首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Pituitary adenylate cyclase activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) are structurally similar, share the same high affinity site in same peripheral tissues and increase the intracellular content of adenylate cyclase. To establish which neural circuits are signaling with each of these two peptides, we systematically compared the immunohistochemical distribution of PACAP and VIP in selected rat forebrain regions using previously characterized antiserum. The PACAP antiserum recognized both PACAP27 and PACAP38, and PACAP immunoreactivity was unaffected by preincubation with various other peptides. PACAP-immunoreactive perikarya and fibers were observed in both hypothalamic and extrahypothalamic regions. In the hypothalamus PACAP perikarya were located in the supraoptic, paraventricular, anterior commissural, periventricular, and perifornical nuclei. In intact rats PACAP immunolabeled fibers were present in the internal zone of the median eminence and posterior pituitary. One week after hypophysectomy the intensity of staining in the internal zone was enhanced and immunoreactive fibers appeared in the external zone of the median eminence. Two or 3 weeks later a dense fiber network was observed around the portal capillaries in the external zone, and immunoreactive material further accumulated in the fibers of the internal zone. PACAP-immunoreactive perikarya and fibers were also observed in several extrahypothalamic regions including central thalamic nuclei, amygdaloid complex, bed nucleus of stria terminalis, septum, hippocampus and cingulate, and entorhinal cortices. In the lateral septum and entorhinal cortex PACAP fibers surrounded unstained neuronal cell bodies and small blood vessels. In intact rats, VIP-immunoreactive perikarya were present in all regions of the cerebral cortex, hippocampus, amygdaloid complexus and in the suprachiasmatic nucleus, but not in the paraventricular and supraoptic nuclei. In colchicine-treated rats the VIP perikarya appeared in the preoptic area and paraventricular nucleus. The fibers were organized in two main pathways: the stria terminalis and an ascending pathway from the suprachiasmatic nucleus to the paraventricular area. Hypophysectomy induced the appearance of VIP-immunoreactive fibers in the internal zone of the median eminence and perikarya in the supraoptic and paraventricular nuclei in addition to the suprachiasmatic nucleus. The dissimilar distributions of PACAP and VIP suggest that PACAP neural circuits are independent of that of VIP in the rat forebrain. These findings support possible multifunctional roles for PACAP as a posterior pituitary hormone, a hypophysiotrophic factor, and a neurotransmitter/neuromodulator.  相似文献   

2.
支气管哮喘(简称哮喘)是儿童最常见的慢性疾病之一,对儿童的健康造成很大威胁。气道慢性炎症、气道高反应性及气道重塑是哮喘的基本特征。大量的研究发现垂体腺苷酸环化酶激活肽(PACAP)具有多种生物学活性,参与免疫调节、炎症反应、呼吸节律、氧化应激等。明确PACAP在哮喘中的发病机制,有望成为哮喘药物研究的新方法和新策略。  相似文献   

3.
The hypothalamic peptide, pituitary adenylate cyclase-activating polypeptide (PACAP), is a potent stimulator of cAMP accumulation in the anterior pituitary gland, though its physiological function has yet to be defined. To establish the target cells of PACAP action we have measured PACAP-induced changes in cytosolic free calcium ion concentration ([Ca2+]i) in single identified anterior pituitary cells. This was achieved by combining fura-2 videomicroscopy, to measure [Ca2+]i, and reverse hemolytic plaque assays, to identify the secreted hormone. PACAP (100 nM) increased [Ca2+]i in 32% of all pituitary cells. These responses were predominantly seen in identified gonadotropes and somatotropes, but rarely in corticotropes or lactotropes. PACAP induced two forms of Ca2+ response in gonadotropes; a "Ca2+ spike" (independent of extracellular Ca2+) in 72% of responding gonadotropes, and an extracellular Ca(2+)-dependent "Ca2+ plateau" (28% of cells). In somatotropes, PACAP stimulated either Ca2+ plateau responses (58% of responding somatotropes) or repetitive "Ca2+ transients" (42% of cells), both of which were dependent upon extracellular Ca2+. PACAP, therefore, produces distinct changes in [Ca2+]i in gonadotropes and somatotropes, which may be related to distinct intracellular messenger pathways. The identification of these cell types as targets of PACAP action suggests a role in the regulation of reproduction and growth.  相似文献   

4.
5.
The mechanism of relaxation of the guinea-pig trachea induced by pituitary adenylate cyclase activating peptide (PACAP)-27 was investigated. We examined whether modulators of nitric oxide (NO) and carbon monoxide (CO) affect PACAP-induced response of tracheal strips in vitro. Pretreatment with N omega-nitro-L-arginine methyl ester hydrochloride (L-NAME) and L-arginine (L-arg) had no effect, while 1H-[1,2,4] oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), haemoglobin and zinc protoporphyrin IX (ZnPP-9) partially abolished the PACAP-induced relaxation. PACAP-27 elevated cyclic GMP level in airway smooth muscle tissue. These results indicate that PACAP-27 not only induces cyclic AMP-mediated responses, but also cyclic GMP-mediated responses in the airway. In addition, CO is related to the PACAP-induced elevation of cGMP level in the tracheal tissue.  相似文献   

6.
B Simon  H Kather 《Gastroenterology》1978,74(4):722-725
The effects of various polypeptide hormones known to inhibit gastric acid secretion were tested on the adenylate cyclase system in human gastric and duodenal mucosal homogenates. Glucagon and secretin failed to stimulate the enzyme system in the stomach. The latter hormone produced a small but significant activation of the duodenal cyclase. The vasoactive intestinal polypeptide (VIP), however, induced a dose-dependent increase of enzyme activity throughout the stomach and the duodenum. Maximal effects (1.8 to 3.0-fold increase) were observed at a VIP-concentration of about 10 microgram per ml. Because the entire physiological role of VIP in gastric function has not been defined, ipt cannot be discerned whether the VIP-stimulated adenylate cyclase is linked to inhibition of gastric acid secretion or to another as yet unrecognized effect of this hormone in human gastric function.  相似文献   

7.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a new member of the secretin glucagon-vasoactive intestinal peptide (VIP) family of peptides, being most homologous to VIP. PACAP exists in two amidated forms with 38 residues (PACAP38) and 27 residues (PACAP27), respectively. PACAP38 is the major form in tissues. There are two types of high-affinity receptors for PACAP: type I, which specifically binds to both PACAPs, and type II, which is shared with VIP. Type I PACAP receptors appear to have two subtypes: type IA, which binds to both PACAP38 and PACAP27, with slight preference for the latter, and type IB, with greater preference for PACAP38. Distribution of the type I PACAP receptor is different from that of VIP, and it is found in high concentrations in brain, spinal cord, anterior pituitary, adrenal medulla, spermatogonia at certain stages, mature spermatozoa, and some cell lines. Type II PACAP receptors are found in lung, liver, intestine, and other tissues, and their distribution is similar to that of the VIP receptor. Type II PACAP receptor might be similar to or identical with the VIP receptor.  相似文献   

8.
The activation of adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] by vasoactive intestinal peptide (VIP) was used as a model to investigate the molecular mechanisms triggered by the occupancy of dopamine recognition sites in rat anterior pituitary. Dopamine failed to change the basal enzyme activity, but it inhibited the stimulation of adenylate cyclase elicited by VIP. Apomorphine, 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene, and 2-bromo-alpha-ergocryptine mimicked the effect of dopamine, whereas (-)-sulpiride and and classical neuroleptics antagonized it. Dopamine failed to modulate the activation of pituitary adenylate cyclase by prostaglandin E1, which does not increase prolactin secretion. From these results we infer that stimulation of D-2 (dopamine) receptors may affect pituitary secretion by inhibiting the activation of anterior pituitary adenylate cyclase by VIP or other secretagogues.  相似文献   

9.
10.
Pituitary adenylate cyclase activating popypeptide (PACAP) is a pleiotropic neuropeptide, exerting neurotrophic and neuroprotective effects in numerous models of in vitro and in vivo nervous injuries. The aim of the present study was to investigate whether PACAP is neuroprotective in ischemic retinal damage. Adult male Wistar rats underwent bilateral carotid occlusion and PACAP was administered unilaterally into the vitreous body immediately following carotid occlusion. Retinas were analyzed three weeks after the injury. It was found that bilateral carotid occlusion led to a severe degeneration of all retinal layers. PACAP treatment significantly ameliorated the carotid occlusion-induced retinal damage: the overall thickness of the retina was significantly more than in control carotid occluded animals and the morphological characteristics of the photoreceptors showed nearly normal appearance. The outer plexiform layer remained discernible and the inner and outer nuclear layers were significantly thicker than in control animals. In summary, our present study provides evidence, for the first time, that PACAP attenuates ischemic retinal degeneration.  相似文献   

11.
Two novel polypeptides known as pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38) and a shorter form of the peptide corresponding to the N-terminal 27 residues (PACAP27) were isolated from ovine hypothalamus. The N-terminal 28 residues of PACAP show 68% homology with vasoactive intestinal peptide (VIP). VIP has been reported to have specific binding sites in lymphocytes and inhibit mitogen-stimulated lymphocyte proliferation through a receptor-mediated stimulation of cAMP-dependent protein kinase. Using concanavalin A-induced proliferation of murine splenocytes as a model system, we now report that both PACAP38 and PACAP 27 can inhibit the proliferation of these cells in the same dose-dependent manner as VIP. The minimal effective concentration of the PACAPs was 10(-10)-10(-9) M. However, neither PACAP affected lipopolysaccharide-induced proliferation of murine splenocytes. The binding of [125I]PACAP27 to these splenocytes was rapid, time dependent, reversible, and proportional to the numbers of murine splenocytes. Scatchard analysis of displacement of the bound tracer by unlabeled PACAP27 indicated the existence of two classes of binding sites. The dissociation constant (Kd) was 0.86 +/- 0.24 nM and the maximal binding capacity (Bmax) was 1.13 +/- 0.39 fmol/10(6) cells for the high affinity binding site. The low affinity binding site had a Kd of 0.13 +/- 0.03 microM with a Bmax of 73.5 +/- 9.5 fmol/10(6) cells. PACAP38 and VIP displaced the binding of [125I]PACAP27 in the same manner as PACAP27 and Scatchard analyses indicated the presence of two classes of binding sites with Kd and Bmax similar to those for PACAP27. Furthermore, when [125I]VIP was used as a radiolabeled ligand, PACAP27 and PACAP38 displaced the [125I]VIP binding to the same degree as unlabeled VIP. Scatchard analysis indicated that there was no significant difference of the Kd or Bmax between PACAP and VIP. Taken together, these data suggest that PACAPs bind to a site similar or identical to that used by VIP which inhibit the proliferation of murine splenocytes induced by concanavalin A.  相似文献   

12.
An increasing body of evidence has suggested trophic effects of peripheral nerves. In this study, the growth stimulatory properties of the sensory neuropeptides vasoactive intestinal polypeptide (VIP), substance P (SP), calcitonin generelated peptide (CGRP), and somatostatin (SOM) on cultured human keratinocytes were investigated. It was shown that VIP, in the presence of lethally treated 3T3 fibroblast feeder cells and epidermal growth factor (EGF), stimulated proliferation of keratinocytes in a dose-dependent manner, whereas SP, CGRP, and SOM were ineffective. VIP stimulated adenylate cyclase activity in membranes obtained from cultured keratinocytes in a dose-dependent manner, indicating an involvement of cAMP as second messenger in this reaction. Furthermore, 125I-labeled VIP was shown to bind to cultured keratinocytes and this binding could be displaced by addition of unlabeled VIP, suggesting the presence of specific receptors. It is therefore possible that VIP, released from sensory nerve endings in the skin, may act as a local mitogenic factor for human keratinocytes by stimulating adenylate cyclase activity via specific VIP receptors.  相似文献   

13.
In this study, we demonstrated that the cell content and basal secretion of vasoactive intestinal peptide (VIP) in primary rat pituitary cell cultures were increased in hypothyroidism. VIP release from hypothyroid pituitary cells in vitro was stimulated by thyrotropin releasing hormone (TRH 10(-8) to 10(-6) M) and growth hormone (GH)-releasing hormone (GHRH 10(-9) to 10(-8) M) but not by corticotropin-releasing hormone or luteinizing hormone-releasing hormone in concentrations up to 10(-6) M. In the presence of anti-VIP antisera, there was a significant decrease in basal prolactin secretion from cultured hypothyroid pituitary cells (p less than 0.005) indicating that VIP exerts a tonic stimulatory effect on prolactin (PRL) secretion. The increment in PRL secretion following TRH was not affected by exposure to anti-VIP indicating that PRL release after TRH is not mediated by VIP at the pituitary level. In contrast to changes in PRL, exposure to anti-VIP had no effect on basal GH secretion, indicating that the PRL changes are hormone specific. Similarly, GHRH-induced GH release was unaffected by VIP immunoneutralization.  相似文献   

14.
GH secretion has been thought traditionally to be regulated by the two hypothalamic hormones, GH-releasing hormone (GHRH) and somatostatin (SRIF). Recent evidence has suggested that other factors may be involved. These factors include the natural ligand for the synthetic hexapeptide GH-releasing peptide (GHRP) and the putative hypophysiotropic factor pituitary adenylate cyclase-activating polypeptide (PA-CAP). Accordingly, we examined the effects of GHRP and PACAP on GH secretion at the single cell level using the reverse hemolytic plaque assay which allows distinction of effects on the number of secreting cells and the amount of hormone each cell secretes. Both factors stimulated GH secretion in a dose-dependent fashion, with PACAP being more effective. PACAP increased both the number of cells secreting and the mean amount of hormone secreted per cell. In contrast, GHRP increased the number of secreting cells, although it had no effect on the amount of secretion per cell. GH secretion induced by GHRH, GHRP, and PACAP was inhibited by SRIF, but the effect was predominantly on the number of cells secreting rather than the amount secreted per cell. Specific antagonists to GHRP and GHRH inhibited GH secretion induced by the respective agonist but not that induced by the other factor nor by PACAP. These findings confirm the complex nature of the regulation of GH secretion at the level of the somatotrope. At least three factors, operating via distinct receptors, are able to increase GH secretion. In addition, they ascribe a potential physiological role for the hitherto putative hypophysiotropic factor PACAP.  相似文献   

15.
C Ko  Y H In  O K Park-Sarge 《Endocrinology》1999,140(11):5185-5194
It is well known that the pituitary gonadotropin surge induces progesterone receptor (PR) gene expression in luteinizing granulosa cells and that PR activation is critical for successful ovulation. To further understand the molecular mechanism(s) by which PR plays a role critical for granulosa cell functions, we wanted to identify progesterone-induced genes in granulosa cells. We employed a PCR-based subtraction cloning strategy to screen for genes expressed differentially in granulosa cells that were challenged with forskolin in the presence of progesterone or ZK98299. One such differentially expressed clone was identified as the pituitary adenylate cyclase activating polypeptide (PACAP). To begin to understand the relationship between PR activation and PACAP gene expression in luteinizing granulosa cells, we examined whether PR and PACAP messenger RNA (mRNA) expression is temporally correlated. In cultured granulosa cells, both human CG and forskolin induced PR and PACAP mRNA levels in a dose-dependent manner, as determined by semi-quantitative RT-PCR assays. However, the peak expression for PR and PACAP mRNAs was observed at 3 h and 6 h after hormone treatment, respectively. This time difference in cAMP-responsive expression of the PR and PACAP genes is due, at least in part, to the requirement of ongoing protein synthesis for PACAP expression, as demonstrated by the inhibitory effect of cycloheximide on cAMP-induced PACAP, but not PR, mRNA levels. To determine whether PR synthesis is prerequisite for PACAP expression, we examined the effect of ZK98299, a specific PR antagonist, on cAMP-induced PACAP mRNA expression. This compound blocked cAMP-induced PACAP mRNA expression in a dose-dependent manner, indicating that PR activation is required for PACAP gene expression in granulosa cells. We then compared cellular localization and hormonal regulation of ovarian PR and PACAP gene expression in immature rats treated with gonadotropins as well as in adult rats during the preovulatory period by using in situ hybridization and semiquantitative RT-PCR assays. Results show that both PR and PACAP mRNAs are induced in granulosa cells of preovulatory follicles by human CG, but that the PR gene is expressed before the PACAP gene. Taken together, these results demonstrate that PRs mediate the LH-induced PACAP gene expression in rat granulosa cells.  相似文献   

16.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a bioactive peptide transiently expressed in preovulatory follicles. PACAP acts by interacting with three types of PACAP receptors. PACAP type I receptor (PAC(1)-R), which binds specifically to both PACAPs and vasoactive intestinal polypeptide (VIP), although with lower affinity, and two VIP receptors, VPAC(1)-R and VPAC(2)-R, which bind to PACAP and VIP with equal affinity. In the present study, we showed the expression of all three receptors in whole ovaries obtained from juvenile and gonadotropin-treated immature rats. A more detailed analysis on cells from preovulatory follicles showed that PAC(1)-R and VPAC(2)-R were expressed in granulosa cells, whereas only VIP receptors were expressed in theca/interstitial (TI) cells and fully grown oocytes presented only PAC(1)-R. The distribution of the VIP receptors was confirmed by immunofluorescence. HCG treatment induced stimulation of PAC(1)-R in granulosa cells and VPAC(2)-R in TI cells. The presence of functional PACAP/VIP receptors was also supported by metabolic studies. We further evaluated the presence of PACAP and VIP receptors by testing the effect of these peptides on apoptosis in granulosa cells cultured, isolated or in whole follicles. Treatment of follicles with PACAP and VIP dose-dependently inhibited apoptosis, while only PACAP significantly inhibited isolated granulosa cells. These results demonstrate a different expression of PACAP/VIP receptors in the various follicle compartments and suggest a possible role for PACAP and VIP on granulosa and TI cells, both during follicle development and ovulation.  相似文献   

17.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 38-amino acid peptide of the glucagon-secretin-vasoactive intestinal polypeptide superfamily. Although PACAP is a potent stimulator of adenylate cyclase activity in the adenohypophysis, the precise target cells for PACAP in the anterior pituitary remain unknown. The aim of the present study was to investigate whether PACAP could stimulate calcium mobilization in individual cells of the pituitary and to determine the type of cells that responded to PACAP. Enzymatically dispersed frog distal pituitary cells were plated on photoetched coverslips and cultured for 3-7 days. The cells were loaded with the fluorescent calcium indicator indo-1, and changes in intracellular calcium concentrations ([Ca2+]i) were monitored using dual wavelength microfluorimetry. The individual cells were localized with the aid of the alpha/numeric grid of the coverslips and identified retrospectively by immunofluorescence. Approximately 45% of GH and PRL cells and 25% of ACTH and TSH cells responded to PACAP (10(-5) M) ejection by an elevation of [Ca2+]i. Only 16% of gonadotropes were stimulated by PACAP. The time course of [Ca2+]i variations showed three different patterns: transient spikes, sustained stimulations, and oscillatory responses. In addition, heterogenous responses were observed within each cell type. These data provide evidence for the involvement of calcium mobilization in the mechanism of action of PACAP on pituitary cells. The results also indicate that in frogs, PACAP may stimulate the secretory activity of GH and PRL cells and, to a lesser extent, ACTH, TSH, and gonadotrope cells.  相似文献   

18.
Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are regulatory neuropeptides of the hypothalamus-hypophyseal-adrenal axis, acting via the common receptors VPAC(1) and VPAC(2) and the selective PACAP receptor PAC(1). In the adrenal glands of the Italian wall lizard, Podarcis sicula, the presence of VIP in chromaffin cells, and the VIP-stimulated release of catecholamine and aldosterone in vivo, was previously shown. To examine the localization of both peptides and receptors and their mRNAs in the adrenal gland of P. sicula, immunohistochemistry and in situ hybridization were performed: PACAP and its mRNA were detected in chromaffin cells, VPAC(1) was found associated with steroidogenic tissue, VPAC(2) and PAC(1) with chromaffin tissue. Using 'far western blot' technique, we showed the presence of specific binding sites for VIP/PACAP in the adrenal glands of the lizard. The effects of both VIP and PACAP on the adrenal cells of the lizard were examined in vitro in adrenal cell co-cultures: both VIP and PACAP enhanced catecholamine, corticosterone and aldosterone release from adrenal cell co-culture in a time- and dose-dependent manner. The catecholamine release was inhibited by PAC(1) antagonist and in VPAC(2) immunoneutralized adrenal cells. The effects of VIP and PACAP on aldosterone secretion were counteracted by VPAC(1) antagonist administration in vitro. Corticosterone secretion elicited by VIP was not blocked by VPAC(1) antagonist, while the PACAP-induced release of corticosterone was blocked by the antagonist. Overall, our investigations indicate that these neuropeptides of the secretin superfamily can act not only as neurotransmitters but also as autocrine and paracrine regulators on chromaffin and cortical cells, being important mediators of the non-cholinergic system in the lizard adrenal gland.  相似文献   

19.
Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) immunoreactive cells were demonstrated in the hypothalamic magnocellular nuclei in cats and rats. In cats these immunoreactive cells were stained without any treatment or intervention; however, in rats we had to use the pituitary stalk section to enhance the amount of PACAP and VIP for successful immunostaining. In both species the regions occupied by PACAP and VIP immunoreactive cells partially overlap each other in the paraventricular and supraoptic nuclei. Nevertheless, in either cats or rats PACAP and VIP immunoreactivities do not colocalize in the same cells studied by double labeling immunohistochemistry (IHC) or by the combination of immunohistochemistry and in situ hybridization. As was expected, PACAP and VIP immunoreactive materials were stored in different fibers of the posterior pituitary where the distribution of PACAP and VIP fibers also showed different patterns: PACAP fibers form a dense plexus at the periphery of the posterior lobe, in the vicinity of the intermediate lobe; however, the VIP fibers were evenly distributed mainly in the center of the posterior lobe. In spite of the high sequence homology of PACAP and VIP, the two peptides are synthesized in different subpopulations of hypothalamic neurons. This different distribution correlates well with the different role of the hypothalamic PACAP and VIP in the biologic clock and in the functions of the anterior and posterior pituitary.  相似文献   

20.
The effects of porcine vasoactive intestinal peptide (VIP) and bovine pancreatic polypeptide (PP) on jejunal, ileal, and colonic fluid transport were studied in the rabbit. VIP produced secretion in the small intestine (jejunum greater than ileum) but did not affect absorption in the colon. PP had no secretory effects in jejunum, ileum, or colon. The small intestinal secretion induced by VIP was not associated with raised cAMP concentrations in the mucosa; this suggests that the secretory effects of VIP in vivo are mediated by a mechanism other than stimulation of adenylate cyclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号