首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complex I of the oxidative phosphorylation system is composed of at least 45 subunits, seven of which are encoded by mitochondrial DNA (mtDNA). In this study we have investigated two children with complex I deficiency in muscle mitochondria. Patient 1 had cerebellar ataxia from early infancy and an abnormal MRI of the brain compatible with Leigh syndrome (LS). The course was rapidly progressive with frequent exacerbations and death at 2 years and 10 months of age. Patient 2 had a lactic acidosis in the newborn period and had a severe psychomotor developmental retardation. In her teens she developed hypertrophic cardiomyopathy and died at 26 years of age because of cardiac insufficiency. Sequencing analysis of mitochondrial encoded ND genes (MTND) showed two DE NOVO mutations in MTND1 in both patients. Patient 1 had a novel heteroplasmic G3890A mutation, R195Q. Patient 2 had a heteroplasmic G3481A mutation, E59K. The G3890A mutation in patient 1 is the first identified mutation in MTND1 in association with LS and complex I deficiency. The findings in this patient as well as in patient 2 demonstrate new clinical expressions of mutations in MTND1. The findings in patient 2 also illustrates that MTND mutations may be pathogenic even at a low percentage.  相似文献   

2.
Simon DK  Pulst SM  Sutton JP  Browne SE  Beal MF  Johns DR 《Neurology》1999,53(8):1787-1793
OBJECTIVE: To investigate a family with maternally inherited, adult-onset multisystem degeneration including prominent parkinsonism to determine whether clinical features can result from a mitochondrial DNA (mtDNA) mutation. The parkinsonism was levodopa responsive and was associated with the loss of pigmented neurons in the substantia nigra in at least one patient. BACKGROUND: Mitochondrial dysfunction is hypothesized to play a role in late-onset neurodegenerative diseases including PD and AD. Mitochondrial genetic mutations are hypothesized to account for these defects, but attempts to identify specific mtDNA mutations have been inconclusive. METHODS: Clinical examinations, DNA sequencing, and restriction digestion and biochemical analyses were performed. RESULTS: Maternal relatives harbor a G-to-A missense mutation, heteroplasmic in some patients, at nucleotide position 11778 of the mitochondrial ND4 gene of complex I that converts a highly conserved arginine to a histidine. Sequencing of the entire mitochondrial genome in an affected family member reveals no other mutations likely to be pathogenic. This mutation has been identified previously only in families with Leber's hereditary optic neuropathy-a disorder also linked to complex I dysfunction but usually limited clinically to optic atrophy. CONCLUSIONS: These data reveal previously unsuspected clinical heterogeneity of the G11778A mutation, and suggest that an inherited mtDNA mutation can contribute to the development of adult-onset parkinsonism and multisystem degeneration.  相似文献   

3.
Over the past four decades, mitochondrial dysfunction has been a recurring theme in Parkinson's disease (PD) and is hypothesized to play a central role in its disease pathogenesis. Given the instrumental role of mitochondria in cellular energy production, their dysfunction can be detrimental to highly energy-dependent dopaminergic neurons, known to degenerate in PD. Mitochondria harbor multiple copies of their own genomes (mtDNA), encoding critical respiratory chain complexes required for energy production. Consequently, mtDNA has been investigated as a source of mitochondrial dysfunction in PD. As seen in multiple mitochondrial diseases, deleterious mtDNA variation and mtDNA copy number depletion can impede mtDNA protein synthesis, leading to inadequate energy production in affected cells and the onset of a disease phenotype. As such, high burdens of mtDNA defects but also mtDNA depletion, previously identified in the substantia nigra of PD patients, have been suggested to play a role in PD. Genetic variation in nuclear DNA encoding factors required for replicating, transcribing, and translating mtDNA, could underlie these observed mtDNA changes. Herein we examine this possibility and provide an overview of studies that have investigated whether nuclear-encoded genes associated with mtDNA processes may influence PD risk. Overall, pathway-based analysis studies, mice models, and case reports of mitochondrial disease patients manifesting with parkinsonism all implicate genes encoding factors related to mtDNA processes in neurodegeneration and PD. Most notably, cumulative genetic variation in these genes likely contributes to neurodegeneration and PD risk by acting together in common pathways to disrupt mtDNA processes or impair their regulation. © 2021 International Parkinson and Movement Disorder Society © 2021 International Parkinson and Movement Disorder Society  相似文献   

4.
Somatic mutations in mitochondrial DNA (mtDNA) are hypothesized to play a role in Parkinson disease (PD), but large increases in mtDNA mutations have not previously been found in PD, potentially because neurons with high mutation levels degenerate and thus are absent in late stage tissue. To address this issue, we studied early stage PD cases and cases of incidental Lewy body disease (ILBD), which is thought to represent presymptomatic PD. We show for the first time that mtDNA mutation levels in substantia nigra neurons are significantly elevated in this group of early PD and ILBD cases.  相似文献   

5.
6.
Several groups have identified mitochondrial complex I deficiency in Parkinson's disease (PD) substantia nigra and in platelets. A search for any mitochondrial DNA (mtDNA) mutation underlying this defect has not yet produced any consistent result. We have made use of a mtDNA-less (μo) cell line to determine if the complex I deficiency follows the genomic transplantation of platelet mtDNA. From a preselected group of PD patients with low platelet complex I activity, 7 patients were used for detailed study. All 7 patients were used for mixed cybrid analysis and demonstrated a selective 25% deficiency of complex I activity. Individual clonal analysis of A549 μO/PD platelet fusion cybrids from 1 of the patients expressed combined complex I and IV deficiencies with 25% and 20% decreased activities in the PD clones, respectively. Histocytochemical, immunocytochemical, and cellular functional imaging studies of these clones showed the cells within the clones were heterogeneous with respect to cytochrome c oxidase (COX) function, COX I content, and mitochondrial respiratory chain activity. These results are in agreement with a previous study and support the proposition that an mtDNA abnormality may underlie the mitochondrial defect in at least a proportion of PD patients. This μo technology may serve as a means to identify the subgroup of PD patients in whom an mtDNA defect may contribute to development of the disease.  相似文献   

7.
There is increasing evidence that defective function of the mitochondrial enzyme NADH CoQ reductase (complex I) is involved not only in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity, but also in idiopathic Parkinson's disease (PD). Complex I deficiency has been identified in PD substantia nigra and appears to be disease-specific and selective for the substantia nigra within the central nervous system. We describe a method for preparation of an enriched mitochondrial fraction from 60 mL blood. Using this technique, we analyzed respiratory chain function in 25 patients with PD and 15 matched control subjects. We confirm a previous report of a specific complex I deficiency in PD platelet mitochondria. Although there was a statistically significant decrease in complex I activity in the PD group compared with the control group (p = 0.005), the defect was mild (16%); it was not possible to distinguish PD from control values on an individual basis. This deficiency is not detectable in platelet whole-cell homogenates, presumably reflecting the relative insensitivity of this preparation and the limited decrease in complex I activity in PD. The presence of a mild complex I defect in platelets together with a more severe defect in substantia nigra suggests either that the pharmacological characteristics shared by these two tissues render them susceptible to a particular toxin or toxins, or that the defect is widely distributed and other biochemical events enhance the deficiency in substantia nigra.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Mitochondrial encephalomyopathies: an update   总被引:7,自引:0,他引:7  
A genetic classification of the mitochondrial encephalomyopathies includes disorders due to defects of mitochondrial DNA (mtDNA) and disorders due to defects of nuclear DNA (nDNA). Recent progress in mtDNA-related diseases includes: (i) new pathogenic mutations in protein-coding genes, especially those encoding subunits of complex I (ND genes); (ii) the pathogenic nature of homoplasmic mutations, whose expression is regulated by environmental and genetic factors; (iii) increasing interest in the functional and pathophysiological role of haplotypes. Advances in mendelian mitochondrial diseases include: (i) new mutations in genes for complex I subunits; (ii) identification of new mutant ancillary proteins associated with complex IV and complex V deficiencies; (iii) better molecular understanding of disorders due to faulty intergenomic communication, which are associated with multiple mtDNA deletions, mtDNA depletion, or defects of mtDNA translation; (iv) the pathogenic role of alterations of the inner mitochondrial membrane phospholipid components, especially cardiolipin; (v) the emerging importance of defects in mitochondrial motility, fission, or fusion.  相似文献   

9.
OBJECTIVE: To identify mitochondrial DNA (mtDNA) mutations that predispose to PD. BACKGROUND: Mitochondrial complex I activity is deficient in PD. mtDNA mutations may account for the defect, but the specific mutations have not been identified. METHODS: Complete sequencing was performed of all mtDNA-encoded complex I and transfer RNA (tRNA) genes in 28 PD patients and 8 control subjects, as well as screening of up to 243 additional PD patients and up to 209 control subjects by restriction digests for selected mutations. RESULTS: In the PD patients, 15 complex I missense mutations and 9 tRNA mutations were identified. After screening additional subjects, rare PD patients were found to carry complex I mutations that altered highly conserved amino acids. However, no significant differences were found in the frequencies of any mutations in PD versus control groups. The authors were unable to confirm previously reported associations of mutations at nucleotide positions (np) 4336, 5460, and 15927/8 with PD. Complex I mutations previously linked to Leber's hereditary optic neuropathy, one of which has been linked to atypical parkinsonism, were not associated with PD. CONCLUSIONS: mtDNA mutations with a high mutational burden (present in a high percentage of mtDNA molecules in an individual) in complex I or tRNA genes do not play a major role in the risk of PD in most PD patients. Further investigations are necessary to determine if any of the rare mtDNA mutations identified in PD patients play a role in the pathogenesis of PD in those few cases.  相似文献   

10.
11.
The objective of this study was to investigate clinical, biochemical, and genetic features in 7 probands (a total of 11 patients) with nicotine-amide adenine dinucleotide (NADH) dehydrogenase (complex I) deficiency. We screened the mitochondrial DNA for mutations and found pathogenic mutations in complex I genes (mitochondrial NADH dehydrogenase subunit (MTND) genes) in three probands. The 10191T>C mutation in MTND3 and the 14487T>C mutation in MTND6 were present in two probands with Leigh's-like and Leigh's syndrome, respectively. Four siblings with a syndrome consisting of encephalomyopathy with hearing impairment, optic nerve atrophy, and cardiac involvement had the 11778G>A mutation in MTND4, previously associated with Leber hereditary optic neuropathy. These findings demonstrate that mutations in MTND genes are relatively frequent in patients with complex I deficiency. Biochemical measurements of respiratory chain function in muscle mitochondria showed that all patients had a moderate decrease of the mitochondrial adenosine triphosphate production rate. Interestingly, the complex I deficiency caused secondary metabolic alterations with decreased oxaloacetate-induced inhibition of succinate dehydrogenase (complex II) and excretion of Krebs cycle intermediates in the urine. Our results thus suggest that altered regulation of metabolism may play an important role in the pathogenesis of complex I deficiency.  相似文献   

12.
Complex I activity is reduced in cytoplasmic hybrid (cybrid) cell lines that contain mitochondrial DNA (mtDNA) from sporadic Parkinson's disease (PD) patients. This implies that mtDNA aberration occurs in sporadic PD. To assess the integrity of mtDNA in autosomal dominant PD arising from mutation of the alpha-synuclein gene, we transferred mitochondrial genes from PD-affected members of the Italian-American Contursi kindred to cells previously depleted of their endogenous mtDNA. Unlike cybrid cell lines expressing mtDNA from persons with sporadic or maternally inherited PD, the resultant Contursi cybrid lines did not manifest complex I deficiency, indicating that in Contursi PD mtDNA integrity is relatively preserved. Compared to control cybrids, however, Contursi cybrid lines did show some evidence of oxidative stress. For reasons that are unclear, at least a limited amount of mtDNA damage may nevertheless develop in PD patients with alpha-synuclein mutation.  相似文献   

13.
Parkinson's disease (PD), the most frequent movement disorder, is caused by the progressive loss of the dopamine neurons within the substantia nigra pars compacta (SNc) and the associated deficiency of the neurotransmitter dopamine in the striatum. Most cases of PD occur sporadically with unknown cause, but mutations in several genes have been linked to genetic forms of PD (α-synuclein, Parkin, DJ-1, PINK1, and LRRK2). These genes have provided exciting new avenues to study PD pathogenesis and the mechanisms underlying the selective dopaminergic neuron death in PD. Epidemiological studies in humans, as well as molecular studies in toxin-induced and genetic animal models of PD show that mitochondrial dysfunction is a defect occurring early in the pathogenesis of both sporadic and familial PD. Mitochondrial dynamics (fission, fusion, migration) is important for neurotransmission, synaptic maintenance and neuronal survival. Recent studies have shown that PINK1 and Parkin play crucial roles in the regulation of mitochondrial dynamics and function. Mutations in DJ-1 and Parkin render animals more susceptible to oxidative stress and mitochondrial toxins implicated in sporadic PD, lending support to the hypothesis that some PD cases may be caused by gene–environmental factor interactions. A small proportion of α-synuclein is imported into mitochondria, where it accumulates in the brains of PD patients and may impair respiratory complex I activity. Accumulation of clonal, somatic mitochondrial DNA deletions has been observed in the substantia nigra during aging and in PD, suggesting that mitochondrial DNA mutations in some instances may pre-dispose to dopamine neuron death by impairing respiration. Besides compromising cellular energy production, mitochondrial dysfunction is associated with the generation of oxidative stress, and dysfunctional mitochondria more readily mediate the induction of apoptosis, especially in the face of cellular stress. Collectively, the studies examined and summarized here reveal an important causal role for mitochondrial dysfunction in PD pathogenesis, and suggest that drugs and genetic approaches with the ability to modulate mitochondrial dynamics, function and biogenesis may have important clinical applications in the future treatment of PD.  相似文献   

14.
Oxidative stress is believed to play a key role in the degeneration of dopaminergic neurons in the substantia nigra (SN) of Parkinson's disease (PD) patients. An important biochemical feature of PD is a significant early depletion in levels of the thiol antioxidant compound glutathione (GSH) which may lead to the generation of reactive oxygen species (ROS), mitochondrial dysfunction, and ultimately to subsequent neuronal cell death. In earlier work from our laboratory, we demonstrated that depletion of GSH in dopaminergic PC12 cells affects mitochondrial integrity and specifically impairs the activity of mitochondrial complex I. Here we report that pre-treatment of PC12 cells with R-lipoic acid acts to prevent depletion of GSH content and preserves the mitochondrial complex I activity which normally is impaired as a consequence of GSH loss.  相似文献   

15.
Leber's hereditary optic neuropathy (LHON) causes central vision loss from bilateral optic neuropathy. Although 13 mitochondrial DNA (mtDNA) mutations are strongly associated with LHON, only three account for roughly 90% of cases and thus are found in multiple independent LHON families. The remaining LHON mutations are rare. Here, we describe the clinical and genetic characterization of a new LHON mtDNA mutation. The 12848T mutation alters a highly conserved amino acid in the ND5 complex I gene, is not found in controls, and is heteroplasmic. Despite ND5 being the largest of the mtDNA complex I genes, ND5 mutations are quite rare in LHON.  相似文献   

16.
While Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-like episodes (MELAS) is typically associated with mutations in the mitochondrial tRNA(Leu) gene, mutations in complex I subunit genes of the mtDNA have emerged as a second significant cause. Here we report a novel mutation in the mitochondrial complex I subunit gene ND1 in a patient with late-onset MELAS. The 3380G>A mutation shows very good evidence of pathogenicity as it is heteroplasmic, undetectable in controls, alters a highly conserved amino acid, and is more abundant in ragged-red than in normal muscle fibers. These findings support the significant role of complex I mutations in MELAS.  相似文献   

17.
We describe a patient with isolated exercise intolerance caused by a new, maternally inherited mutation in mitochondrial DNA. The heteroplasmic T>C transition at position 13271 in MTND5 affects a highly conserved base and segregates with the disease, being present at highest levels in skeletal muscle fibres showing abnormal mitochondrial accumulation. This is the 15th mutation affecting the MTND5 subunit of respiratory chain complex I and confirms this protein as an important site for disease with phenotypes ranging from MELAS and infantile encephalopathies to isolated syndromes affecting a single tissue such as Leber hereditary optic neuropathy and now skeletal muscle.  相似文献   

18.
Genomic convergence is a multistep approach that combines gene expression with genomic linkage to identify and prioritize susceptibility genes for complex disease. As a first step, we previously performed linkage analysis on 174 multiplex Parkinson's disease (PD) families, identifying five peaks for PD risk and two for genes affecting age at onset (AAO) in PD [Hauser et al., Hum Mol Genet 2003;12:671-677]. We report here the next step: serial analysis of gene expression [SAGE; Scott et al., JAMA 2001;286:2239-2242] to analyze substantia nigra tissue from three PD patients and two age-matched controls. We find 933 differentially expressed genes (P<0.05) between PD and controls, but of these, only 50 genes represented by unique SAGE tags map within our previously described PD linkage regions. Furthermore, genes encoded by mitochondrial DNA are expressed 1.5-fold higher in PD patients versus controls, without an increase in the corresponding nuclear-encoded mitochondrial components, suggesting an increase in mtDNA genomes in PD or a disjunction with nuclear expression. The next step in the genomic convergence process will be to screen these 50 high-quality candidate genes for association with PD risk susceptibility and genetic effects on AAO.  相似文献   

19.
Inhibition of mitochondrial respiratory chain function may contribute to dopaminergic neurodegeneration in the substantia nigra (SN) of patients with Parkinson disease (PD). Since large-scale structural changes (e.g. deletions and rearrangements in mitochondrial DNA [mtDNA]) have been associated with mitochondrial dysfunction, we tested the hypothesis that increased total mtDNA deletions/rearrangements are associated with neurodegeneration in PD. This study employed a well-established technique, long-extension polymerase chain reaction (LX-PCR), to detect the multiple mtDNA deletions/rearrangements in the SN of patients with PD, multiple system atrophy (MSA), dementia with Lewy bodies (DLB), Alzheimer disease (AD), and age-matched controls. We also compared the total mtDNA deletions/rearrangements in different brain regions of PD patients. The results demonstrated that both the number and variety of mtDNA deletions/rearrangements were selectively increased in the SN of PD patients compared to patients with other movement disorders as well as patients with AD and age-matched controls. In addition, increased mtDNA deletions/rearrangements were observed in other brain regions in PD patients, indicating that mitochondrial dysfunction is not just limited to the SN of PD patients. These data suggest that accumulation of total mtDNA deletions/rearrangements is a relatively specific characteristic of PD and may be one of the contributing factors leading to mitochondrial dysfunction and neurodegeneration in PD.  相似文献   

20.
Preclinical research on Parkinson's disease has relied heavily on mouse and rat animal models. Initially, PD animal models were generated primarily by chemical neurotoxins that induce acute loss of dopaminergic neurons in the substantia nigra. On the discovery of genetic mutations causally linked to PD, mice were used more than rats to generate laboratory animals bearing PD‐linked mutations because mutagenesis was more difficult in rats. Recent advances in technology for mammalian genome engineering and optimization of viral expression vectors have increased the use of genetic rat models of PD. Emerging research tools include “knockout” rats with disruption of genes in which mutations have been causally linked to PD, including LRRK2, α‐synuclein, Parkin, PINK1, and DJ‐1. Rats have also been increasingly used for transgenic and viral‐mediated overexpression of genes relevant to PD, particularly α‐synuclein. It may not be realistic to obtain a single animal model that completely reproduces every feature of a human disease as complex as PD. Nevertheless, compared with mice with the same mutations, many genetic rat animal models of PD better reproduce key aspects of PD including progressive loss of dopaminergic neurons in the substantia nigra, locomotor behavior deficits, and age‐dependent formation of abnormal α‐synuclein protein aggregates. Here we briefly review new developments in genetic rat models of PD that may have greater potential for identifying underlying mechanisms, for discovering novel therapeutic targets, and for developing greatly needed treatments to slow or halt disease progression. © 2018 International Parkinson and Movement Disorder Society  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号