首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhao XY  Peehl DM  Navone NM  Feldman D 《Endocrinology》2000,141(7):2548-2556
We recently reported that 1alpha,25-dihydroxyvitamin D3 [1,25-(OH)2D3] inhibits the growth of the LNCaP human prostate cancer cell line by an androgen-dependent mechanism. In the present study we examined the actions and interactions of 1,25-(OH)2D3 and the androgen 5alpha-dihydrotestosterone (DHT) on two new human prostate cancer cell lines (MDA), MDA PCa 2a and MDA PCa 2b. Scatchard analyses revealed that both cell lines express high affinity vitamin D receptors (VDRs) with a binding affinity (Kd) for [3H]1,25-(OH)2D3 of 0.1 nM. However, the MDA cell lines contain low affinity androgen receptors (ARs) with a Kd of 25 nM for [3H]DHT binding. This is 50-fold lower than the AR in LNCaP cells (Kd = 0.5 nM). Their response to DHT is greatly reduced; 2a cells do not respond to 100 nM DHT, and 2b cells show a modest response at that high concentration. 1,25-(OH)2D3 causes significant growth inhibition in both MDA cell lines, greater (for 2b cells) or lesser (for 2a cells) than that in the LNCaP cell line. Moreover, 1,25-(OH)2D3 significantly up-regulates AR messenger RNA in all three cell lines, as shown by Northern blot analysis. The growth inhibitory effect of 1,25-(OH)2D3 on LNCaP cells is blocked by the pure antiandrogen, Casodex, as we previously reported. However, Casodex (at 1 microM) did not block the antiproliferative activity of 1,25-(OH)2D3 in MDA cells. In conclusion, the growth inhibitory action of 1,25-(OH)2D3 in the MDA cell lines appears to be androgen independent, whereas the actions of 1,25-(OH)2D3 in LNCaP cells are androgen dependent. Most importantly, the MDA cell lines, derived from a bone metastasis of human prostate carcinoma, remain sensitive to 1,25-(OH)2D3, a finding relevant to the therapeutic application of vitamin D and its low calcemic analogs in the treatment of advanced prostate cancer.  相似文献   

2.
Zhao XY  Ly LH  Peehl DM  Feldman D 《Endocrinology》1999,140(3):1205-1212
We have recently shown that 1alpha,25-dihydroxyvitamin D3 [1,25-(OH)2D3] inhibits proliferation of LNCaP cells, an androgen-responsive human prostate cancer cell line. Also, 1,25-(OH)2D3 increases androgen receptor (AR) abundance and enhances cellular responses to androgen in these cells. In the current study, we have investigated the mechanism by which 1,25-(OH)2D3 regulates AR gene expression and the involvement of AR in the 1,25-(OH)2D3- and 9-cis retinoic acid (RA)-mediated growth inhibition of LNCaP cells. Northern blot analyses demonstrated that the steady-state messenger RNA (mRNA) level of AR was significantly increased by 1,25-(OH)2D3 in a dose-dependent manner. Time-course experiments revealed that the increase of AR mRNA by 1,25-(OH)2D3 exhibited delayed kinetics. In response to 1,25-(OH)2D3, AR mRNA levels were first detected to rise at 8 h and reached a maximal induction of 10-fold over the untreated control at 48 h; the effect was sustained at 72 h. Furthermore, the induction of AR mRNA by 1,25-(OH)2D3 was completely abolished by incubation of cells with cycloheximide, a protein synthesis inhibitor. 1,25-(OH)2D3 was unable to induce expression of an AR promoter-luciferase reporter. Together, these findings indicate that the stimulatory effect of 1,25-(OH)2D3 on AR gene expression is indirect. Western blot analyses showed an increase of AR protein in 1,25-(OH)2D3-treated cells. This increased expression of AR was followed by 1,25-(OH)2D3-induced inhibition of growth in LNCaP cells. Similar to 1,25-(OH)2D3, 9-cis RA also induced AR mRNA expression, and the effect of both hormones was additive. Moreover, 1,25-(OH)2D3 and 9-cis RA acted synergistically to inhibit LNCaP cell growth. These antiproliferative effects of 1,25-(OH)2D3 and 9-cis RA, alone or in combination, were blocked by the pure AR antagonist, Casodex. In conclusion, our results demonstrate that growth inhibition of LNCaP cells by 1,25-(OH)2D3 and 9-cis RA is mediated by an AR-dependent mechanism and preceded by the induction of AR gene expression. This finding, that differentiating agents such as vitamin D and A derivatives are potent inducers of AR, may have clinical implications in the treatment of prostate cancer.  相似文献   

3.
1,25-Dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)] is an effective agent for inhibiting the growth of prostate cancer cells including LNCaP and PC-3 cell lines. However, the extent of growth inhibition in these cell lines differs because LNCaP cells are much more responsive than PC-3 cells. Previous studies in LNCaP cells have shown that 1,25-(OH)(2)D(3) treatment results in G(0)/G(1) cell cycle accumulation, loss of Ki67 expression, and induction of apoptosis. One difference between the two cell lines is that PC-3 cells lack functional p53, a protein that plays roles both in cell cycle regulation and induction of apoptosis. In this study, the role of p53 in 1,25-(OH)(2)D(3) action was examined using the p53-negative PC-3 cells and a line of LNCaP cells, called LN-56, in which p53 function was shut off using a dominant negative p53 fragment. We found that treatment with 1,25-(OH)(2)D(3) extensively inhibits growth of LN-56 prostate cancer cells lacking p53, but in contrast to the parental LNCaP cells, the LN-56 cells recover rapidly. Moreover, in prostate cancer cells, the synergism between 1,25-(OH)(2)D(3) and 9-cis retinoic acid appears to be dependent on the presence of functional p53; however, 1,25-(OH)(2)D(3)-mediated induction of G(1) cell cycle accumulation and induction of apoptosis is not.  相似文献   

4.
Parathyroid hormone-related protein (PTHrP) is expressed by prostate cancer cells. Since PTHrP increases the growth and enhances the osteolytic effects of prostate cancer cells, it is important to control the level of PTHrP expression in these cells. We show that 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and its non-calcemic analogue, EB1089, suppress PTHrP mRNA and protein levels in the human prostate cancer cell lines PC-3 and LNCaP. The human PTHrP gene contains a sequence element homologous to the negative vitamin D response element within the parathyroid hormone gene. This DNA sequence (nVDRE(hPTHrP)) bound the vitamin D receptor (VDR) present in nuclear extracts from both PC-3 and LNCaP cells. However, when cloned upstream of the SV40 promoter and transiently transfected into PC-3 and LNCaP cells, nVDRE(hPTHrP) downregulated promoter activity in response to 1,25(OH)2D3 or EB1089 treatment in LNCaP, but not in PC-3, cells. These results may help to explain why some prostate cancers appear to be refractory to treatment with vitamin D analogues.  相似文献   

5.
Although there is abundant evidence that 1alpha,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)] inhibits the growth of several cancer cell types, inhibition of angiogenesis may also play a role in mediating the antitumor effects of 1,25-(OH)(2)D(3.) We examined the ability of 1,25-(OH)(2)D(3) to inhibit the growth of tumor-derived endothelial cells (TDECs) and normal endothelial cells and to modulate angiogenic signaling. 1,25-(OH)(2)D(3) inhibited the growth of TDECs from two tumor models at nanomolar concentrations, but was less potent against normal aortic or yolk sac endothelial cells. The vitamin D analogs Ro-25-6760, EB1089, and ILX23-7553 were also potent inhibitors of TDEC proliferation. Furthermore, the combination of 1,25-(OH)(2)D(3) and dexamethasone had greater activity than either agent alone. 1,25-(OH)(2)D(3) increased vitamin D receptor and p27(Kip1) protein levels in TDECs, whereas phospho-ERK1/2 and phospho-Akt levels were reduced. These changes were not observed in normal aortic endothelial cells. In squamous cell carcinoma and radiation-induced fibrosarcoma-1 cells, 1,25-(OH)(2)D(3) treatment caused a reduction in the angiogenic signaling molecule, angiopoietin-2. In conclusion, 1,25-(OH)(2)D(3) and its analogs directly inhibit TDEC proliferation at concentrations comparable to those required to inhibit tumor cells. Further, 1,25-(OH)(2)D(3) modulates cell cycle and survival signaling in TDECs and affects angiogenic signaling in cancer cells. Thus, our work supports the hypothesis that angiogenesis inhibition plays a role in the antitumor effects of 1,25-(OH)(2)D(3).  相似文献   

6.
7.
In a search for improved therapies for prostate cancer, we investigated the effect of genistein in combination with 1alpha-25-dihydroxyvitamin D3 [1,25(OH)2D3], on the growth of DU145 human prostate cancer cells. DU145 cells were very resistant to the growth inhibitory action of 1,25(OH)2D3 or genistein when administered individually. However, the combination caused a significant growth inhibition seen at lower concentrations of both agents. 1,25(OH)2D3 induces the expression of the CYP24 gene, which codes for the enzyme that initiates the catabolism of 1,25(OH)2D3. We showed for the first time that genistein at low doses (50-100 nM) directly inhibited CYP24 at the enzyme level. Addition of genistein to mitochondrial preparations inhibited CYP24 enzyme activity in a noncompetitive manner. CYP24 inhibition by genistein increased the half-life of 1,25(OH)2D3 thereby augmenting the homologous up-regulation of the vitamin D receptor (VDR) both at the mRNA and protein levels. Genistein co-treatment enhanced 1,25(OH)2D3-mediated transactivation of the vitamin D responsive reporters OC-Luc and OP-Luc transfected into DU145 cells. Consistent with the growth inhibition due to the combination treatment, significant changes in the expression of genes involved in growth arrest and apoptosis were seen. We conclude that genistein potentiates the antiproliferative actions of 1,25(OH)2D3 in DU145 cells by two mechanisms: (i) an increase in the half-life of 1,25(OH)2D3 due to the direct inhibition of CYP24 enzyme activity and (ii) an amplification of the homologous up-regulation of VDR. Together these two effects lead to a substantial enhancement of the cellular responses to the growth inhibitory and pro-apoptotic signaling by 1,25(OH)2D3.  相似文献   

8.
Noncalcemic actions of vitamin D receptor ligands   总被引:17,自引:0,他引:17  
1alpha,25-Dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)], the active metabolite of vitamin D(3), is known for the maintenance of mineral homeostasis and normal skeletal architecture. However, apart from these traditional calcium-related actions, 1,25-(OH)(2)D(3) and its synthetic analogs are being increasingly recognized for their potent antiproliferative, prodifferentiative, and immunomodulatory activities. These actions of 1,25-(OH)(2)D(3) are mediated through vitamin D receptor (VDR), which belongs to the superfamily of steroid/thyroid hormone nuclear receptors. Physiological and pharmacological actions of 1,25-(OH)(2)D(3) in various systems, along with the detection of VDR in target cells, have indicated potential therapeutic applications of VDR ligands in inflammation (rheumatoid arthritis, psoriatic arthritis), dermatological indications (psoriasis, actinic keratosis, seborrheic dermatitis, photoaging), osteoporosis (postmenopausal and steroid-induced osteoporosis), cancers (prostate, colon, breast, myelodysplasia, leukemia, head and neck squamous cell carcinoma, and basal cell carcinoma), secondary hyperparathyroidism, and autoimmune diseases (systemic lupus erythematosus, type I diabetes, multiple sclerosis, and organ transplantation). As a result, VDR ligands have been developed for the treatment of psoriasis, osteoporosis, and secondary hyperparathyroidism. Furthermore, encouraging results have been obtained with VDR ligands in clinical trials of prostate cancer and hepatocellular carcinoma. This review deals with the molecular aspects of noncalcemic actions of vitamin D analogs that account for the efficacy of VDR ligands in the above-mentioned indications.  相似文献   

9.
Ly LH  Zhao XY  Holloway L  Feldman D 《Endocrinology》1999,140(5):2071-2076
1Alpha,25-dihydroxyvitamin D3 [1,25-(OH)2D3] inhibits the proliferation of many cancer cells in culture, but not the aggressive human prostate cancer cell line DU 145. We postulated that the 1,25-(OH)2D3-resistant phenotype in DU 145 cells might result from the high levels of expression of 25-hydroxyvitamin D-24-hydroxylase (24-hydroxylase) induced by treatment with 1,25-(OH)2D3. As this P450 enzyme initiates 1,25-(OH)2D3 catabolism, we presumed that a high level of enzyme induction could limit the effectiveness of the 1,25-(OH)2D3 antiproliferative action. To examine this hypothesis we explored combination therapy with liarozole fumarate (R85,246), an imidazole derivative currently in trials for prostate cancer therapy. As imidizole derivatives are known to inhibit P450 enzymes, we postulated that this drug would inhibit 24-hydroxylase activity, increasing the 1,25-(OH)2D3 half-life, thereby enhancing 1,25-(OH)2D3 antiproliferative effects on DU 145 cells. Cell growth was assessed by measurement of viable cells using the MTS assay. When used alone, neither 1,25-(OH)2D3 (1-10 nM) nor liarozole (1-10 microM) inhibited DU 145 cell growth. However, when added together, 1,25-(OH)2D3 (10 nM)/liarozole (1 microM) inhibited growth 65% after 4 days of culture. We used a TLC method to assess 24-hydroxylase activity and demonstrated that liarozole (1-100 microM) inhibited this P450 enzyme in a dose-dependent manner. Moreover, liarozole treatment caused a significant increase in 1,25-(OH)2D3 half-life from 11 to 31 h. In addition, 1,25-(OH)2D3 can cause homologous up-regulation of the vitamin D receptor (VDR), and in the presence of liarozole, this effect was amplified, thus enhancing 1,25-(OH)2D3 activity. Western blot analyses demonstrated that DU 145 cells treated with 1,25-(OH)2D3/liarozole showed greater VDR up-regulation than cells treated with either drug alone. In summary, our data demonstrate that liarozole augments the ability of 1,25-(OH)2D3 to inhibit DU 145 cell growth. The mechanism appears to be due to inhibition of 24-hydroxylase activity, leading to increased 1,25-(OH)2D3 half-life and augmentation of homologous up-regulation of VDR. We raise the possibility that combination therapy using 1,25-(OH)2D3 and liarozole or other inhibitors of 24-hydroxylase, both in nontoxic doses, might serve as an effective treatment for prostate cancer.  相似文献   

10.
1,25-Dihydroxyvitamin-D3 [1,25(OH)2D3], the active hormonal metabolite of vitamin D, acts through a specific nuclear receptor to inhibit proliferation and promote differentiation of several tumor cell types including the LNCaP, DU145 and PC-3 prostate cancer cell lines as well as primary prostate tumor lines. 1,25(OH)2D3 can also decrease invasion of breast and prostate cancer cell lines in vitro. We confirm this latter finding in the DU145 and PC-3 prostate cancer cell lines, and further show that 1,25(OH)2D3 inhibits overall invasion, cell adhesion and migration to the basement membrane matrix protein laminin. These changes appear to be due in part to a 1,25(OH)2D3-induced decrease in expression of alpha6 and beta4 integrins, both of which are receptors for laminin and associated with increased migration and invasion of prostate cancer cells in vitro. Blocking function of these particular integrins with antibodies inhibits both adhesion and migration of the cells. Collectively, these data demonstrate that 1,25(OH)2D3, in addition to decreasing proliferation of tumor cells, can also inhibit prostate cancer cell invasion through modulation of select cell surface adhesion molecules.  相似文献   

11.
The active form of vitamin D(3), 1,25(OH)(2)D(3), inhibits proliferation and induces differentiation of a variety of malignant cells. A new class of vitamin D(3) analogs, having 2 identical side chains attached to carbon-20, was synthesized and the anticancer effects evaluated. Four analogs were evaluated for their ability to inhibit growth of myeloid leukemia (NB4, HL-60), breast (MCF-7), and prostate (LNCaP) cancer cells. All 4 analogs inhibited growth in a dose-dependent manner. Most effective was 21-(3-methyl-3-hydroxy-butyl)-19-nor D(3) (Gemini-19-nor), which has 2 side chains and removal of the C-19. Gemini-19-nor was approximately 40 625-, 70-, 23-, and 380-fold more potent than 1,25(OH)(2)D(3) in inhibiting 50% clonal growth (ED(50)) of NB4, HL-60, MCF-7, and LNCaP cells, respectively. Gemini-19-nor (10(-8) M) strongly induced expression of CD11b and CD14 on HL-60 cells (90%); in contrast, 1,25(OH)(2)D(3) (10(-8) M) stimulated only 50% expression. Annexin V assay showed that Gemini-19-nor and 1,25(OH)(2)D(3) induced apoptosis in a dose-dependent fashion. Gemini-19-nor (10(-8) M, 4 days) caused apoptosis in approximately 20% of cells, whereas 1,25(OH)(2)D(3) at the same concentration did not induce apoptosis. Gemini-19-nor increased in HL-60 both the proportion of cells in the G(1)/G(0) phase and expression level of p27(kip1). Moreover, Gemini-19-nor stimulated expression of the potential tumor suppressor, PTEN. Furthermore, other inducers of differentiation, all-trans-retinoic acid and 12-O-tetradecanoylphorbol 13-acetate, increased PTEN expression in HL-60. In summary, Gemini-19-nor strongly inhibited clonal proliferation in various types of cancer cells, especially NB4 cells, suggesting that further studies to explore its anticancer potential are warranted. In addition, PTEN expression appears to parallel terminal differentiation of myeloid cells.  相似文献   

12.
13.
14.
The biologically active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) has been shown to regulate the proliferation of human prostate epithelial cell lines. Since the insulin-like growth factor (IGF) system is involved in the transformation process of epithelial cells, the following study was undertaken to determine if the IGF system, in particular IGF binding protein-3 (IGFBP-3), is altered by 1,25-(OH)2D3 in normal prostate epithelial cells as part of a mechanism for inhibition of transformation. Two cell systems were used in this study: (1) primary cultures of benign human prostate epithelial cells (PECs) and (2) an SV40-T immortalized prostate epithelial cell line (P153) that is non-tumorigenic. 1,25-(OH)2D3 was added to parallel sets of PECs and P153 cells in addition to the presence or absence of IGF-I or des(1-3)IGF-I. Treatment with 1,25-(OH)2D3 resulted in significant growth inhibition of both PECs and P153 cells. Furthermore, 1,25-(OH)2D3 inhibited IGF-induced proliferation, but this was partially reversed by high concentrations of IGF-I. Western ligand blots of condition media demonstrated a significant increase in IGFBP-3; likewise Northern blots demonstrated an increase in mRNA for IGFBP-3. Proliferation assays using an antibody designed to block the IGF-independent effects of IGFBP-3 failed to reverse the inhibitory effect of 1,25-(OH)2D3. Thus, IGFBP-3 acts in an IGF-dependent manner to inhibit cell growth of benign prostate epithelial cells.  相似文献   

15.
Vitamin D and hematopoiesis.   总被引:1,自引:0,他引:1  
Analysis of the nonclassic actions of vitamin D(3) has highlighted a wide range of target tissues for the hormone 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)]. Systemic or locally produced 1,25(OH)(2)D(3) may play a role in modulating cell development processes such as hematopoiesis. The mechanisms by which 1,25(OH)(2)D(3) achieves this are discussed in this review. In particular, data from our laboratories suggest that 1,25(OH)(2)D(3) does not provide a deterministic signal for monocyte differentiation. Rather, the hormone acts as a permissive agent for myeloid precursor cells to enter a genetically determined terminal maturation pathway. The effiacy of 1,25(OH)(2)D(3) in leukemia therapy has been improved by the development of novel vitamin D analogues that have potent antiproliferative activity and low hypercalcemic side effects. Another solution to the problem of side effects is to enhance specifically the antiproliferative effects of 1,25(OH)(2)D(3). A novel mechanism within hematopoiesic cells that governs their responsiveness to the antiproliferative/differentiative actions of 1,25(OH)(2)D(3) outlined.  相似文献   

16.
While the role of vitamin D in bone and mineral metabolism has been investigated extensively, the role of the vitamin D receptor in other tissues is less well understood. 1,25-Dihydroxyvitamin D3 (calcitriol) can act as a differentiating agent in normal tissues and can inhibit the growth of many cancer cell lines including LNCaP prostate cancer cells. We have shown previously that calcitriol causes LNCaP cell accumulation in the G0/G1 phase of the cell cycle. In this study, we demonstrate that calcitriol also induces apoptosis of LNCaP cells. The calcitriol-induced apoptosis is accompanied by a down-regulation of Bcl-2 and Bcl-X(L) proteins, both of which protect cells from undergoing apoptosis. Other proteins important in apoptotic control, Bax, Mcl-1, and Bcl-X(S), are unaffected by calcitriol treatment. We find that overexpression of Bcl-2 blocks calcitriol-induced apoptosis and reduces, but does not eliminate, calcitriol-induced growth inhibition. We conclude that both regulation of cell cycle and the apoptotic pathway are involved in calcitriol action in prostate cancer cells.  相似文献   

17.
18.
The androgen receptor (AR) contributes to growth of prostate cancer even under conditions of androgen ablation. Thus, new strategies to target AR activity are needed. The AR interacts with the immunophilin FK506-binding protein 52 (FKBP52), and studies in the FKBP52 knockout mouse have shown that this protein is essential to AR activity in the prostate. Therefore, we tested whether the immunophilin ligand FK506 affected AR activity in prostate cancer cell lines. We also tested the hypothesis that the AR interacts with another immunophilin, cyclophilin 40 (Cyp40), and is regulated by its cognate ligand cyclosporin A (CsA). We show that levels of FKBP52, FKBP51, Cyp40, and a related co-chaperone PP5 were much higher in prostate cancer cells lines [(LNCaP), PC-3, and DU145] compared with primary prostate cells, and that the AR of LNCaP cells can interact with Cyp40. In the absence of androgen, CsA caused inhibition of cell growth in the AR-positive LNCaP and AR-negative PC-3 and DU145 cell lines. Interestingly, FK506 only inhibited LNCaP cells, suggesting a dependence on the AR for this effect. Both CsA and FK506 inhibited growth without inducing apoptosis. In LNCaP cells, CsA completely blocked androgen-stimulated growth, whereas FK506 was partially effective. Further studies in LNCaP cells revealed that CsA and FK506 were able to block or attenuate several stages of AR signaling, including hormone binding, nuclear translocation, and activity at several AR-responsive reporter and endogenous genes. These findings provide the first evidence that CsA and FK506 can negatively modulate proliferation of prostate cells in vitro. Immunophilins may now serve as new targets to disrupt AR-mediated prostate cancer growth.  相似文献   

19.
1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3) or calcitriol], the hormonally active vitamin D metabolite, exhibits anticancer actions in models of breast cancer and prostate cancer. Because CYP27B1 (1α-hydroxylase), the enzyme catalyzing 1,25(OH)(2)D(3) formation in the kidney, is also expressed in extrarenal tissues, we hypothesize that dietary vitamin D(3) will be converted to 25(OH)D(3) in the body and then to 1,25(OH)(2)D(3) locally in the cancer microenvironment in which it will exert autocrine/paracrine anticancer actions. Immunocompromised mice bearing MCF-7 breast cancer xenografts showed significant tumor shrinkage (>50%) after ingestion of a vitamin D(3)-supplemented diet (5000 IU/kg) compared with a control diet (1000 IU/kg). Dietary vitamin D(3) inhibition of tumor growth was equivalent to administered calcitriol (0.025, 0.05, or 0.1 μg/mouse, three times a week). Both treatments equivalently inhibited PC-3 prostate cancer xenograft growth but to a lesser extent than the MCF-7 tumors. Calcitriol at 0.05 μg and 0.1 μg caused modest but statistically significant increases in serum calcium levels indicating that the dietary vitamin D(3) comparison was to a maximally safe calcitriol dose. Dietary vitamin D(3) did not increase serum calcium, demonstrating its safety at the concentration tested. The vitamin D(3) diet raised circulating 1,25 dihydroxyvitamin D levels and did not alter CYP27B1 mRNA in the kidney but increased it in the tumors, suggesting that extrarenal sources including the tumors contributed to the elevated circulating 1,25 dihydroxyvitamin D(3). Both calcitriol and dietary vitamin D(3) were equipotent in suppressing estrogen synthesis and signaling and other proinflammatory and growth signaling pathways. These preclinical data demonstrate the potential utility of dietary vitamin D(3) supplementation in cancer prevention and therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号