, 2d22, 2e1, 1a2, Ugt1a1, and 1a6a displayed maximum protein levels at 6–9 weeks of age. Cyp1a2, Ugt1a1, 1a6a, and 1a9 showed maximum activities at 6–9 weeks of age, whereas Cyp3a11, 2d22, and 2e1 showed maximum activities in 1–3‐week‐old mice. Additionally, most of the DMEs showed maximum mRNA levels in 17‐week‐old mice liver. Compared with wild‐type FVB mice, the protein levels of these DMEs showed no significant changes in Bcrp1?/? FVB mice liver. However, the activity of Cyp2e1 was increased and that of Cyp2d22 was decreased. In conclusion, t he seven hepatic DMEs in FVB mice liver showed significant alterations in an isoform‐specific manner with increased age. Although the protein levels of these DMEs showed no significant changes, the activities of Cyp2e1 and 2d22 were changed in Bcrp1?/? mice.  相似文献   

9.
UDP-glucuronosyltransferases (UGTs) catalyze phase II biotransformation reactions in which lipophilic substrates are conjugated with glucuronic acid to increase water solubility and enhance excretion. Currently, little information regarding tissue- or gender-specific expression of mouse UGTs is available. Mice are increasingly popular models in biomedical research, and therefore, thorough characterization of murine drug metabolism is desired. The purpose of the present study was to determine both tissue- and gender-specific UGT gene expression profiles in mice. RNA from 14 tissues was isolated from male and female C57BL/6 mice and UGT expression was determined by the branched DNA signal amplification assay. UGTs highly expressed in mouse liver include Ugt1a1, Ugt1a5, Ugt1a6, Ugt1a9, Ugt2a3, Ugt2b1, Ugt2b5/37/38, Ugt2b34, Ugt2b35, and Ugt2b36. Several isoforms were expressed in the gastrointestinal (GI) tract, including Ugt1a6, Ugt1a7c, Ugt2a3, Ugt2b34, and Ugt2b35. In kidney, Ugt1a2, Ugt1a7c, Ugt2b5/37/38, Ugt2b35, and Ugt3a1/2 were expressed. UGT expression was also observed in other tissues: lung (Ugt1a6), brain (Ugt2b35), testis and ovary (Ugt1a6 and Ugt2b35), and nasal epithelia (Ugt2a1/2). Male-predominant expression was observed for Ugt2b1 in liver, Ugt2b5/37/38 in kidney, and Ugt1a6 in lung. Female-predominant expression was observed for Ugt1a1 and Ugt1a5 in liver, Ugt1a2 in kidney, Ugt2b35 in brain, and Ugt2a1/2 in nasal epithelia. UDP-glucose pyrophosphorylase was highly expressed in liver, kidney, and GI tract, whereas UDP-glucose dehydrogenase was highly expressed in the GI tract. In conclusion, marked differences in tissue- and gender-specific expression patterns of UGTs exist in mice, potentially influencing drug metabolism and pharmacokinetics.  相似文献   

10.
11.
The oral bioavailability of many drugs is highly influenced not only by hepatic but also by intestinal biotransformation. To estimate the impact of intestinal phase I and II metabolism on oral drug absorption, knowledge on the expression levels of the respective enzymes is an essential prerequisite. In addition, the potential interplay of metabolism and transport contributes to drug disposition. Both mechanisms may be subjected to coordinative regulation by nuclear receptors, leading to unwanted drug‐drug interactions due to induction of intestinal metabolism and transport. Thus, it was the aim of this study to comprehensively analyse the regional expression of clinically relevant phase I and II enzymes along the entire human intestine and to correlate these data to expression data of drug transporters and nuclear receptors of pharmacokinetic relevance. Gene expression of 11 drug‐metabolizing enzymes (CYP2B6, 2C8, 2C9, 2C19, 2D6, 3A4, 3A5, SULT1A, UGT1A, UGT2B7, UGT2B15) was studied in duodenum, jejunum, ileum and colon from six organ donors by real‐time RT‐PCR. Enzyme expression was correlated with expression data of the nuclear receptors PXR, CAR and FXR as well as drug transporters observed in the same cohort. Intestinal expression of all studied metabolizing enzymes was significantly higher in the small intestine compared to colonic tissue. CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4/5, SULT1A, UGT1A and UGT2B7 expression increased from the duodenum to jejunum but was markedly lower in the ileum. In the small intestine, that is, the predominant site of drug absorption, the highest expression has been observed for CYP3A4, CYP2C9, SULT1A and UGT1A. In addition, significant correlations were found between several enzymes and PXR as well as ABC transporters in the small intestine. In conclusion, the observed substantial site‐dependent intestinal expression of several enzymes may explain regional differences in intestinal drug absorption. The detected correlations between intestinal enzymes, transporters and nuclear receptors provide indirect evidence for their coordinative expression, regulation and function in the human small intestine.  相似文献   

12.
The triazole antifungals myclobutanil, propiconazole and triadimefon cause varying degrees of hepatic toxicity and disrupt steroid hormone homeostasis in rodent in vivo models. To identify biological pathways consistently modulated across multiple timepoints and various study designs, gene expression profiling was conducted on rat livers from three separate studies with triazole treatment groups ranging from 6 h after a single oral gavage exposure, to prenatal to adult exposures via feed. To explore conservation of responses across species, gene expression from the rat liver studies were compared to in vitro data from rat and human primary hepatocytes exposed to the triazoles. Toxicogenomic data on triazoles from 33 different treatment groups and 135 samples (microarrays) identified thousands of probe sets and dozens of pathways differentially expressed across time, dose, and species — many of these were common to all three triazoles, or conserved between rodents and humans. Common and conserved pathways included androgen and estrogen metabolism, xenobiotic metabolism signaling through CAR and PXR, and CYP mediated metabolism. Differentially expressed genes included the Phase I xenobiotic, fatty acid, sterol and steroid metabolism genes Cyp2b2 and CYP2B6, Cyp3a1 and CYP3A4, and Cyp4a22 and CYP4A11; Phase II conjugation enzyme genes Ugt1a1 and UGT1A1; and Phase III ABC transporter genes Abcb1 and ABCB1. Gene expression changes caused by all three triazoles in liver and hepatocytes were concentrated in biological pathways regulating lipid, sterol and steroid homeostasis, identifying a potential common mode of action conserved between rodents and humans. Modulation of hepatic sterol and steroid metabolism is a plausible mode of action for changes in serum testosterone and adverse reproductive outcomes observed in rat studies, and may be relevant to human risk assessment.  相似文献   

13.
trans-Stilbene oxide (TSO) is a synthetic proestrogen that induces phase I and II drug-metabolizing enzymes in rat liver. The purpose of this study was to determine whether TSO also induces transporter expression in rat liver and whether gene induction in rat liver after TSO occurs in a constitutive androstane receptor (CAR)-dependent manner. Total RNA was isolated from male rat livers after treatment with TSO for up to 4 days (200 mg/kg, i.p., twice daily), and the mRNA levels for each gene were quantified. CYP2B1/2, CYP3A1, epoxide hydrolase, heme oxygenase-1, UGT1A6, UGT2B1, multiple drug resistance protein (Mdr) 1a and 1b, as well as multidrug resistance-associated protein (Mrp) 2, 3, and 4 mRNA were increased in livers after TSO treatment. To determine whether TSO activates gene expression in a CAR-dependent manner, male and female Wistar-Kyoto (WKY) rats were treated with TSO for 3 days. TSO induced CYP2B1/2, UGT2B1, and Mdr1b in males more than in females, suggesting that TSO could increase their expression via CAR. Conversely, TSO induced CYP3A1, epoxide hydrolase, UGT1A6, and Mrp3 similarly in both genders, indicating that induction of these genes occurs independently of CAR. TSO treatment also increased the activity of a CAR binding element luciferase reporter construct in HepG2 cells transfected with rat CAR and in mouse liver. Additionally, TSO increased antioxidant response element/electrophile response element luciferase reporter construct activity in HepG2 cells. In conclusion, in WKY rat liver, TSO increases CYP2B1/2, UGT2B1, and Mdr1b mRNA expression in a gender-dependent manner and CYP3A1, epoxide hydrolase, UGT1A6, and Mrp3 in a gender-independent manner.  相似文献   

14.
1.?The phase I and II metabolizing enzymes of kidneys play an important role in the metabolism of xenobiotic as well as endogenous compounds and proximal tubules of kidney constitute high concentration of these metabolizing enzymes compared with the other parts.

2.?It has been shown previously that differential enzyme expression among human and rodent/non-rodent species can be a roadblock in drug discovery and development process. Currently, proximal tubule cell lines of human origin such as RPTEC/TERT1 and HK-2 are used to understand the pathophysiology of kidney diseases, therapeutic efficacy of drugs, and nephrotoxicity of compounds.

3.?The purpose of the present study is to understand the metabolic enzymes present in RPTEC/TERT1 and HK-2 cell lines that would help to interpret and predict probable in vitro behavior of the molecule being tested.

4.?We analyzed the expression of phase I and II metabolizing enzymes of RPTEC/TERT1 and HK-2 cell lines. We found equal expression of CYP1B1, 2J2, 3A4, 3A5, UGT1A9, SULT2A1 and GSTA, higher expression of 2B6, 2D6, 4A11, 4F2, 4F8, 4F11, UGT2B7, SULT1E1 in RPTEC/TERT1 and absence of GSTT in RPTEC/TERT1 compared to HK-2 at mRNA level. Such differences can affect the outcome of in vitro nephrotoxicity prediction.  相似文献   

15.
Antibiotic administration affects pharmacokinetics through changes in the intestinal microbiota, and bile acids are involved in this regulation. The purpose of the present study was to clarify the effect of different periods of antibiotic administration on the hepatic bile acid profile and expression of pharmacokinetic-related proteins in mouse liver, kidney, and brain capillaries. Vancomycin and polymyxin B were orally administered to mice for either 5- or 25-days. The hepatic bile acid profile of the 25-day treatment group was distinct. In the liver, the protein expression of cytochrome P450 (Cyp)3a11 showed the greatest reduction to 11.4% after the 5-day treatment and further reduced to 7.01% after the 25-day treatment. Similar reductions were observed for sulfotransferase 1d1, Cyp2b10, carboxylesterase 2e, UDP-glucuronosyltransferase (Ugt)1a5, and Ugt1a9. In the kidney and brain capillaries, no drug-metabolizing enzymes or drug transporters were changed with >1.5-fold or <0.66-fold statistical significance in either period. These results suggest that bile acids and metabolizing enzymes in the liver are affected in a period-dependent manner by antibiotic treatment, while the blood-brain barrier and kidneys are less affected. Drug-drug interactions of antibiotics via the intestinal microbiota should be considered by changing drug metabolism in the liver.  相似文献   

16.
17.
18.
19.
Propiconazole is a N-substituted triazole used as a fungicide on fruits, grains, seeds, hardwoods, and conifers. In the present study, propiconazole was examined for its effects on the expression of hepatic cytochrome P450 genes and on the activities of P450 enzymes in male Sprague-Dawley rats and male CD-1 mice. Rats and mice were administered propiconazole by gavage daily for 14 days at doses of 10, 75, and 150 mg/kg body weight/day. Quantitative real time RT-PCR assays of rat hepatic RNA samples from animals treated at the 150 mg/kg body weight/day dose revealed significant mRNA overexpression of the following genes compared to control: CYP1A2 (1.62-fold), CYP2B1 (10.8-fold), CYP3A1/CYP3A23 (2.78-fold), and CYP3A2 (1.84-fold). In mouse liver, propiconazole produced mRNA overexpression of Cyp2b10 (2.39-fold) and Cyp3a11 (5.19-fold). mRNA expression of CYP1A1 was not detected in liver tissues from treated or controls animals from either species. Propiconazole significantly induced both pentoxyresorufin O-dealkylation (PROD) and methoxyresorufin O-dealkylation (MROD) activities in both rat and mouse liver at the 150 mg/kg body weight/day and 75 mg/kg body weight/day doses. In summary, these results indicated that propiconazole induced CYP1A2 in rat liver and CYP2B and CYP3A families of isoforms in rat and mouse liver.  相似文献   

20.
Although knowledge of human renal cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) enzymes and their role in xenobiotic and endobiotic metabolism is limited compared with hepatic drug and chemical metabolism, accumulating evidence indicates that human kidney has significant metabolic capacity. Of the drug metabolizing P450s in families 1 to 3, there is definitive evidence for only CYP 2B6 and 3A5 expression in human kidney. CYP 1A1, 1A2, 1B1, 2A6, 2C19, 2D6 and 2E1 are not expressed in human kidney, while data for CYP 2C8, 2C9 and 3A4 expression are equivocal. It is further known that several P450 enzymes involved in the metabolism of arachidonic acid and eicosanoids are expressed in human kidney, CYP 4A11, 4F2, 4F8, 4F11 and 4F12. With the current limited evidence of drug substrates for human renal P450s drug–endobiotic interactions arising from inhibition of renal P450s, particularly effects on arachidonic acid metabolism, appear unlikely. With respect to the UGTs, 1A5, 1A6, 1A7, 1A9, 2B4, 2B7 and 2B17 are expressed in human kidney, whereas UGT 1A1, 1A3, 1A4, 1A8, 1A10, 2B10, 2B11 and 2B15 are not. The most abundantly expressed renal UGTs are 1A9 and 2B7, which play a significant role in the glucuronidation of drugs, arachidonic acid, prostaglandins, leukotrienes and P450 derived arachidonic acid metabolites. Modulation by drug substrates (e.g. NSAIDs) of the intrarenal activity of UGT1A9 and UGT2B7 has the potential to perturb the metabolism of renal mediators including aldosterone, prostaglandins and 20-hydroxyeicosatetraenoic acid, thus disrupting renal homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号