首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exogenous brain-derived neurotrophic factor (BDNF) can regulate behavioral sensitization and conditioned place preference (CPP) when animals are exposed to repeated cocaine administration. However, it is unclear whether BDNF signaling through the TrkB receptor can mediate these behavioral responses when animals are given a single cocaine exposure. Because TrkB knockout mice die as neonates, we engineered a transgenic mouse that expressed a dominant negative form of TrkB (dnTrkB) in a conditional and reversible manner. We assessed also activation of endogenous TrkB by quantifying levels of phosphorylated TrkB (p-TrkB) in the nucleus accumbens (NAc). We found that a single exposure to cocaine was sufficient to increase p-TrkB within the NAc 9-12 h after administration. Expression of the dnTrkB transgene not only prevented the acute cocaine-induced increase in p-TrkB, but it also prevented behavioral sensitization and CPP following a single cocaine injection. These findings demonstrate that TrkB activation is required both for behavioral sensitization and CPP to a single cocaine exposure. The fact that enhanced TrkB activation is induced within 9 h of a single injection of cocaine suggests that inhibition of TrkB signaling commencing hours after cocaine exposure may prevent at least the initial antecedents to the sensitizing and reinforcing effects of this psychostimulant.  相似文献   

2.
Drug seeking, craving, and relapse can be triggered by environmental stimuli that acquire motivational salience through repeated associations with the drug's effects. Previous studies indicated that the dopamine D3 receptor (Drd3) might be involved in the expression of drug-conditioned responses in rats, and brain-derived neurotrophic factor (BDNF) could modulate Drd3 expression in the nucleus accumbens (NAc). However, the involvement of neural regions with Drd3 activation and the underlying interaction between BDNF and Drd3 in the expression of behavioral responses controlled by a drug-associated environment have remained poorly understood. The present study used a conditioning procedure to assess the roles of BDNF, Drd3, and their interactions in the NAc in the expression of morphine-induced context-specific locomotor sensitization. We showed that the expression of locomotor sensitization in the morphine-paired environment was accompanied by significantly increased expression of Drd3 mRNA and BDNF mRNA and protein levels. Both sensitized locomotion in morphine-paired rats and enhanced Drd3 mRNA were suppressed by intra-NAc infusion of anti-tyrosine kinase receptor B (TrkB) IgG. Furthermore, intra-NAc infusion of the Drd3-selective antagonist SB-277011A significantly decreased the expression of context-specific locomotor sensitization and upregulated BDNF mRNA. Altogether, these results suggest that BDNF/TrkB signaling and activation of Drd3 in the NAc are required for the expression of morphine-induced context-specific locomotor sensitization.  相似文献   

3.
4.
Clinical studies demonstrate that anxiety disorders increase the risk of substance use disorder. However, few studies have directly assessed anxiety as a vulnerability factor in processing of rewarding stimuli. The Wistar-Kyoto (WKY) rat has been proposed as a model of anxiety vulnerability because it exhibits extreme behavioral inhibition in novel and social environments; yet, it displays paradoxical rapid active avoidance learning that is resistant to extinction. The present study was designed to characterize the acquisition and persistence of cocaine conditioned place preference (CPP) in WKY rats. In the first of a series of three experiments, adult male WKY and Sprague Dawley (SD) rats were given six pairings of cocaine (3, 5, 10, 15 mg/kg) or saline on alternating days. SD rats developed cocaine-induced CPP to each of the four doses of cocaine tested. In contrast, WKY rats demonstrated CPP when conditioned with 3, 5, and 10 mg/kg, but displayed no preference to the 15 mg/kg dose. Next, separate groups of rats were subject to an extended CPP paradigm, which included acquisition, extinction and reinstatement phases. Rats were conditioned with cocaine and saline on alternating days using either a 6/6 (as above) or 4/4 conditioning regimen. Both SD and WKY rats acquired a lasting CPP with the 6/6 conditioning regimen. Results from the 4/4 conditioning regimen show that SD, but not WKY, rats acquired CPP. Preference scores for SD rats during the cocaine primed reinstatement test were significantly different from pretest scores indicating reinstatement of CPP in this group. Paradoxically, WKY rats demonstrated a latent sensitization to the conditioned rewarding effects of cocaine during the drug-primed reinstatement test. Taken together, WKY rats appear to be more sensitive to high doses of cocaine and need more experience with the drug to acquire a preference than SD rats.  相似文献   

5.
目的:探讨100Hz电针抑制大鼠可卡因条件位置偏爱(Conditioned Place Preference,CPP)表达的机制。方法:采用可卡因诱导大鼠CPP模型,观察(1)选择性κ阿片受体拮抗剂nor-BNI加100Hz电针对可卡因CPP表达的影响;(2)每次电针前给大鼠双侧伏隔核内注射nor-BNI,能否阻断电针对可卡因CPP的表达;(3)电针处理可卡因CPP大鼠伏核组织中κ阿片受体mRNA表达的变化。结果:(1)10μg/5μl nor—BNI侧脑室给药或0.3μg/1μl nor-BNI伏隔核内微注射预处理给药都能翻转100Hz电针对可卡因CPP的抑制作用;(2)100Hz电针能显著增加可卡因CPP大鼠伏隔核内κ阿片受体mRNA的表达。结论:100Hz电针通过激活伏隔核内κ阿片受体从而抑制可卡因CPP的表达。  相似文献   

6.
Expression of cocaine-evoked motor behaviors appears to be dependent on dopamine neurotransmission particularly in the target area of the mesolimbic system, i.e. the nucleus accumbens (NAc). To test potential anatomical component of the locomotor effects of cocaine and expression of its behavioral sensitization, male Wistar rats were implanted with bilateral cannulae aimed at the two subregions of the NAc (the shell or the core) and then intracranially injected with cocaine (locomotor activity) or injected with cocaine given either systemically or intracranially following the repeated (5 days) systemic drug administration (sensitization). Sensitization was measured at early (5-day) and late (21-day) withdrawal periods. Acute administration of intra-NAc shell cocaine (6.73-50 microg/side) in a dose-dependent manner increased locomotor activity in rats; significant hyperactivation was observed after 25 and 50 microg/side of cocaine. Intra-NAc core injection of cocaine (12.5-50 microg/side) did not change rats' locomotor activity. After 5- or 21-day withdrawal, behavioral sensitization (ca. 2 times higher locomotor activity than that after acute drug administration) was observed when cocaine was injected either systemically (10 mg/kg) or intra-NAc shell (12.5-25 microg/side) in animals repeatedly treated with cocaine (10 mg/kg). No difference was observed in the response to the challenge with intra-NAc core cocaine (12.5-25 micorg/side) in rats treated repeatedly with cocaine at either withdrawal period. The above findings show the differential regulation of motor responses to cocaine within the subregions of the NAc. They also indicate a preferential effect for the NAc shell in expression of the acute and sensitizing effects of cocaine in rats.  相似文献   

7.
Many studies have suggested that the behavioral and reinforcing effects of cocaine can be mediated by the central dopaminergic systems. It has been shown that repeated injections of cocaine produce an increase in locomotor activity, the expression of the immediate-early gene, c-fos, and the release of dopamine (DA) in the nucleus accumbens (NAc), which is one of the main dopaminergic terminal areas. Several studies have shown that behavioral activation and changes in extracellular dopamine levels in the central nervous system induced by psychomotor stimulants are prevented by ginseng total saponins (GTS). In order to investigate the effects of GTS on the repeated cocaine-induced behavioral and neurochemical alterations, we examined the influence of GTS on the cocaine-induced behavioral sensitization and on c-Fos expression in the brain using immunohistochemistry in rats repeatedly treated with cocaine. We also examined the effect of GTS on cocaine-induced dopamine release in the NAc of freely moving rats repeatedly treated with cocaine using an in vivo microdialysis technique. Pretreatment with GTS (100, 200, 400 mg/kg, i.p.) 30 min before the daily injections of cocaine (15 mg/kg, i.p.) significantly inhibited the repeated cocaine-induced increase in locomotor activity as well as the c-Fos expression in the core and shell in a dose-dependent manner. Also, pretreatment with GTS significantly decreased the repeated cocaine-induced increase in dopamine release in the NAc. Our data demonstrate that the inhibitory effects of GTS on the repeated cocaine-induced behavioral sensitization were closely associated with the reduction of dopamine release and the postsynaptic neuronal activity. The results of the present study suggest that GTS may be effective for inhibiting the behavioral effects of cocaine by possibly modulating the central dopaminergic system. These results also suggest that GTS may prove to be a useful therapeutic agent for cocaine addiction.  相似文献   

8.

Rationale  

Cocaine exposure produces sensitization that is partly mediated by cyclic adenosine monophosphate (cAMP) pathways within the nucleus accumbens (NAc). Type IV phosphodiesterases (PDE4s) break down cAMP and are required for cocaine-induced conditioned place preference. Whether PDE4 disruption attenuates induction of behavioral sensitization to cocaine and subsequent NAc expression of phosphorylated extracellular signal-regulated kinase (ERK), which is involved in cocaine-induced sensitization, is unknown.  相似文献   

9.

Rationale

Chronic treatment with the mu-opioid receptor agonist, buprenorphine, reduces cocaine-induced behaviors in rats with a history of cocaine self-administration. The mechanisms underlying these actions of buprenorphine remain unclear.

Objectives

The objective of this study is to investigate the effects of chronic buprenorphine treatment on cocaine-induced activity and levels of glutamate and dopamine (DA) in the nucleus accumbens (NAc) in rats that were preexposed to cocaine or drug-naïve.

Materials and methods

In experiment 1, basal levels of NAc glutamate were assessed using in vivo microdialysis in cocaine-naïve rats that were treated chronically with buprenorphine (3.0 mg/kg per day) via osmotic minipumps or that underwent sham surgery. In experiment 2, rats were preexposed to seven daily injections of cocaine or saline. After a 12–16-day drug-free period, extracellular levels of NAc glutamate and DA and locomotor activity were assessed simultaneously, before and after an acute injection of cocaine (15 mg/kg, intraperitoneal), in rats under sham and chronic buprenorphine (3.0 mg/kg per day) treatment.

Results

Chronic buprenorphine treatment increased basal levels of glutamate in drug-naïve and cocaine-preexposed rats, blocked the expression of locomotor sensitization to cocaine, and potentiated the NAc DA response to acute cocaine in cocaine-preexposed rats.

Conclusions

These findings suggest that buprenorphine may block the expression of cocaine sensitization and other cocaine-related behaviors by increasing basal levels of glutamate in the NAc, which would serve to decrease the effectiveness of cocaine or cocaine-associated cues.  相似文献   

10.
Wang J  Fang Q  Liu Z  Lu L 《Psychopharmacology》2006,185(1):19-28
Rationale Systemic injections of the selective corticotropin-releasing factor 1 (CRF1) receptor antagonist CP-154,526 attenuate footshock-stress-induced reinstatement of heroin and cocaine seeking and morphine conditioned place preference (CPP). Intracranial injections of the nonselective CRF receptor antagonist d-Phe-CRF into the bed nucleus of the stria terminalis (BNST), but not the amygdala, attenuate footshock-induced reinstatement of cocaine seeking. However, the brain sites involved in the effect of CP-154,526 on footshock-induced reinstatement of opiate seeking are unknown. Objective We used a CPP version of the reinstatement model to examine the role of CRF1 receptors in the BNST, amygdala, and nucleus accumbens (NAc) in footshock- or drug-priming-induced reinstatement of extinguished morphine CPP. Methods Rats acquired morphine CPP over a period of 8 days during which they were given four morphine (10 mg/kg s.c.) and four saline injections and were subsequently confined to distinct chambers for 50 min. Subsequently, the morphine CPP was extinguished in 14 daily sessions during which rats were given saline injections and given access to both the saline- and morphine-paired chambers. The rats were then tested for reinstatement of morphine CPP induced by priming injections of morphine (0 or 3.0 mg/kg s.c.) or by exposure to intermittent footshock (15 min, 0.5 mA). Prior to the test sessions, the rats were given intracranial injections of CP-154,526 (1.0 μg) or vehicle into the BNST, amygdala, or NAc. Results CP-154,526 injections into the BNST, but not the amygdala or NAc, attenuated footshock-stress-induced reinstatement of morphine CPP. In contrast, CP-154,526 injections into the amygdala or NAc, but not the BNST, attenuated morphine-priming-induced reinstatement of morphine CPP. Conclusion The present results demonstrate dissociable roles of CRF1 receptors in the BNST, amygdala, and NAc in footshock-stress- vs morphine-priming-induced reinstatement of drug CPP. The authors J. Wang and Q. Fang contributed equally to this work.  相似文献   

11.
Addiction is a disease that is characterized by compulsive drug-seeking and use despite negative health and social consequences. One obstacle in treating addiction is a high susceptibility for relapse which persists despite prolonged periods of abstinence. Relapse can be triggered by drug predictive stimuli such as environmental context and drug associated cues, as well as the addictive drug itself. The conditioned place preference (CPP) behavioral model is a useful paradigm for studying the ability of these drug predictive stimuli to reinstate drug-seeking behavior. The present study investigated the dose-dependent effects of D-serine (10?mg/kg, 30?mg/kg and 100?mg/kg) on extinction training and drug-primed reinstatement in cocaine-conditioned rats. In the first experiment, D-serine had no effect on the acquisition or development of cocaine-induced locomotor sensitization or CPP. In the second experiment, D-serine treatment resulted in significantly decreased time spent in the drug-paired compartment following completion of an extinction protocol. A cocaine-primed reinstatement test indicated that the combination of extinction training along with D-serine treatment resulted in a significant reduction of drug-seeking behavior. The third experiment assessed D-serine's long-term effects to diminish drug-primed reinstatement. D-serine treatment given during extinction was effective in reducing drug-seeking for more than four weeks of abstinence after the last cocaine exposure. These findings demonstrate that D-serine may be an effective adjunct therapeutic agent along with cognitive behavioral therapy for the treatment of cocaine addiction. This article is part of a Special Issue entitled 'Cognitive Enhancers'.  相似文献   

12.
Outbred, male Sprague-Dawley rats can be classified as either low or high cocaine responders (LCRs or HCRs, respectively) based on cocaine-induced locomotor activity in an open-field arena. This difference reflects cocaine's ability to inhibit the striatal dopamine transporter and predicts development of sensitization. To investigate the relationship between initial cocaine locomotor responsiveness and cocaine reward, here we first classified rats as either LCRs or HCRs in a conditioned place preference (CPP) apparatus. Subsequently, we conducted cocaine conditioning trials, twice-daily over 4 days with vehicle and cocaine (10 mg/kg, i.p. or 1 mg/kg, i.v.). When cocaine was administered by the i.p. route, similar to previous findings in the open-field, LCRs and HCRs were readily classified and locomotor sensitization developed in LCRs, but not HCRs. However, cocaine CPP was not observed. In contrast, when cocaine was administered by the i.v. route, the LCR/HCR classification not only predicted sensitization, but also CPP, with only LCR rats exhibiting sensitization and cocaine conditioning. Our findings show that the initial locomotor response to cocaine can predict CPP in male Sprague-Dawley rats under conditions when place conditioning develops, and that LCRs may be more prone to develop conditioning in the context of cocaine reward.  相似文献   

13.
Chronic use of psychostimulants induces enduringly increased responsiveness to a subsequent psychostimulant injection and sensitivity to drug-associated cues, contributing to drug craving and relapse. Neurotensin (NT), a neuropeptide functionally linked to dopaminergic neurons, was suggested to participate in these phenomena. We and others have reported that SR 48692, an NT receptor antagonist, given in pre- or co-treatments with cocaine or amphetamine, alters some behavioral effects of these drugs in rats. However, its efficacy when applied following repeated cocaine administration remains unknown. We, therefore, evaluated the ability of SR 48692, administered after a cocaine regimen, to interfere with the expression of locomotor sensitization and conditioned place preference (CPP) in rats. We demonstrated that the expression of locomotor sensitization, induced by four cocaine injections (15 mg/kg, i.p.) every other day and a cocaine challenge 1 week later, was attenuated by a subsequent 2-week daily administration of SR 48692 (1 mg/kg, i.p.). Furthermore, the expression of cocaine-induced CPP was suppressed by a 10-day SR 48692 treatment started after the conditioning period (four 15 mg/kg cocaine injections every other day). Taken together, our data show that a chronic SR 48692 treatment given after a cocaine regimen partly reverses the expression of locomotor sensitization and CPP in the rat, suggesting that NT participates in the maintenance of these behaviors. Our results support the hypothesis that targeting neuromodulatory systems, such as the NT systems may offer new strategies in the treatment of drug addiction.  相似文献   

14.
目的:探讨100Hz电针对大鼠可卡因条件位置偏爱(Conditioned Place Preference,CPP)重建的影响.方法:采用可卡因诱导大鼠CPP重建模型,观察100 Hz电针对大鼠可卡因CPP重建的作用及选择性κ阿片受体拮抗剂nor-BNI对电针作用的影响.结果:100 Hz电针5次刺激抑制了可卡因(5 mg/kg)引燃CPP重建,nor-BNI(10μg/5μl)翻转了电针对可卡因CPP重建的抑制作用.结论:多次电针可通过κ阿片受体抑制可卡因引燃CPP的重建.  相似文献   

15.
Rats selectively bred for high saccharin consumption (HiS) self-administer more oral ethanol and i.v. cocaine than those selectively bred for low saccharin consumption (LoS). Male and female drug-seeking-prone (HiS) and -resistant (LoS) rats were used in the present experiment to test the prediction that cocaine-induced locomotor activity and sensitization varied with sex and their selective breeding status (HiS and LoS). All rats were intermittently exposed over 2 weeks to pairs of sequential saline and cocaine injections, separated by 45 min. The first 5 pairs of injections, each separated by 2-3 days (10-12 days total), were given to examine the development of cocaine-induced locomotor activity and the development of locomotor sensitization, which was determined by comparing the effects of cocaine injection 1 with injection 6 (given 2 weeks after the 5 pairs of intermittent injections). Results indicated that after the first injection pair (saline, cocaine) the HiS and LoS groups did not differ (saline vs. cocaine) in locomotor activity; however, after cocaine injection pairs 1, 5, and 6, HiS females were more active than HiS males and LoS females. There were also significant phenotype differences (HiS>LoS) in locomotor activity after cocaine injections 5 and 6. There was a weak sensitization effect in cocaine-induced locomotor activity in HiS females after cocaine injection 5 (compared to 1); however it was not present after injection 6 or in other groups. The lack of a strong sensitization effect under these temporal and dose conditions was inconsistent with previous reports. However, the results showing HiS>LoS and females>males on cocaine-induced activity measures are consistent with several measures of cocaine-seeking behavior (acquisition, maintenance, escalation, extinction, and reinstatement), and they suggest that cocaine-induced locomotor activity and sensitization are behavioral markers of drug-seeking phenotypes.  相似文献   

16.
Buprenorphine is being introduced as a maintenance therapy in opioid addiction, but it is not clear how buprenorphine will affect co-use of cocaine in opioid users. We examined the effects of chronic buprenorphine (BUP0: 0.0 mg/kg/day; BUP1.5: 1.5 mg/kg/day; BUP3: 3.0 mg/kg/day) on the locomotor activity effects of acute heroin (0.25 mg/kg, subcutaneously (s.c.)) and cocaine (20 mg/kg, intraperitoneally (i.p.)). Buprenorphine had no effect on the stimulatory effect of heroin, but potentiated the locomotor response to cocaine. To investigate further the interactions between buprenorphine (BUP1.5 and BUP3), heroin (0.125, 0.25 and 0.375 mg/kg, s.c.), and cocaine (10, 20 and 30 mg/kg, i.p.), we used in vivo microdialysis and high-performance liquid chromatography to analyze extracellular levels of dopamine (DA) in the nucleus accumbens (NAc). Buprenorphine attenuated the heroin-induced rise in NAc DA, but greatly potentiated the cocaine-induced rise. Finally, we examined the potential of the highest dose of buprenorphine (BUP3) to reduce heroin and cocaine seeking in the presence of drug-associated cues under extinction conditions and in tests for reinstatement induced by heroin (0.25 mg/kg, s.c.), cocaine (20 mg/kg, i.p.), and 15-min footshock stress (0.8 mA, 0.5 s/shock, 40 s mean OFF time) in rats trained to self-administer both drugs. Buprenorphine reduced heroin and cocaine seeking during extinction and following acute heroin and cocaine priming injections, but had no effect on stress-induced reinstatement. These results indicate that the suppression of responding following priming injections of drugs did not result from reduced motor activity, but possibly from a reduction in the salience of drug-associated cues induced by chronic buprenorphine treatment.  相似文献   

17.
Avidity for behaviors mediated by nondrug rewards, such as novelty seeking or intake of sweets or fats, is predictive of enhanced vulnerability to the locomotor-activating and rewarding effects of drugs of abuse. The purpose of the present study was to determine whether avidity for wheel running was predictive of subsequent cocaine-induced locomotor activity, cocaine self-administration, and cocaine-seeking behavior in rats. Rats with high (HiR) and low (LoR) levels of wheel running were selected from an outbred sample of Wistar rats. These rats were first tested for their locomotor response to an acute injection of cocaine (10 mg/kg, i.p.). Subsequently, a multi-phase self-administration procedure was used to examine the effect of wheel running on the maintenance, extinction, and cocaine-induced reinstatement of cocaine-seeking behavior in HiR and LoR rats. The results indicate no significant differences between HiR and LoR rats in the cocaine-induced stimulation of locomotor activity. During maintenance, HiR rats self-administered more cocaine than LoR rats. While there were no group differences in saline self-administration behavior during extinction, HiR rats showed higher cocaine-induced reinstatement than LoR rats. Rats that were previously high responders to novelty (day 1 in locomotor track) also showed significantly higher reinstatement than low novelty responders. These results suggest that a propensity for wheel running is associated with increased vulnerability for cocaine self-administration and reinstatement and that HiR rats are more motivated than LoR rats to seek cocaine.  相似文献   

18.
The dopamine (DA) D1 receptor (D1R) is critically involved in reward and drug addiction. Phosphorylation-mediated desensitization or internalization of D1R has been extensively investigated. However, the potential for upregulation of D1R function through phosphorylation remains to be determined. Here we report that acute cocaine exposure induces protein kinase D1 (PKD1) activation in the rat striatum, and knockdown of PKD1 in the rat dorsal striatum attenuates cocaine-induced locomotor hyperactivity. Moreover, PKD1-mediated phosphorylation of serine 421 (S421) of D1R promotes surface localization of D1R and enhances downstream extracellular signal-regulated kinase signaling in D1R-transfected HEK 293 cells. Importantly, injection of the peptide Tat-S421, an engineered Tat fusion-peptide targeting S421 (Tat-S421), into the rat dorsal striatum inhibits cocaine-induced locomotor hyperactivity and injection of Tat-S421 into the rat hippocampus or the shell of the nucleus accumbens (NAc) also inhibits cocaine-induced conditioned place preference (CPP). However, injection of Tat-S421 into the rat NAc shell does not establish CPP by itself and injection of Tat-S421 into the hippocampus does not influence spatial learning and memory. Thus, targeting S421 of D1R represents a promising strategy for the development of pharmacotherapeutic treatments for drug addiction and other disorders that result from DA imbalances.  相似文献   

19.

Rationale

Astrocytes play an integral role in modulating synaptic transmission and plasticity, both key mechanisms underlying addiction. However, while astrocytes are capable of releasing chemical transmitters that can modulate neuronal function, the role of these gliotransmitters in mediating behaviors associated with drugs of abuse has been largely unexplored.

Objectives

The objective of the present study was to utilize mice with astrocytes that lack the ability to release chemical transmitters to evaluate the behavioral consequence of impaired gliotransmission on cocaine-related behaviors. These mice have previously been used to examine the role of gliotransmission in sleep homeostasis; however, no studies to date have utilized them in the study of addictive behaviors.

Methods

Mice expressing a dominant-negative SNARE protein selectively in astrocytes (dnSNARE mice) were tested in a variety of behavioral paradigms examining cocaine-induced behavioral plasticity. These paradigms include locomotor sensitization, conditioned place preference followed by cocaine-induced reinstatement of CPP, and cocaine self-administration followed by cue-induced reinstatement of cocaine-seeking behavior.

Results

Wild-type and dnSNARE mice demonstrated no significant differences in the development or maintenance of locomotor sensitization. While there were non-significant trends for reduced CPP following a low dose of cocaine, drug-induced reinstatement of CPP is completely blocked in dnSNARE mice. Similarly, while dnSNARE mice demonstrated a non-significant trend toward reduced cocaine self-administration compared with wild-type mice, dnSNARE mice do not demonstrate cue-induced reinstatement in this paradigm.

Conclusions

Gliotransmission is necessary for reinstatement of drug-seeking behaviors by cocaine or associated cues.  相似文献   

20.

Rationale and objectives

Drug reinforcement and the reinstatement of drug seeking are associated with the pathological processing of drug-associated cue memories that can be disrupted by manipulating memory consolidation and reconsolidation. Ras-related C3 botulinum toxin substrate (Rac) is involved in memory processing by regulating actin dynamics and neural structure plasticity. The nucleus accumbens (NAc) and amygdala have been implicated in the consolidation and reconsolidation of emotional memories. Therefore, we hypothesized that Rac in the NAc and amygdala plays a role in the consolidation and reconsolidation of cocaine-associated cue memory.

Methods

Conditioned place preference (CPP) and microinjection of Rac inhibitor NSC23766 were used to determine the role of Rac in the NAc and amygdala in the consolidation and reconsolidation of cocaine-associated cue memory in rats.

Results

Microinjections of NSC23766 into the NAc core but not shell, basolateral (BLA), or central amygdala (CeA) after each cocaine-conditioning session inhibited the consolidation of cocaine-induced CPP. A microinjection of NSC23766 into the BLA but not CeA, NAc core, or NAc shell immediately after memory reactivation induced by exposure to a previously cocaine-paired context disrupted the reconsolidation of cocaine-induced CPP. The effect of memory disruption on cocaine reconsolidation was specific to reactivated memory, persisted at least 2 weeks, and was not reinstated by a cocaine-priming injection.

Conclusions

Our findings indicate that Rac in the NAc core and BLA are required for the consolidation and reconsolidation of cocaine-associated cue memory, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号