首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Acta biomaterialia》2014,10(6):2781-2791
Porous three-dimensional scaffolds with potential for application as cancellous bone graft substitutes were prepared from aliphatic segmented poly(ester urethane) urea using the phase-inverse technique. Proton nuclear magnetic resonance, size-exclusion chromatography, electron spectroscopy for chemical analysis, secondary ion mass spectrometry, infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, computed tomography and mechanical tests were carried out, to characterize the scaffolds’ physicochemical properties. Human osteosarcoma MG-63 cells were seeded into the scaffolds for 1, 2, 3 and 4 weeks to evaluate their potential to support attachment, growth and proliferation of osteogenic cells. The scaffold–cell interaction was assessed by analysis of DNA content, total protein amount, alkaline phosphatase activity and WST-1 assay. The scaffolds supported cell attachment, growth and proliferation over the whole culture period of 4 weeks (DNA, total protein amount). There was, however, a reduction in the WST-1 assay values at 4 weeks, which might suggest a reduction in the rate of cell proliferation at this time.  相似文献   

2.
Cell behavior depends strongly on the physical and chemical properties of the material surface, for example, its chemistry and topography. The authors have therefore assessed the influence of materials of different chemical composition (i.e., glass substrates with and without TiO(2) films in anatase form) and different surface roughness (R(a) = 0, 40, 100, or 170 nm) on the adhesion, proliferation, and osteogenic differentiation of human osteoblast-like MG63 cells. On day 1 after seeding, the largest cell spreading area was found on flat TiO(2) films (R(a) = 0 nm). On TiO(2) films with R(a) = 170 nm, the cell spreading area was larger and the number of initially adhering cells was higher than the values on the corresponding uncoated glass. On day 3 after seeding, the cell number was higher on the TiO(2) films (R(a) = 0 and 40 nm) than on the corresponding glass substrates and the standard polystyrene dishes. On day 7, all TiO(2) films contained higher cell numbers than the corresponding glass substrates, and the cells on the TiO(2) films with R(a) = 40 and 100 nm also contained a higher concentration of β-actin. These results indicate that TiO(2) coating had a positive influence on the adhesion and subsequent proliferation of MG63 cells. In addition, on all investigated materials, the cell population density achieved on day 7 decreased with increasing surface roughness. The concentration of osteocalcin, measured per mg of protein, was significantly lower in the cells on rougher TiO(2) films (R(a) = 100 and 170 nm) than in the cells on the polystyrene dishes. Thus, it can be concluded that the adhesion, growth, and phenotypic maturation of MG63 cells were controlled by the interplay between the material chemistry and surface topography, and were usually better on smoother and TiO(2)-coated surfaces than on rougher and uncoated glass substrates.  相似文献   

3.
Based on the hypothesis that bone cements cause changes in the production of transforming growth factor-beta 1 (TGF-beta1) by bone cells, the effects of four acrylic bone cements (Sulfix-60, CMW 1, CMW 2 and CMW 3) were examined using the osteoblast-like cell line MG63. The extracts in MEM of the cements were tested, following 1 h- and 7 day-curing. MG63 cells seldom expressed mRNA specific for TGF-beta1 in basal conditions. The cultures expressed mRNA constantly after incubation with the extract of CMW 1 cured for 1 h. TGF-beta1 specific mRNA was seldom expressed after incubation with the other cement extracts. The release of TGF-beta1 into the conditioned medium was increased significantly by CMW 1 extract at 1 h-curing, but was not changed significantly by CMW 1 extract at 7 day-curing and by the extracts of the other cements, at both curing times. The stimulating effect of CMW 1 on the secretion of TGF-beta1, even with all the restrictions of an in vitro study of continuous cell lines, if confirmed in vivo, might favor the development of the synovial-like membrane around the implant, and therefore impair the chance of success of the prosthesis.  相似文献   

4.
5.
Silk fibroin is a potent alternative to other biodegradable biopolymers for bone tissue engineering (TE), because of its tunable architecture and mechanical properties, and its demonstrated ability to support bone formation both in vitro and in vivo. In this study, we investigated a range of silk scaffolds for bone TE using human adipose-derived stem cells (hASCs), an attractive cell source for engineering autologous bone grafts. Our goal was to understand the effects of scaffold architecture and biomechanics and use this information to optimize silk scaffolds for bone TE applications. Silk scaffolds were fabricated using different solvents (aqueous vs. hexafluoro-2-propanol (HFIP)), pore sizes (250-500 μm vs. 500-1000 μm) and structures (lamellar vs. spherical pores). Four types of silk scaffolds combining the properties of interest were systematically compared with respect to bone tissue outcomes, with decellularized trabecular bone (DCB) included as a "gold standard". The scaffolds were seeded with hASCs and cultured for 7 weeks in osteogenic medium. Bone formation was evaluated by cell proliferation and differentiation, matrix production, calcification and mechanical properties. We observed that 400-600 μm porous HFIP-derived silk fibroin scaffold demonstrated the best bone tissue formation outcomes, as evidenced by increased bone protein production (osteopontin, collagen type I, bone sialoprotein), enhanced calcium deposition and total bone volume. On a direct comparison basis, alkaline phosphatase activity (AP) at week 2 and new calcium deposition at week 7 were comparable to the cells cultured in DCB. Yet, among the aqueous-based structures, the lamellar architecture induced increased AP activity and demonstrated higher equilibrium modulus than the spherical-pore scaffolds. Based on the collected data, we propose a conceptual model describing the effects of silk scaffold design on bone tissue formation.  相似文献   

6.
背景:目前已有较多关于雌激素α受体基因如何参与骨代谢的研究,而对雌激素β受体基因如何参与骨代谢的研究则相对较少。 目的:构建人雌激素β受体RNAi反转录病毒表达载体,并通过病毒介导其在人成骨样MG63细胞中表达。 方法:根据GeneBank数据库提供的雌激素β受体基因核苷酸序列,选择设计3条针对人雌激素β受体干扰靶序列,并与pRNAT-H1.4/ Retro质粒定向连接,构建真核表达载体pRNAT-H1.4/Retro-雌激素β受体-shRNA,经限制性内切酶酶切和DNA测序进行鉴定。将pRNAT-H1.4/Retro-雌激素β受体-shRNA经脂质体转染至293细胞包装成反转录病毒。将包装好的反转录病毒,以空白及非特异性shRNA作为对照,感染人成骨样MG63细胞株。 结果与结论:3个连接了雌激素β受体-shRNA的重组质粒经酶切鉴定分析证实目的序列己插入到预计位点,符合设计要求,测序鉴定表明重组质粒中含有针对雌激素β受体基因目的序列,表明重组质粒构建成功。并经脂质体转染至293细胞后成功包装成反转录病毒。反转录病毒载体能高效、稳定的感染人成骨样MG63细胞株,感染效率为70%左右。包装后的3种雌激素β受体-shRNA反转录病毒均能高效、稳定的感染人成骨样MG63细胞,并显著抑制雌激素β受体的表达。其中以雌激素β受体-shRNA3为最佳的干扰序列。  相似文献   

7.
目的观察MC3T3-El成骨前体细胞在壳聚糖-脱细胞真皮三维支架材料上的黏附情况,并评价其细胞相容性。方法通过冷冻干燥制备壳聚糖-脱细胞真皮三维支架材料,并测试其孔隙率、密度和吸水率,通过扫描电镜分析支架的微观形貌。采用体外培养细胞的方法,将MC3T3-E1细胞直接接种到壳聚糖-脱细胞真皮三维支架材料上,培养2,3,4,5h,各时间点各取3个样品,测定细胞在支架上的黏附率,确定最佳的细胞贴壁时间。将细胞接种到支架上,共培养1,3,5,7,9,11,13d,采用MTS方法绘制细胞增殖曲线,组织化学染色观察细胞形态,并利用材料试验机测试不同时间材料细胞复合物的压缩弹性模量。结果壳聚糖-脱细胞真皮材料具有连通的多孔结构,孔隙率为92.8%,密度为97.96g/L,吸水率为(2169±100)%。细胞相容性实验显示,成骨细胞易于在支架材料上黏附、增殖。结论壳聚糖-脱细胞真皮材料具有连通的孔隙,孔径较均匀,MC3T3-El成骨前体细胞易在壳聚糖-脱细胞真皮三维支架材料上黏附、增殖,表明该支架材料具有良好的细胞相容性。  相似文献   

8.
Novel difunctional oligolactone macromers have been synthesized by ring-opening oligomerization of various lactones (L-lactide, glycolide, p-dioxanone) in the presence of suitable diols (propane-1,2-diol, dianhydro-D-glucitol) and subsequent endcapping of the formed oligolactones with methacrylate moieties. Based on these macromers, two fabrication procedures were developed to fabricate highly porous scaffolds and the material properties including in vitro biodegradation behaviour of the resulting polymeric scaffolds were investigated. Preliminary in vitro studies on the cytocompatibility of the fabricated scaffolds and on osteoblast cultivation on the optimized polymeric materials demonstrated that the oligolactide based polymer networks possess an excellent biocompatibility and that they are promising candidates as scaffolds in bone tissue engineering.  相似文献   

9.
The biocompatibility of silicon nitride (Si3N4) was assessed in an in vitro model using the human osteoblast-like MG-63 cell line. Cells were propagated on the surface of: reaction-bonded silicon nitride discs, sintered after reaction-bonded silicon nitride discs or control polystyrene surface for 48 h. Compared to cells propagated on polystyrene surface, cells grown on the surface of unpolished silicon nitride discs had significantly lower cell yield and decreased osteocalcin production. In contrast, cells on the surface of polished silicon nitride discs showed similar proliferative capacity to control cells propagated on polystyrene surface. Cells propagated on polished discs also produced higher levels of osteocalcin than cells on unpolished discs. SEM analysis showed cells with well-delineated morphology and cytoplasmic extensions when propagated on polished sintered after reaction-bonded discs. Cells appeared more spherical, when grown on polished reaction-bonded discs. The results of this study suggest that silicon nitride is a non-toxic, biocompatible ceramic surface for the propagation of functional human bone cells in vitro. Its high wear resistance and ability to support bone cell growth and metabolism make silicone nitride an attractive candidate for clinical application. Further studies are needed to explore the feasibility of using silicon nitride clinically as an orthopedic biomaterial.  相似文献   

10.
11.
Silicon is known to have an influence on calcium phosphate deposition and on the differentiation of bone precursor cells. This study explores the effect of the incorporation of silanol (Si-OH) groups into polymeric scaffolds on the osteogenic differentiation of human adipose stem cells (hASC) cultured under dynamic and static conditions. A blend of corn starch with polycaprolactone (30/70wt.%, SPCL) was used to produce three-dimensional fibre meshes scaffolds by the wet-spinning technique, and a calcium silicate solution was used as a non-solvent to develop an in situ functionalization with Si-OH groups. In vitro assessment, using hASC, of functionalized and non-functionalized scaffolds was evaluated in either α-MEM or osteogenic medium under static and dynamic conditions (provided by a flow perfusion bioreactor). The functionalized materials, SPCL-Si, exhibit the capacity to sustain cell proliferation and induce their differentiation into the osteogenic lineage. The formation of mineralization nodules was observed in cells cultured on the SPCL-Si materials. Culturing under dynamic conditions using a flow perfusion bioreactor was shown to enhance the hASC proliferation and differentiation and a better distribution of cells within the material. The present work demonstrates the potential of these functionalized materials for future applications in bone tissue engineering. Additionally, these results highlight the simplicity, economic and reliable production process of those materials.  相似文献   

12.
The aim of this study was to examine in vitro the response of human mesenchymal stem cells (hMSCs) on the novel biomimetic bioglass-collagen-hyaluronic acid-phosphatidylserine (BG-COL-HYA-PS) composite scaffold for potential use in bone tissue engineering. The initial attachment, the proliferation, migration and differentiation behavior of the cells on the BG-COL-HYA-PS composites were assessed in comparison with those on pure 58sBG, BG-COL, and BG-COL-HYA composites in either growth medium (L-DMEM supplemented with 10% fetal bovine serum) or osteogenic medium (growth medium supplemented with 0.1 microM dexamethasone, 10 mM beta-glycerophosphate, and 50 microM ascorbic acid). HMSCs attached, and subsequently proliferated and migrated on the BG-COL-HYA-PS composites to a significantly higher degree. The alkaline phosphatase (ALP) staining, ALP activity and the expression of the bone associated gene ALP, osteocalcin (OC), and osteopontin (OPN) was also significantly higher in the hMSCs on the BG-COL-HYA-PS scaffolds than those on the BG-COL, BG-COL-HYA composites and the pure 58sBG. These findings suggest that the BG-COL-HYA-PS composite porous scaffolds have high potential for use as scaffolds in bone tissue engineering and repair.  相似文献   

13.
Given the inherent shortcomings of autografts and allografts, donor-site morbidity and risk of disease transmission, respectively, alternatives to traditional bone grafting options are warranted. To this end, poly(lactide-co-glycolide) (PLAGA) and in situ-synthesized amorphous hydroxyapatite (HA) were used to construct three-dimensional microsphere-based composite scaffolds of varying HA content for bone regeneration. In the current study, the effect of adding amorphous HA to the PLAGA scaffolds on their physical characteristics and in vitro degradation mechanism was investigated. Porosimetry and uniaxial compression testing were used to analyze the internal structure and elastic modulus of the scaffolds, respectively. Additionally, gel permeation chromatography (GPC) was performed to assess the polymer molecular weight over the course of an 8-week degradation study. HA content (17% or 27%) of the composite scaffolds was found to increase scaffold pore volume from 33.86% for pure polymer scaffolds, to 40.49% or 46.29%, depending on the amount of incorporated HA. This increased pore volume provided the composite scaffolds with a greater surface area and a corresponding decrease in elastic modulus. Scaffold degradation studies conducted over 8 weeks showed PLAGA to degrade in a first-order mechanism, with the rate of polymer degradation for the 27% HA composite scaffold being significantly slower than that of the pure PLAGA scaffold (degradation constants of 0.0324 and 0.0232 week(-1), respectively). These results suggest that the addition of amorphous HA to PLAGA microspheres resulted in porous, bioactive scaffolds that offer potential as alternative bone grafting materials for the field of regenerative medicine.  相似文献   

14.
Freeze casting of hydroxyapatite scaffolds for bone tissue engineering   总被引:19,自引:0,他引:19  
Deville S  Saiz E  Tomsia AP 《Biomaterials》2006,27(32):5480-5489
Although extensive efforts have been put into the development of porous scaffolds for bone regeneration, with encouraging results, all porous materials have a common limitation: the inherent lack of strength associated with porosity. Hence, the development of porous hydroxyapatite scaffolds has been hindered to non-load bearing applications. We report here how freeze casting can be applied to synthesize porous scaffolds exhibiting unusually high compressive strength, e.g. up to 145 MPa for 47% porosity and 65 MPa for 56% porosity. The materials are characterized by well-defined pore connectivity along with directional and completely open porosity. Various parameters affecting the porosity and compressive strength have been investigated, including initial slurry concentration, freezing rate, and sintering conditions. The implications and potential application as bone substitute are discussed. These results might open the way for hydroxyapatite-based materials designed for load-bearing applications. The biological response of these materials is yet to be tested.  相似文献   

15.
A novel method of preparing macroporous hydroxyapatite (HA) by dual-phase mixing was developed: HA slurry and Polymethylmethacrylate (PMMA) resin were mixed together at the volume ratio of 1:1. After pyrolytic removal of the PMMA phase, HA with an open porous structure was obtained. In this way, the porosity of the ceramic was limited to 50%. Attempts to increase the porosity by adding more PMMA resin were confronted with the technical hurdle of sample collapse during the pyrolysis process. To increase the porosity and to improve pore interconnection, an extra foaming step was introduced before the polymerization of PMMA resin. Three foaming agent systems were tried, based on the reactions of citric acid and (bi)carbonate salts: sodium bicarbonate, calcium carbonate, and ammonium bicarbonate. Although all the three foaming agents were able to increase the porosity up to 70%, keeping all the pores interconnected throughout, only ammonium bicarbonate system turned out to be applicable to make HA scaffolds or implants, because both NaHCO(3) and CaCO(3) systems caused alkalic residues in the final ceramic. The porous HA samples were fully characterized by FTIR, XRD, ESEM (EDX), and optical microscopy.  相似文献   

16.
17.
It has repeatedly been shown that demineralization improves the ability of bone auto- and allografts to regenerate natural bone tissue. Conversely, much work in the field of bone tissue engineering has used composite materials consisting of a mineralized phase or materials designed to mineralize rapidly in situ. In this review, we seek to examine these disparate roles of mineralization and the underlying factors that cause this discordance and to examine methods and principles of the mineralization of synthetic polymer scaffolds. Biomimetic approaches to mineralization and phosphorus-containing materials are highlighted, and a brief section focusing on drug-delivery strategies using mineralized scaffolds is included.  相似文献   

18.
In this study, poly (L-lactic acid) (PLLA)/trifluoroethanol (TFE) solution was electrospun to fabricate fibrous scaffolds with different fiber orientations. Random and parallel PLLA nanofiber alignments were achieved by using a metal plate and a rolling rod as the receiver, respectively. The parallel PLLA fibrous scaffolds were further hot-stretched to obtain hyperparallel PLLA fibrous scaffolds. The PLLA fibrous scaffolds were characterized by fiber diameter, interfiber distance, fiber array angle, water contact angle, morphology and mechanical strength. The tensile strength of hyperparallel nano-fibers was approximately 5- and 14-times the parallel and random fibers, respectively. Osteoblast-like MG63 cells were cultured on the PLLA scaffolds to study the effects of fiber orientation on cell morphology, proliferation and differentiation. The cells on the randomly-oriented scaffolds showed irregular forms, while the cells exhibited shuttle-like shapes on the parallel scaffolds and had larger aspect ratios along the fiber direction of the hyperparallel scaffolds. Alkaline phosphatase (ALP) activity and collagen I (placeStateCol I) and osteocalcin (OC) deposition exhibited fiber orientation dependence. With an increase in parallelism of the fibers, there was a decrease in ALP activity and placeStateCol I and OC production. These results suggest that exploitation of PLLA fiber orientation may be used to control osteoblast-like cell responses.  相似文献   

19.
目的:研究强磁重力环境对MG63成骨样细胞钙离子浓度和钙离子下游信号分子表达的影响。方法:利用大梯度强磁场提供μg(12T),1g(16T)和2g(12T)三组不同强磁重力复合环境处理MG63成骨样细胞后,经Fluo-3/AM标记的细胞用激光共聚焦显微镜检测处理0.5 h对细胞胞内游离钙离子浓度([Ca2+]i)的影响;用Western blot检测处理3 h对钙调蛋白(CaM)和肌球蛋白轻链激酶(MLCK)表达以及钙离子/钙调蛋白依赖蛋白激酶Ⅱ(CaMKⅡ)活性的变化。结果:钙离子浓度检测结果表明,与对照组细胞(1 g,地磁)相比,1 g(16 T)组细胞Fluo-3荧光强度增加,结果显示强磁场导致[Ca2+]i增加;与2 g(12 T)组相比,μg(12 T)组细胞Fluo-3荧光强度下降,结果显示模拟失重导致[Ca2+]i降低,抑制钙离子信号。蛋白质表达的检测结果表明,与对照组相比,1 g组细胞CaM和MLCK表达以及CaMKⅡ活性没有明显变化;与2 g(12 T)组相比,μg(12 T)组细胞CaM表达以及CaMK活性下降,结果显示模拟失重抑制CaM/CaMKⅡ信号。结论:强磁场导致MG63成骨样细胞胞内游离钙离子浓度增加,模拟失重抑制成骨样细胞钙离子/钙调蛋白信号。  相似文献   

20.
Different scaffolds have been designed for ligament tissue engineering. Knitted scaffolds of poly-L-lactic acid (PLLA) yarns and co-polymeric yarns of PLLA and poly(glycolic acid) (PLGA) were characterized in the current study. The knitted scaffolds were immersed in medium for 20 weeks, before mass loss, molecular weight, pH value change in medium were tested; changes in mechanical properties were evaluated at different time points. Results showed that the knitted scaffolds had 44% porosity. There was no significant pH value change during degradation, while there was obvious mass loss at initial 4 week, as well as smooth molecular weight drop of PLLA. PLGA degraded more quickly, while PLLA kept its integrity for at least 20 weeks. Young's modulus increased while tensile strength and strain at break decreased with degradation time; however, all of them could maintain the basic requirements for ACL reconstruction. It showed that the knitted polymeric structures could serve as potential scaffolds for tissue-engineered ligaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号