首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Foot‐and‐mouth disease (FMD) is endemic in Eritrea and in most parts of Africa. To be able to control FMD using vaccination, information on the occurrence of various foot‐and‐mouth disease serotypes in Eritrea is needed. In this cross‐sectional study, 212 sera samples were collected from FMD infected and recovered animals in Eritrea. These samples were tested for the presence of antibodies against FMD non‐structural proteins (NSP) and neutralizing antibodies against six of the seven (all but SAT 3) serotypes of FMD virus (FMDV). Of these, 67.0% tested positive to non‐structural protein antibodies in the FMD NS ELISA. By virus neutralization, FMDV serotype O antibodies were shown to be the most dominant (approximately 50%). Virus neutralization test results indicate that infection with serotype C and SAT 1 might have occurred, although there are no reports of isolation of these two serotypes. Because the samples were not randomly selected, further random serological surveillance in all age group animals is necessary both to estimate the prevalence of FMD in the country and to confirm the serological results with serotype C and SAT 1.  相似文献   

2.
Uganda had an unusually large number of foot‐and‐mouth disease (FMD) outbreaks in 2006, and all clinical reports were in cattle. A serological investigation was carried out to confirm circulating antibodies against foot‐and‐mouth disease virus (FMDV) by ELISA for antibodies against non‐structural proteins and structural proteins. Three hundred and forty‐nine cattle sera were collected from seven districts in Uganda, and 65% of these were found positive for antibodies against the non‐structural proteins of FMDV. A subset of these samples were analysed for serotype specificity of the identified antibodies. High prevalences of antibodies against non‐structural proteins and structural proteins of FMDV serotype O were demonstrated in herds with typical visible clinical signs of FMD, while prevalences were low in herds without clinical signs of FMD. Antibody titres were higher against serotype O than against serotypes SAT 1, SAT 2 and SAT 3 in the sera investigated for serotype‐specific antibodies. Only FMDV serotype O virus was isolated from one probang sample. This study shows that the majority of the FMD outbreaks in 2006 in the region studied were caused by FMDV serotype O; however, there was also evidence of antibodies to both SAT 1 and SAT 3 in one outbreak in a herd inside Queen Elizabeth national park area.  相似文献   

3.
Information about seroprevalence of foot‐and‐mouth disease (FMD) and virus serotypes in Eritrea is unavailable, but is very important as it may guide the choice of intervention measures including vaccination to be implemented. We carried out a cross‐sectional study from February to June 2011 in Eritrea with a two‐stage cluster design, sampling cattle in 155 villages with the objective of determining the seroprevalence of FMD in four administrative regions of the country. We analysed cattle sera (n = 2429) for FMD virus antibodies using the non‐structural ELISA (NS ELISA) and virus neutralization test (VNT). The overall seroprevalence was 26% and 30% for the NS ELISA and VNT, respectively. FMD virus serotypes O (14%) and A (11%) were the most prevalent. Gash Barka showed the highest (39%) seroprevalence both in NS ELISA and VNT compared to the other three administrative regions. Strategic FMD virus vaccination with type O and A (matching circulating strains) in combination of zoo‐sanitary measures would be the best control option for Eritrea which could be started in areas where the disease is less endemic.  相似文献   

4.
The Kachia Grazing Reserve (KGR) is located in Kaduna state in north‐western Nigeria and consists of 6 contiguous blocks housing 744 defined households (HH), all engaged in livestock keeping. It is considered as a homogenous epidemiological unit and a defined study area. In 2012, all cattle and sheep of 40 selected HH were sampled to determine sero‐prevalence of antibodies to foot‐and‐mouth disease virus (FMDV) and of FMDV. The overall sero‐prevalence of antibodies to the non‐structural 3ABC protein (NSP‐3ABC ELISA) was 28.9% (380/1,315) (30.6% cattle; 16.3% sheep), and in 4.5% (62/1,380) (5% cattle; 0.6% sheep) of the examined sera FMD viral RNA could be detected by real‐time RT‐PCR (rRT‐PCR). Additionally, in 2012 and 2014 serum, epithelium and probang samples were collected from cattle in reported FMD outbreaks and the causative FMDVs were molecularly characterized. Approximately half (28/59) of the outbreak sera reacted positive in NSP‐3ABC ELISA, and 88% (52/59) of the outbreak sera contained detectable viral RNA. Overall, antibodies against five FMDV serotypes (O, A, SAT1, SAT2 and SAT3) were detected by solid phase competitive ELISA with combinations of two or more serotypes being common. Of the 21 FMDVs that could be isolated 19 were sequenced and 18 were confirmed as SAT2 (lineage VII) while one was characterized as serotype O (EA‐3 topotype). Phylogenetic analysis revealed a close relationship between Nigerian FMDV strains and strains in this region and even with strains in North‐Africa. Our findings indicate that FMD constitutes an endemic health problem to cattle rearing in the agro‐pastoralist community in the KGR and that the KGR is not a closed epidemiological unit. Insight into the local FMDV epidemiology and in the circulating FMDV serotypes/strains is of support to the relevant authorities in Nigeria when considering the need for an FMD control policy to improve animal production in grazing reserves.  相似文献   

5.
In January 2010, foot‐and‐mouth disease (FMD) occurred for the first time in 8 years in Korea. The outbreaks were because of A serotype, different from the O type, which had occurred previously in 2000 and 2002. The FMD outbreaks were identified in seven farms, consisting of six cattle farms where viruses were detected and one deer farm where only FMDV antibody was detected. The seven farms were within 9.3 km of each other. All susceptible animals within 10 km radius of the outbreak farms were placed under movement restrictions for 3–11 weeks. No vaccination took place to facilitate the clinical observation of infected animals and virus detection. After clinical observations and serological tests within the control zones showed no evidence of FMD infection, the movement restrictions were lifted, followed by FMD‐free declaration (23 March) at 80 days after the first outbreak on 2 January. This communication describes the outbreak of FMD A serotype, and control measures applied to eradicate the disease in Korea.  相似文献   

6.
The potential role of giraffe (Giraffa camelopardalis) in the epidemiology and spread of foot‐and‐mouth disease (FMD) SAT types was investigated by experimental infection and detection of virus in excretions using virus isolation on primary pig kidney cell cultures. In two experiments separated by a period of 24 months, groups of four animals were needle infected with a SAT‐1 or SAT‐2 virus, respectively and two in‐contact controls were kept with each group. Viraemia was detected 3–9 days post‐infection and virus isolated from mouth washes and faeces only occasionally up to day 13. The SAT‐1 virus was transmitted to only one in‐contact control animal, probably via saliva that contained virus from vesicles in the mouth of a needle‐infected animal. None of the animals infected with the SAT‐2 virus had any vesicles in the mouth, and there was no evidence of transmission to the in‐contact controls. No virus was detected in probang samples for the duration of the experiments (60 days post‐infection), indicating that persistent infection probably did not establish with either of these isolates. Giraffe most likely do not play an important role in FMD dissemination. Transmission of infection would possibly occur only during close contact with other animals when mouth vesicles are evident.  相似文献   

7.
In East Africa, the foot‐and‐mouth disease (FMD) virus (FMDV) isolates have over time included serotypes O, A, C, Southern African Territories (SAT) 1 and SAT 2, mainly from livestock. SAT 3 has only been isolated in a few cases and only in African buffalos (Syncerus caffer). To investigate the presence of antibodies against FMDV serotypes in wildlife in Uganda, serological studies were performed on buffalo serum samples collected between 2001 and 2003. Thirty‐eight samples from African buffalos collected from Lake Mburo, Kidepo Valley, Murchison Falls and Queen Elizabeth National Parks were screened using Ceditest® FMDV NS to detect antibodies against FMDV non‐structural proteins (NSP). The seroprevalence of antibodies against non‐structural proteins was 74%. To characterize FMDV antibodies, samples were selected and titrated using serotype‐specific solid phase blocking enzyme linked immunosorbent assay (ELISAs). High titres of antibodies (≥1 : 160) against FMDV serotypes SAT 1, SAT 2 and SAT 3 were identified. This study suggests that African buffalos in the different national parks in Uganda may play an important role in the epidemiology of SAT serotypes of FMDV.  相似文献   

8.
Control of foot‐and‐mouth disease (FMD) in Uganda by ring vaccination largely depends on costly trivalent vaccines, and use of monovalent vaccines could improve the cost effectiveness. This, however, requires application of highly specific diagnostic tests. This study investigated outbreaks of FMD in seven Ugandan districts, during 2011, using the PrioCHECK® FMDV NS ELISA, solid‐phase blocking ELISAs (SPBEs) and virus neutralization tests (VNTs), together with virological analyses for characterization of the responsible viruses. Two hundred and eighteen (218) cattle and 23 goat sera as well as 82 oropharyngeal fluid/epithelial tissue samples were collected. Some 50% of the cattle and 17% of the goat sera were positive by the PrioCHECK® FMDV NS ELISA, while SPBEs identified titres ≥80 for antibodies against serotype O FMD virus (FMDV) in 51% of the anti‐NSP positive cattle sera. However, 35% of the anti‐NSP positive cattle sera had SPBE titres ≥80 against multiple serotypes, primarily against serotypes O, SAT 1 and SAT 3. Comparison of SPBEs and VNTs for the detection of antibodies against serotypes O, SAT 1 and SAT 3 in 72 NSP positive cattle sera showed comparable results against serotype O (= 0.181), while VNTs detected significantly fewer samples positive for antibodies against SAT 1 and SAT 3 than the SPBEs (< 0.001). Detection of antibodies against serotype O was consistent with the isolation of serotype O FMDVs from 13 samples. Four of these viruses were sequenced and belonged to two distinct lineages within the East Africa‐2 (EA‐2) topotype, each differing from the currently used vaccine strain (EA‐1 topotype). The relationships of these lineages to other serotype O viruses in the Eastern Africa region are discussed. To enhance the control of FMD in Uganda, there is need to improve the specificity of the SAT‐SPBEs, perform vaccine matching and implement improved regional FMD control.  相似文献   

9.
Recent European contingency plans envisage emergency vaccination as an animal‐friendly control strategy for foot‐and‐mouth disease (FMD). Anti‐viral drugs may be used as an alternative or complementary measure. We here demonstrate that the nucleoside analogue 2′‐C‐methylcytidine (2′CMC) protects severe combined immunodeficient (SCID) mice against lethal FMD virus infection. In brief, SCID mice were inoculated with serotype A FMD virus and treated for five consecutive days with 2′CMC. All 15 treated mice remained healthy until the end of the study at 14 days post‐infection (dpi). At that time, viral RNA was no longer detected in 13 of 15 treated mice. All eight untreated mice suffered from an acute generalized disease and were euthanized for ethical reasons on average at 4 dpi. These results illustrate the potential of small molecules to control FMD.  相似文献   

10.
Schmallenberg virus (SBV) is a vector‐borne virus belonging to the genus Orthobunyavirus within the Bunyaviridae family. SBV emerged in Europe in 2011 and was characterized by epidemics of abortions, stillbirths and congenital malformations in domestic ruminants. The first evidence of SBV infection in Slovenia was from an ELISA‐positive sample from a cow collected in August 2012; clinical manifestations of SBV disease in sheep and cattle were observed in 2013, with SBV RNA detected in samples collected from a total of 28 herds. A potential re‐emergence of SBV in Europe is predicted to occur when population‐level immunity declines. SBV is also capable of infecting several wild ruminant species, although clinical disease has not yet been described in these species. Data on SBV‐positive wild ruminants suggest that these species might be possible sources for the re‐emergence of SBV. The aim of this study was to investigate whether SBV was circulating among wild ruminants in Slovenia and whether these species can act as a virus reservoir. A total of 281 blood and spleen samples from wild ruminants, including roe deer, red deer, chamois and European mouflon, were collected during the 2017–2018 hunting season. Serum samples were tested for antibodies against SBV by ELISA; the overall seroprevalence was 18.1%. Seropositive samples were reported from all over the country in examined animal species from 1 to 15 years of age. Spleen samples from the seropositive animals and serum samples from the seronegative animals were tested for the presence of SBV RNA using real‐time RT‐PCR; all the samples tested negative. Based on the results of the seropositive animals, it was demonstrated that SBV was circulating in wild ruminant populations in Slovenia even after the epidemic, as almost half (23/51) of the seropositive animals were 1 or 2 years old.  相似文献   

11.
India is endemic for foot‐and‐mouth disease (FMD), and goats constitute the second largest susceptible population of domestic livestock. FMD surveillance and control strategies in the country largely ignore small ruminants, known to be critical in the epidemiology of the disease. Here, serological investigations were carried out to generate estimates of antibody prevalence in goats of Orissa state to both non‐structural (NSP‐Ab) and structural proteins (SP‐Ab) of FMD. The apparent overall NSP‐Ab and SP‐Ab seroprevalences were 38% and 20.7%, respectively, which signifies a very high level of FMD virus circulation in the goat population despite the lack of clinical signs in this species. The apparent prevalence of NSP‐Ab and SP‐Ab was positively correlated in the sampling areas. Interestingly, the values found for NSP‐Ab prevalence were almost consistently higher than those found for SP‐Ab prevalence. This could have been attributable to either issues related to sensitivity and specificity of the test systems employed or differences in the post‐infection kinetics of NSP‐ and SP‐Ab. The pattern that emerged from SP‐Ab analysis indicated goats being infected with all three prevalent serotypes (O, A and Asia 1) and reinforces the concept that non‐vaccinated goats can be exploited as tracer animals for detecting serotypes involved in outbreaks. The results underscore the requirement to bring caprine species under comprehensive surveillance and vaccination campaigns to check silent amplification, excretion and transmission of the virus.  相似文献   

12.
Little information is available about the natural cycle of foot‐and‐mouth disease (FMD) in the absence of control measures such as vaccination. Cameroon presents a unique opportunity for epidemiological studies because FMD vaccination is not practiced. We carried out a prospective study including serological, antigenic and genetic aspects of FMD virus (FMDV) infections among different livestock production systems in the Far North of Cameroon to gain insight into the natural ecology of the virus. We found serological evidence of FMDV infection in over 75% of the animals sampled with no significant differences of prevalence observed among the sampled groups (i.e. market, sedentary, transboundary trade and mobile). We also found antibodies reactive to five of the seven FMDV serotypes (A, O, SAT1, SAT2 and SAT3) among the animals sampled. Finally, we were able to genetically characterize viruses obtained from clinical and subclinical FMD infections in Cameroon. Serotype O viruses grouped into two topotypes (West and East Africa). SAT2 viruses grouped with viruses from Central and Northern Africa, notably within the sublineage causing the large epidemic in Northern Africa in 2012, suggesting a common origin for these viruses. This research will guide future interventions for the control of FMD such as improved diagnostics, guidance for vaccine formulation and epidemiological understanding in support of the progressive control of FMD in Cameroon.  相似文献   

13.
In Niger, the epidemiological situation regarding foot‐and‐mouth disease is unclear as many outbreaks are unreported. This study aimed (i) to identify Foot‐and‐mouth disease virus (FMDV ) strains currently circulating in cattle herds, and (ii) to identify risk factors associated with Foot‐and‐mouth disease (FMD )‐seropositive animals in clinical outbreaks. Epithelial tissues (n  = 25) and sera (n  = 227) were collected from cattle in eight districts of the south‐western part of Niger. Testing of clinical material revealed the presence of FMDV serotype O that was characterized within the O/WEST AFRICA topotype. The antigenic relationship between one of the FMDV isolates from Niger (O/NGR /4/2015) and three reference vaccine strains was determined by the two‐dimensional virus neutralization test (2dmVNT ), revealing a close antigenic match between the field isolate from Niger and three FMDV serotype O vaccine strains. Serological analyses using a non‐structural protein (NSP ) test provided evidence for previous FMDV infection in 70% (158/227) of the sera tested. Multivariate logistic regression analysis revealed that only the herd composition (presence of both cattle and small ruminants) was significantly associated with FMDV seropositivity as defined by NSP ‐positive results (p ‐value = .006). Of these positive sera, subsequent testing by liquid‐phase blocking ELISA (LPBE ) showed that 86% (136/158) were positive for one (or more) of four FMDV serotypes (A, O, Southern African Territories (SAT ) 1 and SAT 2). This study provides epidemiological information about FMD in the south‐western part of Niger and highlights the complex transboundary nature of FMD in Africa. These findings may help to develop effective control and preventive strategies for FMD in Niger as well, as other countries in West Africa.  相似文献   

14.
The largest epidemic of foot‐and‐mouth disease (FMD) in Korea since the first record in 1911 occurred between November 2010 and April 2011. The outbreak was confirmed in 153 farms, and more than three million animals were destroyed. This study presents the temporal and spatial distribution patterns, epidemiological investigation and the control measures for the 2010/2011 epidemic in Korea. The index case of this 2010/2011 FMD epidemic was reported in a pig‐farming complex with five piggeries in Andong, GyeongBuk Province, on 28 November 2010, and the outbreak lasted 145 days. The largest number of new detection of the infected farms per day was recorded in mid‐January. Epidemiological investigation revealed that the FMD virus had spread from farm to farm through routine movements associated with animal husbandry operations. In contrast to FMD epidemics in other countries in which movement of the infected animals largely contributed to the spread of the disease, human behaviours were major factors in the spread of the FMD virus in the Korean epidemic. The 2010/2011 epidemic was first confirmed in a local small and medium city where share of smallholder producers is higher than that of other provinces. Although Korea had a well‐developed emergent response system with the experience of controlling infection and re‐obtaining FMD‐free status after the previous epidemics, Korea was prompted to revise their contingency plan by tailoring it to its unique livestock environment. Practical contingency plans tailored to Korea for control of FMD can be fully effective when farmers, livestock‐related agencies, veterinary service providers and the general public work together.  相似文献   

15.
Foot‐and‐mouth disease (FMD) inflicts severe economic losses within infected countries and is arguably the most important trade‐restricting livestock disease in the world. In southern Africa, infected African buffaloes (Syncerus caffer) are the major reservoir of the South African Territories (SAT) types of the virus. With the progressive expansion of transfrontier conservation areas (TFCAs), the risk of FMD outbreaks is expected to increase due to a higher probability of buffalo/livestock contacts. To investigate the dynamics of FMD within and around the Great Limpopo TFCA (GLTFCA), 5 herds of buffaloes were sampled in June 2010 to characterize circulating viruses in South Africa and Zimbabwe. Three SAT‐2 and three SAT‐3 viral strains were isolated in both countries, including one that was genetically linked with a recent SAT‐2 outbreak in Mozambique in 2011. In addition, two groups of unvaccinated cattle (= 192) were serologically monitored for 1 year at the wildlife/livestock interface of Gonarezhou National Park (GNP) in Zimbabwe between April 2009 and January 2010, using the liquid‐phase blocking ELISA (LPBE) and a test for antibodies directed against non‐structural proteins (NSP). Neither clinical signs nor vaccination of cattle were reported during the study, yet a high proportion of the monitored cattle showed antibody responses against SAT‐3 and SAT‐1. Antibodies against NSP were also detected in 10% of the monitored cattle. The results of this study suggest that cattle grazing in areas adjacent to the GLTFCA can be infected by buffalo or other infected livestock and that cattle trade movements can act as efficient disseminators of FMD viruses to areas several hundred kilometres from the virus source. Current methods of surveillance of FMD at the GLTFCA interface seem insufficient to control for FMD emergence and dissemination and require urgent reassessment and regional coordination.  相似文献   

16.
Foot‐and‐mouth disease (FMD) vaccines are routinely used as effective control tools in large regions worldwide and to limit outbreaks during epidemics. Vaccine‐induced protection in cattle has been largely correlated with the FMD virus (FMDV)‐specific antibodies. Genetic control of cattle immune adaptive responses has been demonstrated only for peptide antigens derived from FMDV structural proteins. Here, we quantify the heterogeneity in the antibody response of cattle primo‐vaccinated against FMD and study its association with the genetic background in Holstein and Jersey sires. A total of 377 FMDV‐seronegative calves (122 and 255 calves from 16 and 15 Holstein and Jersey sires, respectively) were included in the study. Samples were taken the day prior to primo‐vaccination and 45 days post‐vaccination (dpv). Animals received commercial tetravalent FMD single emulsion oil vaccines formulated with inactivated FMDV. Total FMDV‐specific antibody responses were studied against three viral strains included in the vaccine, and antibody titres were determined by liquid‐phase blocking ELISA. Three linear hierarchical mixed regression models, one for each strain, were formulated to assess the heterogeneity in the immune responses to vaccination. The dependent variables were the antibody titres induced against each FMDV strain at 45 dpv, whereas sire's ‘breed’ was included as a fixed effect, ‘sire’ was included as a random effect, and ‘farm’ was considered as a hierarchical factor to account for lack of independence of within herd measurements. A significant association was found between anti‐FMDV antibody responses and sire's breed, with lower immune responses found in the Jersey sires’ offspring compared with those from Holstein sires. No significant intrabreed variation was detected. In addition, farm management practices were similar in this study, and results of the serological assays were shown to be repeatable. It therefore seems plausible that differences in the immune response may be expected in the event of a mass vaccination campaigns.  相似文献   

17.
The goal of this study was to characterize the properties and duration of the foot‐and‐mouth disease (FMD ) carrier state and associated serological responses subsequent to vaccination and naturally occurring infection at two farms in northern India. Despite previous vaccination of cattle in these herds, clinical signs of FMD occurred in October 2013 within a subset of animals at the farms containing juvenile‐yearling heifers and steers (Farm A) and adult dairy cattle (Farm B). Subsequent to the outbreak, FMD virus (FMDV ) asymptomatic carriers were identified in both herds by seroreactivity to FMDV non‐structural proteins and detection of FMDV genomic RNA in oropharyngeal fluid. Carriers’ seroreactivity and FMDV genome detection status were subsequently monitored monthly for 23 months. The mean extinction time of the carrier state was 13.1 ± 0.2 months, with extinction having occurred significantly faster amongst adult dairy cattle at Farm B compared to younger animals at Farm A. The rate of decrease in the proportion of carrier animals was calculated to be 0.07 per month. Seroprevalence against FMDV non‐structural proteins decreased over the course of the study period, but was found to increase transiently following repeated vaccinations. These data provide novel insights into viral and host factors associated with the FMDV carrier state under natural conditions. The findings reported herein may be relevant to field veterinarians and governmental regulatory entities engaged in FMD response and control measures.  相似文献   

18.
19.
Foot‐and‐mouth disease (FMD) is a highly contagious and economically important viral disease with high morbidity and reduced productivity of affected animals. We studied the heat intolerance (HI) (panting) syndrome and the effect of FMD virus (FMDV) infection on thyroid gland function in Indian cattle (Bos indicus). Experimental infection with FMDV Asia 1 resulted in a mild form of disease with superficial lesions. Heat intolerance syndrome and its signs were not observed among the recovered animals. Subtle changes in the serum level of thyroid hormones, triiodothyronine (T3) and thyroxine (T4) were observed. However, there were no distinct histological changes in the thyroid gland, and FMDV antigens were not detected in the thyroid tissues. Our results thus suggest that the absence of panting syndrome in FMD‐affected Bos indicus cattle may be associated with intact thyroid gland function.  相似文献   

20.
Bluetongue virus (BTV) hitherto consisted of 26 recognized serotypes, of which all except BTV‐26 are primarily transmitted by certain species of Culicoides biting midges. Three variants of an additional 27th bluetongue virus serotype (BTV‐27v01‐v03) were recently detected in asymptomatic goats in Corsica, France, 2014–2015. Molecular characterization revealed genetic differences between the three variants. Therefore, in vivo characteristics were investigated by experimental infection of a total of 15 goats, 11 sheep and 4 cattle with any one of the three variants in separated animal trials. In goat trials, BTV‐naïve animals of the same species were kept in a facility where direct contact was unhindered. Of the 15 inoculated goats, 13 and 14 animals were found positive for BTV‐RNA and antibodies (Ab), respectively, until the end of the experiments. Surprisingly, BTV‐Ab levels as measured with ELISA and neutralization test (SNT) were remarkably low in all seropositive goats. Virus isolation from whole‐blood was possible at the peak of viremia until 49 dpi. Moreover, detection of BTV‐27v02‐RNA and Ab in one contact goat indicated that—similar to BTV‐26—at least one of three BTV‐27 variants may be transmitted by contact between goats. In the field, BTV‐27 RNA can be detected up to 6 months in the whole‐blood of BTV‐27‐infected Corsican goats. In contrast, BTV RNA was not detected in the blood of cattle or sheep. In addition, BTV‐27 Abs were not detected in cattle and only a transient increase in Ab levels was observed in some sheep. None of the 30 animals showed obvious BT‐like clinical signs. In summary, the phenotypes observed for BTV‐27v01‐v03 phenotypes correspond to a mixture of characteristics known for BTV‐25 and 26.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号