首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
1. Mutations of specific amino acids were introduced in transmembrane domains (TM) of GABA(A) receptor alpha2, beta1 and gamma2L subunits. The effects of these mutations on the action of ethanol were studied using the Xenopus oocyte expression system and two-electrode voltage-clamp recording techniques. 2. Mutant alpha2 subunits containing S270I (TM2) or A291W (TM3) made the receptor more sensitive to GABA, as compared to wild-type alpha2beta1gamma2L receptor. The mutation S265I (TM2) of beta1 and S280I (TM2) or S30IW (TM3) in gamma2L subunits did not alter apparent affinity of the receptor for GABA. M286W (TM3) in the beta1 subunit resulted in a receptor that was tonically open. 3. Using an EC5 concentration of GABA, the function of the wild-type receptor with alpha2beta1gamma2L subunits was potentiated by ethanol (50-200 mM). The mutations in TM2 or TM3 of the alpha2 subunit diminished the potentiation by ethanol. The action of ethanol was also eliminated with a mutation in the TM2 site of the beta1 subunit. Ethanol produced significant inhibition of GABA responses in receptors containing the combination of alpha2 and beta1 TM2 mutants with a wild-type gamma2L subunit. A small but significant reduction in the potentiation by ethanol was observed with gamma2L TM2 and/or TM3 mutants. 4. From these results, we suggest that in heteromeric GABA(A) receptors composed of the alpha, beta and gamma subunits, ethanol may bind in a cavity formed by TM2 and TM3, and that binding to the alpha or beta subunit may be more critical than the gamma subunit.  相似文献   

3.
采用SDS/氯仿/苯酚法和oligo(dT)纤维素亲和层析法从胚鸡脑中提取的poly(A)~+mRNA注射到非州爪蟾卵母细胞体内可以成功地被翻译为具有结合功能的GABA受体,并首次用生化方法,包括[~sH]GABA配体结合试验及药物竞争性结合试验证明了卵母细胞膜上移植GABA受体的存在。蛋白质翻译抑制剂三尖杉酯碱可以完全阻断GABA受体的翻译过程。DNA转录抑制剂放线菌素D对这一过程无影响。移植GABA受体具有受体与配体结合的饱和特性,移植GABA受体与[~sH]GABA的结合可以被调变蛋白、蝇蕈醇、双可可碱及异丙基双环磷酸酯所抑制。移植GABA受体与天然鸡脑GABA受体的生化药理学性质基本一致。  相似文献   

4.
Thiocolchicoside is a myorelaxant drug with anti-inflammatory and analgesic properties as well as pronounced convulsant activity. To characterize the mechanisms of action of this drug at the molecular level, we examined its effects on the function of various recombinant neurotransmitter receptors expressed in Xenopus oocytes. Electrophysiological recordings from recombinant human gamma-aminobutyric acid type A (GABA(A)) receptors consisting of alpha1beta1gamma2L, alpha1beta2gamma2L, or alpha2beta2gamma2L subunit combinations revealed that thiocolchicoside inhibited GABA-evoked Cl(-) currents with similar potencies (median inhibitory concentrations of 0.13 to 0.2 microM) and in a competitive manner. Consistent with previous observations, thiocolchicoside also inhibited the binding of GABA to rat cerebral cortical membranes. Thiocolchicoside inhibited the function of recombinant human strychnine-sensitive glycine receptors composed of the alpha1 subunit with a potency (median inhibitory concentration of 47 microM) lower than that apparent with recombinant GABA(A) receptors. It also inhibited the function of human nicotinic acetylcholine receptors composed of the alpha4 and beta2 subunits, but this effect was only partial and apparent at high concentrations. In contrast, thiocolchicoside had no effect on the function of 5-HT(3A) serotonin receptors. Our results thus provide molecular evidence that the epileptogenic activity of thiocolchicoside might be due to inhibition of the function of inhibitory receptors in the central nervous system, especially that of GABA(A) receptors.  相似文献   

5.
1. The effect of ethanol on the function of P2X(4) receptors expressed in XENOPUS: oocytes was studied using two-electrode voltage-clamp recording. 2. The amplitude of current activated by 1 microM ATP was decreased by ethanol in a concentration-dependent manner over the concentration range 1 - 500 mM. The concentration of ethanol that produced 50% inhibition (IC(50)) of current activated by 1 microM ATP was 58 mM. 3. Ethanol inhibition of ATP-activated current was not dependent on membrane potential from -60 to +20 mV, and ethanol did not change the reversal potential of ATP-activated current. 4. Ethanol, 50 mM, shifted the ATP concentration-response curve to the right, increasing the EC(50) for ATP from 9.1 to 16.0 microM, but did not reduce the maximal response to ATP. 5. The results suggest that ethanol may inhibit P2X(4) receptors by decreasing the apparent affinity of the binding site for ATP. 6. Since the P2X(4) receptor is the most abundant P2X subunit in the brain, these receptors could be important effectors of ethanol action in the central nervous system.  相似文献   

6.
In the present study, we compared the pharmacology, particularly neurosteroid modulation of the GABA(A) receptor, between human and rat alpha(1)beta(2)gamma(2)(L) GABA(A) receptors and between human receptors containing the long (L) and short (S) forms of the gamma(2)-subunit. We observed that maximum responses to GABA were significantly higher with the human alpha(1)beta(2)gamma(2)(L) receptor compared with the rat receptor. In terms of neurosteroid modulation, increases in the EC(15) response to GABA induced by 3alpha-OH-5beta-pregnan-20-one (3alpha5betaP), 5alpha-androstane-3alpha,17beta-diol (3alpha5alphaADL) and 5alpha-pregnane-3alpha,20beta-diol (3alpha5alpha-diol) were significantly greater for the rat compared with the human receptor. Responses to 30 micromol/L GABA were inhibited by 3beta-OH-5alpha-pregnan-20-one (UC1010) and 5beta-pregnan-3beta,20(R)-diol (UC1020) to a greater degree for human and rat receptors, respectively. Responses to GABA + 3alpha5alphaTHDOC were inhibited by 5alpha-pregnan-3beta,20(S)-diol (UC1019) and pregnenolone sulphate to a greater degree for human and rat receptors, respectively. The GABA dose-response curves for human alpha(1)beta(2)gamma(2)(S) and alpha(1)beta(2)gamma(2)(L) receptors were identical. However, the maximum GABA-evoked current, the direct gating effect of pentobarbital and the allosteric potentiation of the GABA EC(15) response by 3alpha5alphaTHDOC and 3alpha5betaP were significantly higher with alpha(1)beta(2)gamma(2)(S) than alpha(1)beta(2)gamma(2)(L) receptors. Inhibition of the response to 30 micromol/L GABA by UC1010 and UC1020 was greater for a(1)beta(2)gamma(2)(L) and alpha(1)beta(2)gamma(2)(S) receptors, respectively. Inhibition of responses to 3alpha5alphaTHDOC + GABA by UC1019 and UC1010 was significantly higher for alpha(1)beta(2)gamma(2)(L) receptors. In conclusion, the site of activation by GABA and neurosteroid modulation differ between human and rat alpha(1)beta(2)gamma(2)(L) receptors, as well as between human receptors containing the L and S splice variants of the gamma(2)-subunit.  相似文献   

7.
The present study examined the effects of bicuculline on the mouse 5-hydroxytryptamine(3A) receptor (5-HT(3A) receptor and the human alpha2 subunit of the glycine receptor. Bicuculline antagonized both the 5-HT(3A) receptor (IC(50)=20.12+/-0.39 microM) and the alpha2 glycine receptor (IC(50)=169.40+/-1.73 microM). A competitive form of antagonism by bicuculline was suggested by experiments in which the EC(50)s for 5-HT and glycine were increased in the 5-HT(3A) and alpha2 glycine receptors, respectively, as bicuculline concentrations were increased. A competitive nature of antagonism by bicuculline at the 5-HT(3A) receptor was also suggested by displacement of the competitive antagonist, [3H]GR65630 in SF21 insect cells expressing the 5-HT(3A) receptor (K(i)=19.01+/-0.71 microM). Our data and that of others reveal that bicuculline, a purported selective antagonist of the GABA(A) receptor, antagonizes at least one receptor subclass in every member of the superfamily of ligand-gated ion channels.  相似文献   

8.
6-Methylflavanone acted as a positive allosteric modulator of gamma-aminobutyric acid (GABA) responses at human recombinant alpha1beta2gamma2L, alpha2beta2gamma2L and alpha1beta2 GABA(A) receptors expressed in Xenopus laevis oocytes. It was essentially inactive at rho1 GABA(C) receptors. The EC50 values for 6-methylflavanone for the positive modulation of the EC(10-20) GABA responses were 22 microM, 10 microM and 6 microM and the maximum potentiations were 120%, 417% and 130% at alpha1beta2gamma2L, alpha2beta2gamma2L and alpha1beta2 GABA(A) receptors respectively. Thus 6-methylflavanone was much more efficacious as a positive modulator at alpha2beta2gamma2L than at alpha1beta2gamma2L and alpha1beta2 GABA(A) receptors. This may be significant since diazepam-induced anxiolysis is considered to be mediated via alpha2-containing GABA(A) receptors, while sedation is thought to be mediated via alpha1-containing GABA(A) receptors. We have previously reported that 6-methylflavone (1-100 microM) produced positive allosteric modulation at alpha1beta2gamma2L and alpha1beta2 GABA(A) receptors with no significant difference between the enhancement seen at either receptor subtype. In the present study, 6-methylflavone was tested at alpha2beta2gamma2L GABA(A) receptors and found to maximally potentiate the EC(10-20) GABA response by 183+/-39% which is similar to that previously observed for 6-methylflavone at alpha1beta2gamma2L GABA(A) receptors. Thus, 6-methylflavone did not show a preference for alpha2beta2gamma2L over alpha1beta2gamma2L GABA(A) receptors in terms of efficacy. Compared to 6-methylflavone, 6-methylflavanone is more efficacious as a positive allosteric modulator at alpha2beta2gamma2L GABA(A) receptors, and less efficacious at alpha1beta2gamma2L GABA(A) receptors. This may represent a relatively unique type of selectivity for positive modulators of GABA-A receptor subtypes based on efficacy as distinct from potency. As was previously shown for 6-methylflavone at alpha1beta2gamma2L GABA(A) receptors, the positive modulation of GABA responses at alpha1beta2gamma2L and alpha2beta2gamma2L GABA(A) receptors by 6-methylflavanone was insensitive to antagonism by flumazenil, indicating that this action is not mediated via "high-affinity" benzodiazepine sites.  相似文献   

9.
1. The rho 1 protein, which we previously cloned from retina, assembles as a homooligomer that transduces the binding of gamma-aminobutyric acid (GABA) into robust chloride currents. However, its insensitivity to bicuculline, pentobarbitone and benzodiazepines, all potent agents at typical GABAA receptors, suggested that it may react atypically to other GABA agonists and antagonists. 2. cDNAs for the rho 1 and the alpha 5 beta 1 receptors for GABA were expressed as homo- and heterooligomers, respectively, in Xenopus oocytes. The selectivities of the respective receptors for various agonists were investigated using concentration-response experiments in voltage clamped cells. 3. The most potent agonists at the rho 1 receptor were trans-4-aminocrotonic acid (TACA) > GABA > muscimol; at the alpha 5 beta 1 receptor the rank order was muscimol > GABA > 4,5,6,7-tetrahydroisoxazole[4,5-c]pyridine-3-ol (THIP). The most specific agonists were cis-(2-(aminomethyl)-cyclopropyl-carboxylic acid (CAMP) and THIP for the rho 1 and the alpha 5 beta 1 receptors, respectively. 4. Comparing GABA, TACA and cis-aminocrotonic acid (CACA) at rho 1 receptors expressed in COS cells gave results almost indistinguishable from those found at oocytes; the pharmacology of rho 1 seems independent of the expression system. 5. Agonists THIP, piperidine-4-sulphonic acid (P4S), and isoguvacine, whose C-C-C-N chains are constrained by rings into a folded conformation and were potent at the alpha 5 beta 1 receptor, were among the weakest at the rho 1 receptor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
P2X receptors are cation-selective, ligand-gated ion channels activated by synaptically released, extracellular adenosine 5'-triphosphate (ATP). ATP-gated currents are inhibited by ethanol when tested in dorsal root ganglion and CA1 neurons. Recently, we reported differences in sensitivity to ethanol inhibition between homomeric P2X(2) and P2X(4) receptors expressed in Xenopus oocytes, which suggested that subunit composition of native P2X receptors determines their ethanol sensitivity. The present study extended the investigation to P2X(3) receptors. The effects of ethanol and zinc ions (Zn(2+)) were tested on homomeric P2X(3) and P2X(4) receptors expressed in Xenopus oocytes using two-electrode voltage clamp. Ethanol potentiated ATP-gated P2X(3) receptor currents in a concentration dependent manner. In contrast, ethanol inhibited P2X(4) receptor function. Ethanol did not directly alter receptor function, nor did it alter the Hill coefficient or maximal ATP response (E(max)) in either P2X(3) or P2X(4) receptors. Ethanol increased the maximal response to Zn(2+) ATP-gated currents in P2X3 receptors which suggests that ethanol and Zn(2+) act on different sites. The differences in ethanol response of P2X(3) and P2X(4) receptors set the stage for future investigations that will use chimeric P2X receptors or other molecular manipulations of P2X structure to investigate the molecular sites and mechanisms of action of ethanol.  相似文献   

11.
1. A comparative study of the actions of structurally diverse allosteric modulators on mammalian (human alpha 3 beta 2 gamma 2L) or invertebrate (Drosophila melanogaster Rdl or a splice variant of Rdl) recombinant GABA receptors has been made using the Xenopus laevis oocyte expression system and the two electrode voltage-clamp technique. 2. Oocytes preinjected with the appropriate cRNAs responded to bath applied GABA with a concentration-dependent inward current. EC50 values of 102 +/- 18 microM; 152 +/- 10 microM and 9.8 +/- 1.7 microM were determined for human alpha 3, beta 1 gamma 2L, Rdl splice variant and the Rdl receptors respectively. 3. Pentobarbitone enhanced GABA-evoked currents mediated by either the mammalian or invertebrate receptors. Utilizing the appropriate GABA EC10, the EC50 for potentiation was estimated to be 45 +/- 1 microM, 312 +/- 8 microM and 837 +/- 25 microM for human alpha 3, beta 1 gamma 2L, Rdl splice variant and Rdl receptors respectively. Maximal enhancement (expressed relative to the current induced by the EC10 concentration of GABA where this latter response = 1) at the mammalian receptor (10.2 +/- 1 fold) was greater that at either the Rdl splice variant (5.5 +/- 1.3 fold) or Rdl (7.9 +/- 0.8 fold) receptors. 4. Pentobarbitone directly activated the human alpha 3 beta 1 gamma 2L receptor with an EC50 of 1.2 +/- 0.03 mM and had a maximal effect amounting to 3.3 +/- 0.4 fold of the response evoked by the EC10 concentration of GABA. Currents evoked by pentobarbitone were blocked by 10-30 microM picrotoxin and potentiated by 0.3 microM flunitrazepam. Pentobarbitone did not directly activate the invertebrate GABA receptors. 5. 5 alpha-Pregnan-3 alpha-ol-20-one potentiated GABA-evoked currents mediated by the human alpha 3 beta 1 gamma 2L receptor with an EC50 of 87 +/- 3 nM and a maximal enhancement of 6.7 +/- 0.8 fold of that produced by the GABA EC10 concentration. By contrast, relatively high concentrations (3-10 microM) of this steroid had only a modest effect on the Rdl receptor and its splice variant. 6. A small direct effect of 5 alpha-pregnan-3 alpha-ol-20-one (0.3-10 microM) was detected for the human alpha 3 beta 1 gamma 2L receptor (maximal effect only 0.08 +/- 0.01 times that of the GABA EC10). This response was antagonized by 30 microM picrotoxin and enhanced by flunitrazepam (0.3 microM). 5 alpha-Pregnan-3 alpha-ol-20-one did not directly activate the invertebrate GABA receptors. 7. Propofol enhanced GABA-evoked currents mediated by human alpha 3 beta 1 gamma 2L and Rdl splice variant receptors with EC50 values of 3.5 +/- 0.1 microM and 8 +/- 0.3 microM respectively. The maximal enhancement was similar at the two receptor types (human 11 +/- 1.8 fold; invertebrate 8.8 +/- 1.4 fold that of the GABA EC10). 8. Propofol directly activated the human alpha 3 beta 1 gamma 2L receptor with an EC50 of 129 +/- 10 microM, and at a maximally effective concentration, evoked a current amounting to 3.5 +/- 0.5 times that elicited by a concentration of GABA producing 10% of the maximal response. The response to propofol was blocked by 10-30 microM picrotoxin and enhanced by flunitrazepam (0.3 microM). Propofol did not directly activate the invertebrate Rdl splice variant receptor. 9. GABA-evoked currents mediated by the human alpha 3 beta 1 gamma 2L receptor were potentiated by etomidate (EC50 = 7.7 +/- 0.2 microM) and maximally enhanced to 8 +/- 0.8 fold of the response to an EC10 concentration of GABA. By contrast, the Rdl, or Rdl splice variant forms of the invertebrate GABA receptor were insensitive to the positive allosteric modulating actions of etomidate. Neither the mammalian nor the invertebrate receptors, were directly activated by etomidate. 10. delta-Hexachlorocyclohexane enhanced GABA-evoked currents with EC50 values of 3.4 +/- 0.1 microM and 3.0 +/- 0.1 microM for the human alpha 3 beta 1 gamma 2L receptor and the Rdl splice variant receptor respectively. The maximal enhancement was 4.5  相似文献   

12.
We examined the effects of picrotoxinin, pregnenolone sulfate (PS) and dehydroepiandrosterone sulfate (DHEAS) on gamma-aminobutyric acid (GABA) responses in Xenopus oocytes injected with wild type alpha1, beta2 and gamma2 GABA(A) receptor subunits and in oocytes injected with wild type alpha1 and beta2 subunits and a mutated gamma2 subunit that eliminates picrotoxin sensitivity. All three agents inhibited GABA currents in oocytes injected with wild type subunits. Oocytes injected with the mutated gamma2 subunit showed no inhibition of GABA responses by picrotoxinin at concentrations up to 100 microM. PS and DHEAS inhibited GABA currents at similar concentrations in both sets of oocytes. These results indicate that PS and DHEAS do not require a functional picrotoxin site for inhibition of GABA responses.  相似文献   

13.
Previous studies have suggested that activation of calcium-phospholipid-dependent protein kinase (PKC) enhances benzodiazepine (BZD)- and pentobarbital (PB)- mediated potentiation of alpha(1)beta(1)gamma(2) GABA(A) receptors (GABA(A)-Rs). To delineate the underlying mechanism(s), voltage-clamp recordings were performed on recombinant alpha(1)beta(1)gamma(2) GABA(A) receptors functionally expressed in Xenopus laevis oocytes. GABA(A)-Rs were tested for their sensitivity to diazepam and PB before and after incubation in phorbol 12-myristate 13-acetate (PMA). PMA (25 nM) significantly attenuated the GABA(A) current (p<0.05, n=12-19) up to 90%. PMA treatment, however, did not alter the sensitivity to diazepam or pentobarbital. Similar results were obtained with recombinant alpha(1)beta(2)gamma(2) GABA receptors. These data suggest that PKC activation does not alter the allosteric modulation of GABA(A)-Rs by benzodiazepines and barbiturates and is consistent with the observation from other studies in oocytes that PMA decreases the amplitude of the GABA-activated currents via receptor internalization rather than modification of receptor kinetics.  相似文献   

14.
15.
1. We have previously shown that toluene dose-dependently inhibits recombinant N-methyl-D-aspartate (NMDA) receptors at micromolar concentrations. This inhibition was rapid, almost complete and reversible. The NR1/2B combination was the most sensitive receptor subtype tested with an IC(50) value for toluene of 0.17 mM. 2. We now report on the effects of other commonly abused solvents (benzene, m-xylene, ethylbenzene, propylbenzene, 1,1,1-trichlorethane (TCE) and those of a convulsive solvent, 2,2,2-trifluoroethyl ether (flurothyl), on NMDA-induced currents measured in XENOPUS oocytes expressing NR1/2A or NR1/2B receptor subtypes. 3. All of the alkylbenzenes and TCE produced a reversible inhibition of NMDA-induced currents that was dose- and subunit-dependent. The NR1/2B receptor subtype was several times more sensitive to these compounds than the NR1/2A subtype. 4. The convulsant solvent flurothyl had no effect on NMDA responses in oocytes but potently inhibited ion flux through recombinant GABA receptors expressed in oocytes. 5. Overall, these results suggest that abused solvents display pharmacological selectivity and that NR1/2B NMDA receptors may be an important target for the actions of these compounds on the brain.  相似文献   

16.
1. We have investigated the effect of diltiazem and its newly synthesized derivative (+,-)-trans-3-acetoxy-8-chloro-2,3-dihydro-5[2-diisopropylamine)ethyl]-2-(4-methoxyphenyl)-1,5-benzothiazepin-4-(5H)-ona hydrochloride (JAC-65) on several recombinant human neuronal nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus oocytes. 2. At 3 microM, both drugs have little effect on the maximal currents evoked by brief pulses of acetylcholine (ACh) in five subtypes of nAChRs (alpha7, alpha3beta2, alpha4beta2, alpha3beta4, and alpha4beta4), showing little selectivity among subtypes. 3. However, both drugs accelerate the decay of the ionic currents evoked upon continuous stimulation of ACh, being this effect larger with JAC-65, and in beta4*-nAChRs. Such an effect was dependent on the concentrations of both the drug and of the agonist used, and showed the characteristics of a non-competitive antagonism. 4. We have further investigated the effect of both drugs when combined with submicromolar concentrations of nicotine, such as those present in plasma of cigarette smokers, and found that JAC-65, but not diltiazem, is able to greatly enhance the desensitizing effect of these low concentrations of nicotine, specially in beta4*-nAChRs. 5. Experiments in alpha4beta4-nAChRs failed to show voltage dependence of the action of JAC-65. Moreover, recovery from desensitization followed the same time course regardless of the presence of the drug, suggesting that the main mechanism of action of JAC-65 does not involve open channel block. 6. In summary, both drugs, diltiazem and JAC-65, seem to act through a non-competitive mechanism, accelerating the decay of the ionic currents, being JAC-65 more effective than diltiazem at the concentrations used in beta4*-nAChRs. Thus, the differences between both benzothiazepines when measuring various parameters suggest that their mechanisms of action could be slightly different. This would require further investigation.  相似文献   

17.
To test whether there is a common site of action for intravenous anaesthetics at the glycine receptor, the effects of binary combinations of thiopentone, pentobarbitone, methohexitone, and propofol have been tested on human alpha(1) glycine receptors expressed in Xenopus laevis oocytes using two-electrode voltage-clamp techniques. Thiopentone (5-40 microM), pentobarbitone (25-400 microM) and propofol (2-100 microM) (but not methohexitone), potentiated the glycine-induced (50 microM) current in a dose-dependent manner, with the maximum potentiation observed to be 218%, 400%, and 576%, respectively. In binary combination with thiopentone, pentobarbitone or propofol, methohexitone reduced potentiation compared to that by the individual anesthetics to 190%, 260% and 460%, respectively. Combination of thiopentone and pentobarbitone (50 microM) increased potentiation, compared to that by thiopentone alone. Binary combinations of propofol with either thiopentone or pentobarbitone showed more potentiation, compared to that observed with the individual anesthetics. Our results indicate that thiopentone, pentobarbitone and propofol all act as positive allosteric modulators at the alpha(1) glycine receptor. In contrast, methohexitone has no action alone but acts as a competitive antagonist to thiopentone, pentobarbitone and propofol. We suggest that, on the basis of these results, these four intravenous anaesthetics share a common site of action at the glycine receptor.  相似文献   

18.
We recently demonstrated that extracellular ATP effectively activates adenosine (Ade) A(2B) receptors indirectly through a localized rapid conversion to Ade by ectonucleotidases on the membrane surface of C6Bu-1 rat glioma cells. These responses were observed even in the presence of adenosine deaminase (ADA). Here, we demonstrate that such responses indeed occur in A(2B) receptor-expressing Xenopus laevis oocytes, which possess endogenous ectonucleotidase activity. In oocytes coexpressing the A(2B) receptor and cystic fibrosis transmembrane conductance regulator (CFTR), Ade induced a concentration-dependent increase in a cyclic AMP-activated CFTR current, a response that was inhibited by the P1 antagonist xanthine-amine congener (XAC). A brief application of ATP and beta,gamma-methylene ATP (beta,gamma-MeATP) also induced the CFTR current in a manner similar to that seen with Ade. Among several nucleotide agonists, ADP, AMP, and adenosine-5'-O-(3-thio)triphosphate induced the CFTR current. Although adenine nucleotide-induced CFTR currents were inhibited by XAC, they were highly resistant to ADA treatment; 5 U/ml ADA was required for inhibition of adenine nucleotide-induced CFTR current, whereas 1 U/ml ADA was sufficient to abolish the Ade-induced response. In addition, the ecto-5'-nucleotidase inhibitor alpha,beta-methylene ADP markedly inhibited the beta,gamma-MeATP-induced response but not the Ade-induced one. These results support our hypothesis that adenine nucleotides are rapidly and locally converted into Ade on the membrane surface, resulting in the activation of A(2B) receptors.  相似文献   

19.
GABA(A) receptors are the major inhibitory transmitter receptors in the central nervous system. The majority of these receptors is composed of two alpha, two beta and one gamma subunit that assemble around an aqueous pore and form an intrinsic chloride ion channel. Using full-length or truncated chimeric subunits it was demonstrated that homologous sequences from different subunit classes, alpha(1)(54-68), beta(3)(52-66), and gamma(2)(67-81), are important for assembly of GABA(A) receptors composed of alpha(1), beta(3), and gamma(2) subunits. In addition, evidence was provided that these sequences all are located in topologically homologous regions of the different subunits. Finally, it was demonstrated that the sequences investigated cause a selective assembly with certain subunits only and thus influence subunit arrangement within GABA(A) receptors.  相似文献   

20.
Although the role of orexins in sleep/wake cycle and feeding behavior is well established, underlying mechanisms have not been fully understood. An attempt has been made to investigate the role of GABA(A) receptors and their benzodiazepine site on the orexin-A induced response to feeding. Different groups of rats were food deprived overnight and next day injected intracerebroventricularly (icv) with vehicle (artificial CSF; 5 microl/rat) or orexin-A (20-50 nM/rat) and the animals were given free access to food. Cumulative food intake was measured during light phase of light/dark cycle at 1-, 2-, 4- and 6-h post-injection time points. Orexin-A (30-50 nM/rat, icv) stimulated food intake at all the time points (P < 0.05). Prior administration of GABA(A) receptor agonists muscimol (25 ng/rat, icv) and diazepam (0.5 mg/kg, ip) at subeffective doses significantly potentiated the hyperphagic effect of orexin-A (30 nM/rat, icv). However, the effect was negated by the GABA(A) receptor antagonist bicuculline (1 mg/kg, ip). Interestingly, benzodiazepine receptor antagonist flumazenil (5 ng/rat, icv), augmented the orexin-A (30 nM/rat, icv) induced hyperphagia; the effect may be attributed to the intrinsic activity of the agent. The results suggest that the hyperphagic effect of orexin-A, at least in part, is mediated by enhanced GABA(A) receptor activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号