首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Lumbar preganglionic neurons, which project in the lumbar splanchnic nerves and which probably have a vasoconstrictor function (visceral vasoconstrictor, VVC neurons), were analyzed for their discharge patterns. The responses of these neurons to the following natural stimuli were tested: stimulation of arterial baroreceptors, arterial chemoreceptors and visceral afferents from the urinary bladder, the colon and the mucosal skin of the anus. Forty-nine preganglionic neurons were classified as VVC neurons. They showed the following characteristics: the ongoing activity of the VVC neurons exhibited pronounced cardiac rhythmicity and correlated with the cycle of the artificial ventilation. Stimulation of arterial baroreceptors, produced by increase of blood pressure or by increase of pressure in an isolated carotid blind sac, led to inhibition of activity in VVC neurons. Unloading of arterial baroreceptors, produced by decrease of blood pressure, led to an increase in VVC neuron activity. Stimulation of arterial chemoreceptors by bolus injections of CO2-enriched saline solution, close to a carotid glomus, led to a weak excitation of VVC neurons. Stimulation of arterial chemoreceptors by systemic hypoxia led to weak excitation and/or to depression of activity in VVC neurons. Stimulation of visceral afferents from urinary bladder and colon by isovolumetric contractions and distensions of the organs had no effect on most VVC neurons. Anal stimulation also did not induce reflexes in the majority of the VVC neurons. Some 14% of the VVC neurons (7 from 49) were excited by at least one of the visceral stimuli in the same manner as the motility-regulating (MR) neurons. This investigation shows that preganglionic neurons, probably involved in regulation of vascular resistance in colon and pelvic organs, are functionally a distinct population of neurons with some interesting functional overlap with the motility-regulating neurons.  相似文献   

2.
Lumbar preganglionic neurons, which projected in the lumbar splanchnic nerves and were probably involved in regulating motility of colon and pelvic organs (motility-regulating, MR neurons), were analyzed for their discharge patterns. The responses of the neurons to the following stimuli were tested: stimulation of arterial baro- and chemoreceptors and of afferents from the urinary bladder, colon, mucosal skin of the anus and perianal hairy skin. The following findings were made: a total of 131 preganglionic neurons were classified as MR neurons; these reacted to natural stimulation of at least one of the afferent inputs from the urinary bladder, colon and anal and perianal skin. The ongoing activity of these neurons did not correlate with the cardiac cycle or the cycle of the artificial ventilation. Most of them did not respond to an increase of blood pressure produced by i.v. injection of adrenaline or noradrenaline; some showed a weak depression or weak excitation which, in the time course, was untypical for visceral vasoconstrictor neurons. Stimulation of arterial chemoreceptors either did not influence MR neurons or produced only a secondary response owing to contraction of the urinary bladder. Ninety-seven preganglionic MR neurons could be subclassified: MR1 neurons were excited by distension and contraction of the urinary bladder and/or inhibited by distension and contraction of the colon (n = 61), a few were excited from both organs (n = 4); MR2 neurons were inhibited by distension and contraction of the urinary bladder and/or excited by distension and contraction of the colon (n = 32). Ninety-five out of 121 MR neurons (78.5%) were excited, 10 (8%) were inhibited and 16 (13%) not influenced by mechanical shearing stimuli applied to the mucosal skin of the anus. Most neurons which were excited by anal stimulation were not influenced by mechanical stimulation of the perianal (perigenital) skin. Twenty-eight per cent of the MR neurons (18 out of 64) were excited or inhibited upon stimulation of perianal skin. A few of these (7 out of 64 neurons, 11%) were involved in reflex responses which were different from those elicited from anal skin. At present no further consistent subclassification of MR1 and MR2 neurons appears possible on the basis of the excitatory and inhibitory anal and perianal reflexes. The results show that the population of visceral preganglionic neurons, which are probably involved in regulation of motility of colon and pelvic organs, is not homogeneous and probably consists of several subpopulations.  相似文献   

3.
Reflexes in visceral preganglionic motility-regulating (MR) neurons which project in the lumbar splanchnic nerves were investigated in acutely spinalized cats. Some neurons were analyzed before and after spinalization. The stimuli used were mechanical stimulation of mucosal skin of the anus and of perianal (perigenital) hairy skin, and distension and contraction of urinary bladder and colon. Most MR neurons exhibited a reflex pattern which consists of the following components: excitation upon bladder distension, inhibition or no effect upon colon distension and excitation (or, rarely, no effect) upon anal stimulation. This is the reflex pattern of MR1 neurons. Some neurons were excited by anal stimulation but not affected from the colon and urinary bladder. Some were inhibited by anal and perianal stimulation but otherwise exhibited the reflex patterns of the MR1 neurons. Analysis of the reflexes before and after spinalization showed that, in particular, inhibition elicited by anal, perianal and bladder stimulation was abolished; inhibition elicited from the colon was enhanced after spinalization. It is concluded that the reflexes elicited in preganglionic lumbar visceral neurons by the natural stimuli probably use spinal pathways, with the afferent input occurring at the sacral spinal cord. These spinal reflex pathways are probably controlled by descending inhibitory and excitatory spinal systems from the supraspinal neuraxis.  相似文献   

4.
Reflex patterns in preganglionic neurons projecting in the cervical sympathetic trunk (CST) were analyzed in response to stimulation of various afferent systems. We focused on the question whether these preganglionic neurons can be classified into functionally distinct subpopulations. Reflex responses were elicited by stimulation of trigeminal and spinal nociceptive, thermoreceptive as well as baroreceptor and chemoreceptor afferents. Multi- and single fiber preparations were studied in baroreceptor intact and sino-aortically denervated animals. Spontaneous activity of 36 preganglionic single neurons ranged from 0.2 to 3.5 imp/s (median= 1.11 imp/s). The degree of cardiac rhythmicity (CR) in the activity of sympathetic neurons was 69.5+/-13% (mean+/-S.D.; N=52; range=39-95%). Noxious stimulation of acral skin activated the majority (67%) of sympathetic preparations by 37+/-25% (N=35) above pre-stimulus activity; 15% were inhibited. In these neurons the response to noxious stimulation of acral skin was significantly correlated with the degree of CR (P<0.001, N=52) in that neurons showing the strongest excitation to noxious stimulation displayed the strongest CR. Noxious mechanical stimulation of body trunk skin (N=60) inhibited the majority (80%) of fiber preparations tested (by 34+/-18% of pre-stimulus activity, N=48); an activation was not observed. Cold stimulation of acral (N=9) and body trunk skin (N=42) activated most fiber preparations. Trigeminal stimulation evoked a uniform reflex activation of preganglionic neurons (+79+/-73% of pre-stimulus activity, N=32). Chemoreceptor stimulation by systemic hypercapnia elicited inhibitory (-31+/-19%, N=8) as well as excitatory (+59+/-5%, N=4) responses. These results show that preganglionic sympathetic neurons projecting to target organs in the head exhibit distinct reflex patterns to stimulation of various afferent systems; however, a clear classification into different functional subgroups did not emerge. Furthermore, reflex patterns showed a segmental organization to noxious cutaneous stimulation of acral parts and body trunk reflecting a differential central integration of spinal afferent input. Compared with the cat the reflex organization of sympathetic neurons projecting to the head seems to be less differentiated in the anesthetized rat.  相似文献   

5.
Viscero-sympathetic reflex responses to mechanical stimulation of urinary bladder and colon were studied in cutaneous vasoconstrictor (CVC) neurones supplying hairy skin, in muscle vasoconstrictor (MVC) neurones supplying skeletal muscle and in sudomotor (SM) neurones supplying the sweat glands of the central paw pad of the cat hindlimb. The cats were anaesthetized, paralysed and artificially ventilated. The vasoconstrictor activity was recorded from the axons of the postganglionic fibres that were isolated in filaments from the respective peripheral hindlimb nerves. The activity in the sudomotor neurones was monitored by recording the fast skin potential changes occurring on the surface of the central paw pad. Afferents from the urinary bladder and from the colon were stimulated by isotonic distension and isovolumetric contraction of the organs. Most CVC neurones with ongoing activity were inhibited by these stimuli; only a few CVC neurones were excited. The MVC and SM neurones were generally excited by the visceral stimuli, yet the size of the evoked skin potential changes was variable. The reflex responses elicited in the sympathetic outflow to the cat hindlimb by stimulation of visceral afferents from the pelvic organs are uniform with respect to the different types of afferent input system but differentiated with respect to the efferent output systems. Graded stimulation of the visceral afferents from the urinary bladder by isotonic pressure steps elicited graded reflex responses in CVC (threshold less than 30 mmHg) and MVC neurones (threshold less than 20 mmHg) and a graded increase of the arterial blood pressure (threshold less than 20 mmHg). These graded reflex responses are closely related to the quantitative activation of sacral afferent neurones with thin myelinated axons innervating the urinary bladder that are also responsible for eliciting the micturition reflex, but not to the quantitative activation of sacral afferent neurones with unmyelinated axons. The latter have thresholds of 40-50 mmHg intravesical pressure at which the size of the vesico-sympathetic reflexes in the vasoconstrictor neurones was about 50% of maximal size. This does not exclude the fact that activation of unmyelinated vesical afferents contributes to the vesico-sympathetic reflexes.  相似文献   

6.
Horseradish peroxidase taken up by the sensory axons in the lumbar colonic nerves in 5 cats was observed in the dorsal root ganglia and in the spinal cord in segments L1 through L5. Reaction product was observed in Lissauer's tract, the dorsal columns and laminae I, V, VII and X in a pattern typical of visceral primary afferents from other nerves. A small number of preganglionic neurons were also labeled.  相似文献   

7.
The spinal distribution of sympathetic preganglionic neurons (PGN) and visceral primary afferent neurons sending axons into the hypogastric nerve of the cat has been studied with HRP tracing techniques. After application of HRP to the cat hypogastric nerve, labeled PGN were identified in segments L2-L5. Most of these neurons were oriented transversely and were divided approximately equally between two nuclei: the principal nucleus and the intercalated nucleus. Cells were distributed in clusters at 160-361-microns intervals along the length of the cord. Sensory neurons were labeled in dorsal root ganglia from T12 to L5. Central axons of these visceral afferents were observed in the medial half of Lissauer's tract from T13 to L7. Afferent axon collaterals extended through lamina I on both sides of the dorsal horn but were most prominent on the lateral side, where they continued into lateral lamina V and VII, often overlapping the dorsal dendrites of PGN in this region. Labeled afferent projections exhibited a periodic distribution in lamina I with clusters of axons occurring at 235-343-microns intervals in the rostrocaudal axis. The central projection of hypogastric nerve primary afferents was qualitatively similar to the distribution of visceral afferent projections at other levels of the spinal cord.  相似文献   

8.
These experiments were designed to characterize the distribution, morphology, and number of spinal preganglionic neurons that selectively innervate the B- and C-type sympathetic neurons in paravertebral ganglia 9 and 10 of the bullfrog. For this purpose, horseradish peroxidase (HRP) was applied to the anterior end of the sectioned sympathetic chain between ganglia 8 and 9. Subsequent retrograde axonal transport of the HRP labeled ipsilateral spinal neurons whose cell bodies form a column having rostral and caudal boundaries that are, respectively, just caudal to the level of spinal nerve 4 and midway between the entry zones of spinal nerves 7 and 8. In all segments, the labeled preganglionic somata were found in the lateral half of the spinal gray and slightly dorsal to the central canal; a position analogous to that of the intermediolateral cell column in mammals. Most labeled preganglionic neurons were multipolar in shape, and the cell bodies lying between spinal nerves 4 and 5 were, on average, larger than those found between spinal nerves 7 and 8. In transverse sections that were cut near spinal nerve 5, the axons of preganglionic neurons could be seen to exit the cord through ventral roots. Counts of labeled preganglionic neurons indicate that an average +/- S.D. of 338 +/- 89 cells innervate ganglia 9 and 10. Selective labeling of preganglionic B neurons, by cutting spinal nerves 7 and 8 central to their rami communicantes at the time of HRP application, revealed an average +/- S.D. of 137 +/- 31 cells that lie exclusively between spinal nerves 4 and 6. By contrast, selective labeling of preganglionic C neurons, by cutting the sympathetic chain rostral to ganglion 7 at the time of HRP application, revealed an average +/- S.D. of 187 +/- 77 cells in an adjacent portion of the preganglionic column that is bounded by spinal nerve 6 and by a point midway between spinal nerves 7 and 8. These results thus demonstrate a clear segmental segregation between the preganglionic B and C neurons that innervate ganglia 9 and 10.  相似文献   

9.
The present study is an electron microscope analysis of the rami communicantes and its purpose is to determine the functional categories of unmyelinate axons in these nerves. Our findings indicate that the grey rami of segments T7, T8, or T9 in the cat consist of approximately 5,000 unmyelinated axons and 20 myelinated axons, and that these axons are post-ganglionic sympathetics. Although the numbers are new data, this conclusion confirms classic work. The white rami from the same segments contain approximately 3,200 unmyelinated axons and 1,600 myelinated axons. 80-90% of the myelinated axons are preganglionic sympathetics and the remainder are presumably sensory. This conclusion is also in confirmation of classic work. The new conclusions are that approximately 30% of the unmyelinated axons are preganglionic sympathetics, approximately 60% seem to be post-ganglionic sympathetics and the surprisingly small remainder may be sensory.  相似文献   

10.
Electrophysiological techniques were used to examine the organization of the spinobulbospinal micturition reflex pathway in the rat. Electrical stimulation of afferent axons in the pelvic nerve evoked a long latency (136 +/- 41 ms) response on bladder postganglionic nerves, whereas stimulation in the dorsal pontine tegmentum elicited shorter latency firing (72 +/- 25 ms) on these nerves. Transection of the pelvic nerve eliminated these responses. Firing on the bladder postganglionic nerves was evoked by stimulation in a relatively limited area of the pons within and close to the laterodorsal tegmental nucleus (LDT) and adjacent ventral periaqueductal gray. Stimulation at sites ventral to this excitatory area inhibited at latencies of 107 +/- 11 ms the asynchronous firing on the bladder postganglionic nerves elicited by bladder distension. Electrical stimulation of afferents in the pelvic nerve evoked short latency (13 +/- 3 ms) negative field potentials in the dorsal part of the periaqueductal gray as well as long latency (42 +/- 7 ms) field potentials in and adjacent to the LDT. The responses were not altered by neuromuscular blockade. Similar responses were elicited by stimulation of afferent axons in the bladder nerves. The sum of the latencies of the ascending and descending pathways between the LDT and the pelvic nerve (i.e. 72 ms plus 42 ms = 114 ms) is comparable although somewhat shorter (22 ms) than the latency of the entire micturition reflex. These results provide further evidence that the micturition reflex in the rat is mediated by a spinobulbospinal pathway which passes through the dorsal pontine tegmentum, and that neurons in the periaqueductal gray as well as the LDT may play as important role in the regulation of the micturition.  相似文献   

11.
The conducting pathways of the lumbar (L3-L5) sympathetic ganglia were studied in rabbits by recording action potentials evoked in the nerves of the ganglia by stimuli applied to their other nerves and intracellular recording. It is established that some presynaptic fibres enter the sympathetic chain via grey rami and then pass upward and downward making synaptic contacts with ganglionic neurons. Other fibres enter the sympathetic chain through white communicating rami and pass in descending direction giving collaterals to the neurons of the ganglia. Descending preganglionic fibres with different conduction velocity converge on ganglionic neurons.  相似文献   

12.
The cell bodies of the lumbar sensory and sympathetic pre- and postganglionic neurons that project in the caudal lumbar sympathetic trunk of the cat have been labeled retrogradely with horseradish peroxidase applied to the central end of their cut axons. The application was made just proximal to the segmental ganglion that sends its gray rami to the L7 spinal nerve, and so identified the sympathetic outflow concerned primarily with the vasculature of the hindlimb and tail. The numbers, segmental distribution, location, and size of the labeled somata have been determined quantitatively. Labeled cell bodies were found ipsilaterally, but the segmental distributions of the different cell types were not matched. Afferent cell bodies lay in dorsal root ganglia L1-L5 (maximum L4), preganglionic cell bodies in spinal segments T10-L5 (maximum L2/3), and postganglionic cell bodies in ganglia L2-L5 (maximum L5). Both numbers and dimensions of labeled dorsal root ganglion cells were variable between experiments (maximum about 1,000); the majority were small relative to the entire population of sensory neurons. Labeled preganglionic cell bodies were located right across the intermediate region of the spinal cord, extending from the lateral part of the dorsolateral funiculus to the central canal. The highest density of labeled neurons lay at the border between the white and gray matter (corresponding to the intermediolateral cell column) with smaller proportions medially in L1-L2, and laterally in caudal L4-L5. Medial preganglionic neurons were generally larger than those lying in lateral positions. From the data, it is estimated that about 650 afferent, about 4,500 preganglionic, and some 2,500 postganglionic neurons project in each lumbar sympathetic trunk distal to the ganglion L5 in the cat.  相似文献   

13.
The spinal segmental localization of preganglionic neurons which convey activity to the sympathetic nerves, i.e. vertebral nerve, right inferior cardiac nerve, sympathetic fibres in the thoracic vagus and cervical sympathetic trunk, was determined on the right side in chloralose anaesthetized cats. For that purpose the upper thoracic white rami were electrically stimulated with a single pulse, suprathreshold for B and C fibres, and the evoked responses were recorded in the sympathetic nerves. The relative preganglionic input from each segment of the spinal cord to the four sympathetic nerves was determined from the size of the evoked responses. It was found that each sympathetic nerve receives a maximum preganglionic input from one segment of the spinal cord (dominant segment) and that the preganglionic input gradually decreased from neighbouring segments. The spinal segmental preganglionic outflow to the cervical sympathetic trunk, thoracic vagus, right inferior cardiac nerve and vertebral nerve gradually shifted from the most rostral to the most caudal spinal cord segments. In some cases, a marked postganglionic component was found in the cervical sympathetic trunk. It was evoked by preganglionic input from the same spinal cord segments which transmitted activity to the vertebral nerve. These results indicate that there is a fixed relation between the spinal segmental localization of preganglionic neurons and the branch of the stellate ganglion receiving the input from these neurons.  相似文献   

14.
Sympathetic reflexes elicited by stimulation of visceral receptors have been well investigated, but the central neurotransmitters mediating these reflexes are largely unknown. Therefore, experiments were done to evaluate the role of substance P in the central transmission of a sympathoexcitatory reflex elicited by stimulation of intestinal receptors. Activity of mesenteric and renal nerves was recorded electrophysiologically in chloralose/urethane-anesthetized rats. Stimulation of intestinal receptors by serosal application of 0.5-1.0 microgram bradykinin increased mesenteric nerve activity by 100 +/- 21%, renal nerve discharge by 33 +/- 9%, and systemic arterial pressure by 10 mm Hg. Chronic capsaicin treatment (cumulative dose 950 mg/kg) caused a 52% depletion of substance P-like immunoreactivity from dorsal root ganglia and a significant attenuation of these reflexes. Mesenteric nerve activity increased by 48 +/- 6% in the capsaicin-treated rats. Bradykinin did not cause significant changes in renal nerve activity or systemic arterial pressure in these rats. The excitation of mesenteric nerve activity was significantly greater than the increase in renal nerve activity int he untreated and capsaicin-treated rats; capsaicin treatment affected responses of both nerves similarly. Capsaicin treatment did not have generalized effects on sympathetic reflexes, as mesenteric and renal nerve activities were decreased by baroreceptor activation similarly in the untreated and capsaicin-treated rats. These results suggest that the central transmission of the reflex response to intestinal receptor stimulation is mediated in part by substance P or other capsaicin-sensitive peptides.  相似文献   

15.
The action potentials evoked by stimulation of single preganglionic nerve fibres or of single neurons of the ganglion were recorded from postganglionic nerves of rabbit superior cervical ganglion. The averaging technique was used to improve the nerve signal-to-noise ratio. It was found by dividing the area by the area that single preganglionic nerve fibre discharges, as an average, 15 neurons of the ganglion. Action potentials were also recorded from preganglionic nerves, either appearing synchronously with the intracellular spikes recorded during ongoing activity of the ganglion neuron, or being evoked by stimulation of a single preganglionic nerve fibre. It was found by dividing the area by the area that each ongoing spike in the ganglion neuron is preceded by firing, as an average, of three preganglionic nerve fibres. Thus, 45 ganglion neurons are expected to be discharged by a preganglionic volley during their ongoing activity. This number is much lower than that found in our previous experiments (about 100 neurons). The difference suggests that in the majority of the ganglion neurons the ongoing discharges need summation of excitatory effects produced by a few converging preganglionic nerve fibres (multiple input) rather than being evoked by a single preganglionic nerve fibre (single input). Methacine, a selective muscarinic antagonist (0.3-0.5 mg/kg, i.v.), decreased by about 10% the rate of the multiple input-induced ongoing spikes while not affecting the single input-induced ongoing spikes in the ganglion neurons. This effect is probably due to the increase in the duration of after-hyperpolarization observed after the application of methacine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Influences of neck afferents on sympathetic and respiratory nerve activity   总被引:1,自引:0,他引:1  
It is well established that the vestibular system influences the sympathetic nervous system and the respiratory system; presumably, vestibulosympathetic and vestibulorespiratory responses participate in maintaining stable blood pressure and blood oxygenation during movement and changes in posture. Many brainstem neurons that generate vestibulospinal reflexes integrate signals from the labyrinth and neck muscles to distinguish between head movements on a stable body and whole body movements. In the present study, responses were recorded from the splanchnic (sympathetic), hypoglossal (inspiratory) and abdominal (expiratory) nerves during stimulation of the C2 dorsal root ganglion or C2 or C3 nerve branches innervating dorsal neck muscles. Stimulation of neck afferents using low current intensities, in many cases less than twice the threshold for producing an afferent volley recordable from the cord dorsum, elicited changes in sympathetic and respiratory nerve activity. These data suggest that head rotation on a stable body would elicit both cervical and vestibular inputs to respiratory motoneurons and sympathetic preganglionic neurons. The effects of cervical afferent stimulation on abdominal, splanchnic and hypoglossal nerve activity were not abolished by transection of the brainstem caudal to the vestibular nuclei; thus, pathways in addition to those involving the vestibular nuclei are involved in relaying cervical inputs to sympathetic preganglionic neurons and respiratory motoneurons. Transection of the C1-3 dorsal roots enhanced responses of the splanchnic and abdominal nerves to pitch head rotations on a fixed body but diminished responses of the hypoglossal nerve. Thus, neck and vestibular afferent influences on activity of respiratory pump muscles and sympathetic outflow appear to be antagonistic, so that responses will occur during whole body movements but not head movements on a stationary trunk. In contrast, neck and vestibular influences on tongue musculature are complementary, presumably to produce tongue protrusion either during movements of the head alone or of the whole body.  相似文献   

17.
The organization of the vagal nuclei was studied electrophysiologically in chloralose-anesthetized rats by analyzing the field potentials and unitary responses evoked in the nuclei by stimulation of the cervical vagus nerve. The rostral part of the nucleus commissuralis yielded only a long-latency response to stimulation of this nerve, suggesting that this region receives projections solely of nonmyelinated afferent fibers. In the nucleus tractus solitarius the stimulation elicited both short-latency and long-latency responses, indicating converging projections of myelinated and nonmyelinated afferents. A long-latency response was recorded diffusely within n. commissuralis and n. tractus solitarius of the contralateral side, whereas a short-latency response was restricted to a midline area, the caudal n. commissuralis, and the most medial part of n. tractus solitarius adjacent to it. These observations also suggest a difference in projections of myelinated and nonmyelinated afferents. Two types of motor neurons were identified in the dorsal vagal nucleus by antidromic activation: one with B-fiber axons and the other with C-fiber axons. C-Fiber motor neurons were characterized by the large positivity of the spike and the presence of an inflection in the rising phase of the spike, presumably between the initial segment and somatodendritic components. The latter component was readily blocked by repetitive stimulation. In the nucleus ambiguus, stimulation of the vagus nerve produced the earliest antidromic response of A-fiber motor neurons accompanied by multiple orthodromic responses of short and long latencies. Electrolytic lesions of the dorsomedial medulla oblongata abolished all potentials in n. ambiguus except the antidromic one, indicating that all the orthodromic responses were generated via the vagal sensory nuclei sinuated dorsomedially.  相似文献   

18.
The aim of the present study was to investigate the role of peripheral ionotropic glutamate receptors in the process of signal transmission between adjacent different peripheral sensory nerves. The T9 and T10 cutaneous branches of spinal dorsal rami were dissociated and cut proximally in pentobarbital anesthetized rats. Eighty-seven single afferents from T10 nerve filaments were recorded and characterized by assessing their spontaneous activities. Following 30 s antidromic electrical stimulation (intensity: 1 mA; duration: 0.5 ms; frequency: 20 Hz) of T9 cutaneous branches, the spontaneous activities of Abeta, Adelta and C fibers of T10 nerve were significantly enhanced from 2.00+/-0.34, 2.42+/-0.33, and 2.19+/-0.32 impulses/min to 4.31+/-0.58, 5.22+/-0.55, and 5.27+/-0.69 impulses/min, respectively (n=29 for each type, P<0.05). These enhanced spontaneous discharges of T10 nerve were significantly blocked by local treatment of its receptive field with either N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 or non-NMDA receptor antagonist DNQX (0.1 mM, 10 microl for each drug) (P<0.05). These results suggest that peripheral ionotropic glutamate receptors are involved in the activation of peripheral nerves following the antidromic stimulation of adjacent afferents from different spinal segments. We further provide the direct evidence that neurotransmitters released from adjacent peripheral nerves may also contribute to the occurrence of allodynia as well as secondary hyperalgesia during the pathological nociception.  相似文献   

19.
A Szulczyk  P Szulczyk 《Brain research》1987,421(1-2):127-134
The aim of this study was to verify in which spinal cord segments the preganglionic neurones projecting to the cervical sympathetic trunk or converging onto the somata of the postganglionic cardiac sympathetic neurones are located in cats. The thoracic white rami T1 to T5 were electrically stimulated and the evoked responses were recorded in the cervical sympathetic trunks and postganglionic cardiac nerves. The responses were mostly evoked by electrical stimulation of group B preganglionic fibres. The maximum amplitude of evoked responses in the cervical sympathetic trunk was obtained when the T2 white ramus was stimulated and decreased gradually when followed by the stimulation of T1, T3, T4 and T5 white rami. In most cases the maximum amplitude of evoked responses in the left inferior cardiac nerve, right inferior cardiac nerve and left middle cardiac nerve was obtained when the T3 white ramus was stimulated. The size of the responses decreased when more cranial and caudal white rami were stimulated. It was found that the somata of the postganglionic neurones of the right and left inferior cardiac nerves were placed in the right and left stellate ganglion, respectively. Somata of the postganglionic neurones with axons in the left middle cardiac nerve were mainly located in the left middle cervical ganglion and some in the left stellate ganglion.  相似文献   

20.
In tetrapod vertebrates, neural circuitries subserving visceral and somatic reflexes are each represented in distinct columns of cells within the gray area of the spinal cord. To determine the location of visceral elements of the spinal cord of a teleost fish, crystals of the carbocyanine dye 1,1′dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine (DiI), were placed on either the abdominal sympathetic (mesenteric) nerves, the coeliac ganglia, or on the rostral three somatic spinal nerves, in fixed specimens of the channel catfish, Ictalurus punctatus. In fish in which DiI had been placed on the mesenteric nerves, labeled fibers coursed along the lateral margin of the dorsal horn within the first and second spinal segments, and appeared to terminate in a region at the base of the dorsal horn. In contrast, when DiI crystals were placed on the somatic spinal nerves, labeled primary afferents terminated in the dorsalmost two thirds of the dorsal horn, as well as in ventral and ventromedial areas of the medial funicular nuclear complex. Labeled somata (motor neurons) were situated in the ventral horn. When DiI crystals were placed bilaterally on the coeliac ganglia, labeled piriform and fusiform preganglionic neurons occurred in intermediate positions adjacent to the central canal, corresponding to the paracentral nucleus of Herrick, and in the lateral funiculus. These results demonstrate that somatic and visceral afferent and efferent functional columns are distinct in a teleost fish as they are in amniote vertebrates. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号