首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of the present studies was to investigate the behavioral and convulsant effects produced by the group I metabotropic glutamate receptor agonist (S)-3,5-dihydroxyphenylglycine (DHPG). Administered i.c.v. to mice, (S)-3,5-DHPG produced a behavioral syndrome consisting of scratching and/or facial grooming, tremors, slow forelimb clonus, rearing, and falling that increased over the dose range of 10-400 nmol. The full syndrome, produced by 400 nmol of (S)-3,5-DHPG, was antagonized by the selective mGlu1 receptor antagonist LY456236 but not by the mGlu5 receptor antagonist MPEP or the mGlu2/3 receptor antagonist LY341495. The behaviors induced by the 400 nmol dose were not blocked by the NMDA receptor antagonist MK-801, but were attenuated by the non-NMDA receptor antagonists GYKI 52466 and NBQX, and the Ca2+ mobilization inhibitor dantrolene, but at motor-impairing doses. The scratching behaviors produced by 30 nmol of (S)-3,5-DHPG were antagonized by LY456236 but not by MPEP, LY341495 or MK-801. GYKI 52466 and dantrolene, but not NBQX, inhibited scratching at motor-impairing doses. Both 400 and 30 nmol of (S)-3,5-DHPG produced a generalized seizure as recorded by surface EEG electrodes. LY456236 blocked the seizures produced by 30 nmol but not by 400 nmol; dantrolene was ineffective in blocking seizures produced by either dose. The present findings suggest that (S)-3,5-DHPG produces an increase in excitation that is mediated by mGlu1 and non-NMDA receptors.  相似文献   

2.
The effects of mGlu1 and mGlu5 receptor activation on the depolarization-evoked release of [(3)H]d-aspartate ([(3)H]d-ASP) from mouse cortical synaptosomes were investigated. The mGlu1/5 receptor agonist 3,5-DHPG (0.1-100muM) potentiated the K(+)(12mM)-evoked [(3)H]d-ASP overflow. The potentiation occurred in a concentration-dependent manner showing a biphasic pattern. The agonist potentiated [(3)H]d-ASP exocytosis when applied at 0.3muM; the efficacy of 3,5-DHPG then rapidly declined and reappeared at 30-100muM. The fall of efficacy of agonist at intermediate concentration may be consistent with 3,5-DHPG-induced receptor desensitization. Facilitation of [(3)H]d-ASP exocytosis caused by 0.3muM 3,5-DHPG was prevented by the selective mGlu5 receptor antagonist MPEP, but was insensitive to the selective mGlu1 receptor antagonist CPCCOEt. In contrast, CPCCOEt prevented the potentiation by 50muM 3,5-DHPG, while MPEP had minimal effect. Unexpectedly, LY 367385 antagonized both the 3,5-DHPG-induced effects. A total of 0.3muM 3,5-DHPG failed to facilitate the K(+)-evoked [(3)H]d-ASP overflow from mGlu5 receptor knockout (mGlu5(-/-)) cortical synaptosomes, but not from nerve terminals prepared from the cortex of animals lacking the mGlu1 receptors, the crv4/crv4 mice. On the contrary, 50muM 3,5-DHPG failed to affect the [(3)H]d-ASP exocytosis from cortical synaptosomes obtained from crv4/crv4 and mGlu5(-/-)mice. Western blot analyses in subsynaptic fractions support the existence of both mGlu1 and mGlu5 autoreceptors located presynaptically, while immunocytochemistry revealed their presence at glutamatergic terminals. We propose that mGlu1 and mGlu5 autoreceptors exist on mouse glutamatergic cortical terminals; mGlu5 receptors may represent the "high affinity" binding sites for 3,5-DHPG, while mGlu1 autoreceptors represent the "low affinity" binding sites.  相似文献   

3.
Previous studies have shown that 5-hydroxytryptamine(2A) (5-HT(2A)) receptor activation induces changes in the pattern of brain-derived neurotrophic factor (BDNF) mRNA expression in the neocortex and hippocampus, and that 5-HT(2A) receptor blockade interferes with the induction of BDNF mRNA by stress. Recent studies have also shown that activation of metabotropic glutamate group II (mGlu2/3) receptors suppresses 5-HT(2A) receptor-stimulated excitatory postsynaptic potentials/currents (EPSP/Cs) in pyramidal neurons in medial prefrontal cortex. Conversely, blockade of mGlu2/3 receptors enhances 5-HT-induced EPSCs. The current study examined the effects of the highly selective mGlu2/3 agonist (1S,2S,5R,6S)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylate monohydrate (LY354740) and the mGlu2/3 antagonist 2S-2-amino-2-(1S,2S-2-carboxycycloprop-1-yl)-3(xanthy-9-yl)propanoic acid (LY341495) on BDNF mRNA expression in medial prefrontal cortex induced by the hallucinogen and 5-HT(2A/2B/2C) agonist 1-(2,5-dimethoxy-4-iodophenethyl)-2-aminopropane (DOI). LY354740 (0.1-10 mg/kg) dose-dependently suppressed DOI-induced BDNF mRNA levels in medial prefrontal cortex. In contrast, the mGlu2/3 antagonist LY341495 (1 mg/kg) enhanced DOI-induced BDNF mRNA levels. BDNF mRNA expression was not altered by administration of the mGlu agonist or the antagonist alone. These results are discussed with respect to a potential role for group II mGlu agonists in the treatment of depression and schizophrenia.  相似文献   

4.
1. We have investigated the pharmacological properties of LY344545, a structurally related epimer of the broad spectrum competitive metabotropic glutamate receptor antagonist, LY341495. We have found that LY344545 also antagonizes competitively nearly all mGlu receptor subtypes, but with a wide spectrum of activity. The order of potency for the human receptor isoforms was mGlu(5a) (IC(50) of 5. 5+/-0.6 microM)>mGlu(2)=mGlu(3)>mGlu(1alpha)=mG lu(7)>mGlu(6)=mGlu(8). No significant mGlu(4) receptor antagonist activity was detected at the highest concentration used (100 microM). 100 microM LY344545 displaced 50+/-5% of [(3)H]-CGP39653 binding, but less than 30% of [(3)H]-kainate or [(3)H]-AMPA in radioligand binding assays. 2. LY344545 antagonized L-glutamate stimulated Ca(2+) release in CHO cells transfected with mGlu receptors in a concentration dependent manner with a 10 fold higher affinity for the rat mGlu(5a) receptor (K:(i)=2.1+/-0.6 microM) compared to the rat mGlu(1alpha) receptor (K:(i)=20.5+/-2.1 microM). 50 microM (1S, 3R)-ACPD-induced Ca(2+) rises in hippocampal CA1 neurones were also antagonized (IC(50)=6. 8+/-0.7 microM). 3. LY344545 antagonized 10 microM (S)-3,5-DHPG-induced potentiation of NMDA depolarizations in CA1 neurones (EC(50)=10. 6+/-1.0 microM). At higher concentrations (> or =100 microM), LY344545 was an NMDA receptor antagonist. 4. LY344545 also blocked the induction, but not the expression, of LTP at CA3 to CA1 synapses with an IC(50)>300 microM. This effect is consistent with its weak activity at NMDA receptors. 5. These results demonstrate that the binding of ligands to mGlu receptor subtypes is critically dependent on the spatial orientation of the same molecular substituents within a given chemical pharmacophore. The identification of LY344545 as the first competitive antagonist to show selectivity towards mGlu(5) receptors supports the potential to design more selective and potent competitive antagonists of this receptor. 6. These results further indicate that mGlu receptor-mediated potentiation of NMDA responses is not essential for the induction of LTP.  相似文献   

5.

Rationale

α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor stimulation has been proposed to be a common neural mechanism of metabotropic glutamate 2/3 (mGlu2/3) receptor antagonists and an N-methyl-D-aspartate receptor antagonist, ketamine, exerting antidepressant effects in animal models. AMPA receptor stimulation has also been shown to mediate an increase in the extracellular level of serotonin (5-HT) in the medial prefrontal cortex by an mGlu2/3 receptor antagonist in rats. However, involvement of the serotonergic system in the actions of mGlu2/3 receptor antagonists and ketamine is not well understood.

Objectives

We investigated involvement of the serotonergic system in the effects of an mGlu2/3 receptor antagonist, 2S-2-amino-2-(1S,2S-2-carboxycycloprop-1-yl)-3-(xanth-9-yl)propanoic acid (LY341495), and ketamine in a novelty-suppressed feeding (NSF) test in mice.

Results

The intraperitoneal administration of LY341495 or ketamine at 30 min prior to the test significantly shortened latency to feed, which was attenuated by an AMPA receptor antagonist, 2,3-dioxo-6-nitro-1,2,3,4-tetrahydr­obenzo[f]quinoxaline-7-sulfonamide (NBQX). The effects of LY341495 and ketamine were no longer observed in mice pretreated with a tryptophan hydroxylase inhibitor, para-chlorophenylalanine (PCPA). Moreover, the effects of LY341495 and ketamine were blocked by a 5-HT1A receptor antagonist, N-{2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl}-N-(2-pyridynyl) cyclohexane-carboxamide (WAY100635), but not by a 5-HT2A/2C receptor antagonist, ritanserin. Likewise, an AMPA receptor potentiator, 2,3-dihydro-1,4-benzodioxin-7-yl-(1-piperidyl)methanone (CX546), shortened latency to feed in the NSF test, which was prevented by depletion of 5-HT and blockade of 5-HT1A receptor.

Conclusions

These results suggest that AMPA receptor-dependent 5-HT release and subsequent 5-HT1A receptor stimulation may be involved in the actions of an mGlu2/3 receptor antagonist and ketamine in the NSF test.  相似文献   

6.
(-)-4-Amino-2-thiabicyclo-[3.1.0]hexane-4,6-dicarboxylate (LY389795, (-)-3) is a highly potent and selective agonist of metabotropic glutamate receptors 2 (mGlu2) and 3 (mGlu3). As part of our ongoing research program, we have prepared S-oxidized variants of (-)-3, compounds (-)-10, (+)-11 (LY404040), and (-)-12 (LY404039). Each of these chiral heterobicyclic amino acids displaced specific binding of the mGlu2/3 receptor antagonist 3H-2S-2-amino-2-(1S,2S-2-carboxycycloprop-1-yl)-3-(xanth-9-yl)propanoic acid (3H-LY341495) from membranes expressing recombinant human mGlu2 or mGlu3 and acted as potent agonists in cells expressing these receptor subtypes. Docking of the most potent of these derivatives, (+)-11, to mGlu2 revealed the possibility of an additional H-bond interaction between the sulfoxide oxygen of (+)-11 with tyrosine residue Y236. Pharmacokinetic analysis of mGlu active enantiomers (+)-11 and (-)-12 in rats showed each to be well absorbed following oral administration. Consistent with their mGlu2/3 agonist potency and pharmacokinetic properties, both (+)-11 and (-)-12 blocked phencyclidine-evoked ambulations in a dose-dependent manner, indicating their potential as nonclassical antipsychotic agents.  相似文献   

7.
LY354740 (1) is a highly potent and selective agonist of metabotropic glutamate (mGlu) receptors 2 and 3. In the present study, we have prepared C3- and C4-methyl-substituted variants of rac-1, compounds 5, 9, and 13. Each of these racemic methyl-substituted analogues displaced specific binding of the mGlu2/3 receptor antagonist (3)H-2S-2-amino-2-(1S,2S-2-carboxycycloprop-1-yl)-3-(xanth-9-yl)propanoic acid ((3)H-LY341495) from membranes expressing mGlu2 or mGlu3 receptor subtypes. Evaluation of the functional effects of this series on second messenger responses in cells expressing human mGlu2 or mGlu3 receptors revealed C3beta-methyl analogue 5 to possess antagonist properties at both mGlu2 and mGlu3 receptors while C4beta-methyl analogue 9 acts as a full agonist at each of these targets. Unexpectedly, we found that incorporation of a methyl substituent at the C4alpha-position as in analogue 13 results in a mixed mGlu2 agonist/mGlu3 antagonist pharmacological profile. All of the mGlu2 agonist and mGlu3 antagonist activity of rac-13 was found to reside in its resolved (+)-isomer.  相似文献   

8.
Metabotropic glutamate receptor mediated long-term depression (mGlu receptor LTD) is evoked in hippocampal area CA1 chemically by the agonist 3,5-Dihydroxyphenylglycine (DHPG, agonist LTD) and synaptically by paired-pulse low frequency stimulation (PP-LFS, synaptic LTD). We tested the hypothesis that different expression mechanisms regulate mGlu receptor LTD in 15-21 day old rats through neurophysiologic recordings in CA1. Several findings, in fact, suggest that agonist and synaptic mGlu receptor LTD are expressed through different mechanisms. First, neither LTD occluded the other. Second, a low calcium solution enhanced agonist LTD but did not alter synaptic LTD. Third, application of the mGlu receptor antagonist LY341495 (2S-2-amino-2-(1S,2S-2-carboxycyclopropyl-1-yl)-3-(xanth-9-yl)propanoic acid) reversed agonist LTD expression, but did not alter synaptic LTD. Finally, an N-type, voltage-dependent calcium channel antagonist, ω-conotoxin GVIA (CTX), reduced agonist LTD expression by 35%, but did not alter synaptic LTD. CTX also blocked the increase in the paired-pulse ratio associated with agonist LTD. This study cautions against assuming that agonist and synaptic LTD are equivalent as several components underlying their expression appear to differ. Moreover, the data suggest that agonist LTD, but not synaptic LTD, has a presynaptic, N-channel mediated component.  相似文献   

9.
The N-methyl-D-aspartate (NMDA) and metabotropic glutamate (mGlu) receptors are involved in nociceptive transmission in the central nervous system. The present study was designed to study the effects of NMDA and group I mGlu receptor agents on delta- and mu-opioid receptor agonist-induced antinociception in the mouse brain. Intracerebroventricular (i.c.v.) treatment with the non-competitive NMDA receptor antagonist dizocilpine and the group I mGlu receptor antagonist (S)-4-carboxyphenylglycine ((S)-4CPG) significantly attenuated the antinociception induced by the delta-opioid receptor agonists [D-Pen(2), Pen(5)]enkephalin (DPDPE), (-)-TAN 67 and [D-Ala(2)]deltorphin II. On the contrary, i.c.v. administration of dizocilpine and (S)-4CPG slightly but significantly enhanced the antinociception induced by the mu-opioid receptor agonist [D-Ala(2), N-Me-Phe(4), Gly(5)-ol]enkephalin (DAMGO). Under these conditions, i.c.v. administration of NMDA and the group I mGlu receptor agonist 3,5-dihydrophenylglycine (DHPG) significantly enhanced the antinociception induced by delta-opioid receptor agonists, whereas both reduced DAMGO-induced antinociception. These findings suggest that the supraspinal antinociceptive actions of mu- and delta-opioid receptor agonists appear to be modulated differently by NMDA and group I mGlu receptors in the mouse.  相似文献   

10.
Metabotropic glutamate (mGlu) receptors coupled to phospholipase D (PLD) appear to be distinct from any known mGlu receptor subtype linked to phospholipase C or adenylyl cyclase. The availability of antagonists is necessary for understanding the role of these receptors in the central nervous system, but selective ligands have not yet been identified. In a previous report, we observed that 3, 5-dihydroxyphenylglycine (3,5-DHPG) inhibits the PLD response induced by (1S,3R)-1-aminocyclopentane-1,3-dicarboxylate in adult rat hippocampal slices. We now show that the antagonist action of 3, 5-DHPG (IC50 = 70 microM) was noncompetitive in nature and nonselective, because the drug was also able to reduce PLD activation elicited by 100 microM norepinephrine and 1 mM histamine. In the search for a selective and more potent antagonist, we examined the effects of sixteen stereoisomers of 2-(2'-carboxy-3'-phenylcyclopropyl)glycine (PCCG) on the PLD-specific transphosphatidylation reaction resulting in the formation of [3H]phosphatidylethanol. The (2R,1'S,2'R,3'S)-PCCG stereoisomer (PCCG-13) antagonized the formation of [3H]phosphatidylethanol induced by 100 microM (1S, 3R)-1-aminocyclopentane-1,3-dicarboxylate in a dose-dependent manner and with a much lower IC50 value (25 nM) compared with 3,5-DHPG. In addition, increasing concentrations of PCCG-13 were able to shift to the right the agonist dose-response curve but had no effect when tested on other receptors coupled to PLD. The potent, selective, and competitive antagonist PCCG-13 may represent an important tool for elucidating the role of PLD-coupled mGlu receptors in adult hippocampus.  相似文献   

11.
In order to investigate the involvement of mGlu1 and mGlu5 metabotropic glutamate receptors in the development of postischemic neuronal death, we examined the effects of selective agonists and antagonists in models of cerebral ischemia in vitro and in vivo. In murine cortical cell cultures and rat organotypic hippocampal slices exposed to oxygen and glucose deprivation (OGD), the mGlu1 antagonists 1-aminoindan-1,5-dicarboxylic acid (AIDA; 300 microM), (S)-(+)-2-(3'-carboxybicyclo[1.1.1]pentyl)-glycine (CBPG; 300 microM), 7-hydroxyiminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester (CPCCOEt; 10-30 microM) and (+)-2-methyl-4-carboxyphenylglycine (LY367385; 30-100 microM) reduced neuronal loss when added to the medium during OGD and the subsequent 24-h recovery period. On the contrary, the potent and selective mGlu5 antagonist methyl-6-(phenylethynyl)-pyridine (MPEP; 0.1-1 microM) did not exhibit neuroprotection in any of these in vitro models. Incubation with the nonselective mGlu1 and mGlu5 agonist 3,5-dihydroxyphenylglycine (3,5-DHPG; 300 microM) but not with the mGlu5 agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG; 1 mM) enhanced the severity of OGD-induced neuronal damage. In gerbils subjected to global ischemia, intracerebroventricular administration of AIDA (100 nmol two times) or CBPG (300 nmol, two times) afforded consistent protection against CA1 pyramidal cell death, whereas MPEP (10 pmol i.c.v two times and 10 mg/kg i.p two times) failed to reduce postischemic hippocampal damage. Our results suggest that activation of mGlu1 but not mGlu5 receptor contributes to postischemic neuronal injury.  相似文献   

12.
Recent studies have shown that a brief ‘pre-conditioning' ischaemic insult reduces the hippocampal cell death caused by a subsequent more severe test insult. In the present studies, we have examined the effects of the non-competitive NMDA receptor antagonist ((5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine, MK-801) a competitive NMDA receptor antagonist, LY202157, AMPA receptor antagonist ((3S,4aR,6R,8aR)-6-[2-(1(2)H-tetrazole-5-yl)]decahydroisoquinoline-3-carboxylic acid, LY293558), a non-competitive AMPA receptor antagonist ((−)-1-(4-amino-phenyl)-4-methyl-7,8-methylenedioxy-4,5-dihydro-3-acetyl-2,3-benzodiazepine, LY300164), and a mixed NMDA/AMPA receptor antagonist, LY246492, in a gerbil model of ischaemic tolerance. Ischaemic tolerance was induced by subjecting gerbils to a 2-min ‘pre-conditioning' ischaemia (bilateral carotid occlusion) 2 days prior to a 3-min test ischaemia. The effects of MK-801 (2 mg/kg i.p.), LY293558 (20 mg/kg i.p., followed by 4×10 mg/kg at 3 h intervals), LY300164 (4×10 mg/kg i.p. at 1 h intervals), LY246492 (40 mg/kg i.p., followed by 4×20 mg/kg i.p. at 3 h intervals) and LY202157 (30 mg/kg i.p., followed by 4×15 mg/kg i.p. at 2 h intervals) were then examined in this model. Initial dosing commenced 30 min prior to the 2-min ‘pre-conditioning' ischaemia. Results indicated that a 2-min ‘pre-conditioning' ischaemia produced ischaemic tolerance in all cases. The non-competitive NMDA receptor antagonist, MK-801, produced a significant (P<0.01) reduction in the induced tolerance, while the competitive NMDA receptor antagonist, LY202157, also attenuated (P<0.05) the induction of tolerance. In contrast, two AMPA receptor antagonists (LY293558 and LY300164) and a mixed NMDA/AMPA receptor antagonist (LY246492) had no effect on the induction of tolerance. These results suggest that NMDA receptor activation, but not AMPA receptor activation is involved in the phenomenon of ischaemic tolerance.  相似文献   

13.
Koike H  Iijima M  Chaki S 《Neuropharmacology》2011,61(8):1419-1423
Growing evidence has indicated that the blockade of group II metabotropic glutamate (mGlu2/3) receptor exerts antidepressant-like effects in several animal models of depression. However, the molecular mechanisms underlying the action of mGlu2/3 receptor antagonists are not well understood. Here, we investigated the involvement of mammalian target of rapamycin (mTOR) signaling in the acute and sustained antidepressant-like effects of mGlu2/3 receptor antagonists such as (1R, 2R, 3R, 5R, 6R)-2-amino-3-(3,4-dichlorobenzyloxy)-6-fluorobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (MGS0039) and (2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495).Mice were subjected to a tail suspension test (TST) to assess the acute and sustained antidepressant-like effects. We evaluated the effect of rapamycin, an mTOR antagonist, on the acute and sustained antidepressant-like effects of mGlu2/3 receptor antagonists.Both MGS0039 and LY341495 exerted antidepressant-like effects, as evaluated using the TST; these effects were sustained for 24 h. Pretreatment with rapamycin blocked the sustained, but not the acute, antidepressant-like effects of mGlu2/3 receptor antagonists, as observed in ketamine.The present result suggests that the blockade of the mGlu2/3 receptor may activate mTOR signaling, and that the activation of mTOR signaling may contribute to the sustained antidepressant-like effects of mGlu2/3 receptor antagonists.  相似文献   

14.
1. The group II metabotropic glutamate (mGlu) receptor antagonist (2S,1'S,2'S)-2-(2-carboxycyclopropyl)-2-(9H-xanthen-9-yl)glycine (LY341495) also has activity at group I and III mGlu receptors at higher concentrations and can be used to discriminate between mGlu receptor subtypes. We report the antagonist action of LY341495 on glutamate receptors expressed in the neonatal rat spinal cord preparation and the use of this antagonist to investigate the group III mGlu receptor subtypes responsible for mediating the depression of synaptic transmission in the spinal cord mediated by the group III mGlu receptor agonists (S)-2-amino-4-phosphonobutanoic acid ((S)-AP4) and (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid (ACPT-I). 2. LY341495 antagonised mGlu receptor agonist-induced responses in the spinal cord with a rank order of potency of group II > group III > group I, which is the same as that observed in human cloned mGlu receptor cell lines. Antagonism of group II and III mGlu receptor-mediated effects were time dependent when low-nanomolar concentrations of LY341495 were used. Although the rank order of potency of LY341495 was the same on native rat and cloned human mGlu receptors, there was a compression in the selectivity between group II and III mGlu receptors, expressed in the spinal cord. 3. In agreement with a previous study on cloned ionotropic glutamate receptors 100 microM LY341495 had little or no effect on N-methyl-D-aspartate, (S)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl) propionic acid or kainate receptor-mediated responses on motoneurones. 4. LY341495 exhibited low-nanomolar potency antagonist activity against (S)-AP4 and ACPT-I suggesting that these agonists are activating predominantly mGlu8 and that mGlu4 receptors do not play a role in modulating synaptic transmission in the pathways stimulated in the experiments described here.  相似文献   

15.
In the present study we have examined the role of presynaptic group I metabotropic glutamate (mGlu) receptors in the control of neuronal glutamate release using rat forebrain slices pre-loaded with [(3)H]D-aspartate. We have also addressed the question of which group I mGlu receptor subtype, mGlu(1) or mGlu(5), mediates the facilitatory response observed by the use of a range of established and some more novel agonists and antagonists showing selectivity for these receptors. The electrically-stimulated release of pre-loaded [(3)H]D-aspartate from rat forebrain slices was markedly potentiated by the potent group I mGlu receptor agonist, L-quisqualic acid (L-QUIS), in a concentration-dependent manner (EC(50) 17.31 microM). This response was inhibited by the mGlu receptor antagonists (S)-MCPG (100 microM) and (RS)-MTPG (100 microM) but not by the AMPA-type ionotropic glutamate receptor antagonist, NBQX (100 microM). The selective group I mGlu receptor agonist (S)-3, 5-dihydroxyphenylglycine ((S)-DHPG) also enhanced electrically-stimulated efflux of label, although responses diminished with high (10-100 microM) concentrations of the agonist. Maximum responses were fully restored when (S)-DHPG (10 microM) was applied in the presence of the proposed mGlu(5) receptor desensitization inhibitor, cyclothiazide (10 microM). The positive modulatory response to (S)-DHPG (1 microM) was powerfully inhibited by (S)-MCPG (IC(50) 0.08 microM) but was resistant to the mGlu(1) receptor antagonists, (RS)-AIDA (1-500 microM), CPCCOEt (0.1-100 microM) and (+)-2-methyl-4-carboxyphenylglycine (LY367385) (0.1-10 microM). The recently developed, selective mGlu(5) receptor agonist (RS)-2-chloro-5-hydroxyphenylglycine ((RS)-CHPG) enhanced electrically-stimulated [(3)H]D-aspartate efflux from rat forebrain slices with a similar concentration-response profile to that of (S)-DHPG. Responses to this receptor subtype-selective agonist were also blocked by (S)-MCPG (IC(50) 1.13 microM) but were unaffected by (RS)-AIDA (500 microM), CPCCOEt (100 microM) or LY367385 (10 microM). These results indicate that the positive modulation of neuronal glutamate release seen in the rat forebrain in the presence of group I mGlu receptor agonists is mediated by presynaptically located mGlu(5) glutamate autoreceptors. The pharmacological profile of these receptors appears to be distinct from that of postsynaptic mGlu receptors. Novel antagonists acting at these presynaptic receptors may provide new drugs for the experimental therapy of a range of acute or chronic neurodegenerative disorders.  相似文献   

16.
RATIONALE: Substances acting as agonists of group II mGlu receptors with joint group I mGlu receptor antagonist effects, or group II mGlu receptors agonists, were shown to induce antianxiety-like effect in rats after intrahippocampal administration. OBJECTIVE: The present study was undertaken to establish whether a more selective group I, II, III mGlu receptors agonists/antagonists induce anxiolytic-like effects after injection to the hippocampus. METHODS: (S)-4-Carboxyphenylglycine [(S)-4CPG] and 7-(hydroxyimino)cyclopropan[b]chromen-1alpha-carboxylic ethyl ester (CPCCOEt), selective antagonists at group I mGlu receptors, or (+)1S, 2S, 5R, 6S-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY354740) and (2S, 1'S, 2'S)-2-(carboxycyclopropyl)glycine (L-CCG-I), two selective agonists of group II mGlu receptors, as well as (1S, 2S, 4S, 5S)-2-aminobicyclo[2.1.1]hexane-2,5-dicarboxylic acid-I (ABHxD-I), an agonist at all three groups of mGlu receptors and L-serine-O-phosphate (L-SOP), an agonist at group III mGlu receptors, were used. All compounds were administered into the CA1 region of the dorsal hippocampus. The conflict drinking Vogel test in rats was used to estimate the anxiolytic-like effects of all the compounds. RESULTS: After intrahippocampal administration, both selective group I mGlu receptors antagonists (S)-4CPG and CPCCOEt, as well as the selective agonists of group II mGlu receptors LY 354740 and L-CCG-I, and an agonist of group III mGlu receptors, L-SOP, induced anticonflict effects. CONCLUSION: Selective antagonists of group I mGlu receptors and agonists of group II and group III mGlu receptors exhibit anxiolytic-like activity in the conflict drinking test. It seems that the hippocampus may be one of the brain structures involved in the anticonflict effect of mGlu receptor agonists/antagonists.  相似文献   

17.
Dual orthosteric agonists of metabotropic glutamate 2 (mGlu2) and mGlu3 receptors are being developed as novel antipsychotic agents devoid of the adverse effects of conventional antipsychotics. Therefore, these drugs could be helpful for the treatment of psychotic symptoms associated with Alzheimer's disease (AD). In experimental animals, the antipsychotic activity of mGlu2/3 receptor agonists is largely mediated by the activation of mGlu2 receptors and is mimicked by selective positive allosteric modulators (PAMs) of mGlu2 receptors. We investigated the distinct influence of mGlu2 and mGlu3 receptors in mixed and pure neuronal cultures exposed to synthetic β-amyloid protein (Aβ) to model neurodegeneration occurring in AD. The mGlu2 receptor PAM, N-4'-cyano-biphenyl-3-yl)-N-(3-pyridinylmethyl)-ethanesulfonamide hydrochloride (LY566332), devoid of toxicity per se, amplified Aβ-induced neurodegeneration, and this effect was prevented by the mGlu2/3 receptor antagonist (2S,1'S,2'S)-2-(9-xanthylmethyl)-2-(2'-carboxycyclopropyl)glycine (LY341495). LY566332 potentiated Aβ toxicity regardless of the presence of glial mGlu3 receptors, but it was inactive when neurons lacked mGlu2 receptors. The dual mGlu2/3 receptor agonist, (-)-2-oxa-4-aminobicyclo[3.1.0]exhane-4,6-dicarboxylic acid (LY379268), was neuroprotective in mixed cultures via a paracrine mechanism mediated by transforming growth factor-β1. LY379268 lost its protective activity in neurons grown with astrocytes lacking mGlu3 receptors, indicating that protection against Aβ neurotoxicity was mediated entirely by glial mGlu3 receptors. The selective noncompetitive mGlu3 receptor antagonist, (3S)-1-(5-bromopyrimidin-2-yl)-N-(2,4-dichlorobenzyl)pyrrolidin-3-amine methanesulfonate hydrate (LY2389575), amplified Aβ toxicity on its own, and, interestingly, unmasked a neurotoxic activity of LY379268, which probably was mediated by the activation of mGlu2 receptors. These data indicate that selective potentiation of mGlu2 receptors enhances neuronal vulnerability to Aβ, whereas dual activation of mGlu2 and mGlu3 receptors is protective against Aβ-induced toxicity.  相似文献   

18.
Recent clinical studies reveal that selective agonists of group II metabotropic glutamate (mGlu) receptors have robust efficacy in treating positive and negative symptoms in patients with schizophrenia. Group II mGlu receptor agonists also modulate the in vivo activity of psychotomimetic drugs and reduce the ability of psychotomimetic hallucinogens to increase glutamatergic transmission. Because increased excitation of the medial prefrontal cortex (mPFC) has been implicated in pathophysiology of schizophrenia, the ability of group II mGlu receptor agonists to reduce hallucinogenic drug action in this region is believed to be directly related to their antipsychotic efficacy. A novel class of ligands, termed positive allosteric modulators, has recently been identified, displaying exceptional mGlu2 receptor selectivity. These compounds do not activate mGlu2 receptors directly but potentiate the ability of glutamate and other agonists to activate this receptor. We now report that the mGlu2 receptor-selective positive allosteric modulator biphenyl-indanone A (BINA) modulates excitatory neurotransmission in the mPFC and attenuates the in vivo actions of the hallucinogenic 5-HT(2A/2C) receptor agonist (-)2,5-dimethoxy-4-bromoamphetamine [(-)DOB]. BINA attenuates serotonin-induced increases in spontaneous excitatory postsynaptic currents in the mPFC, mimicking the effect of the mGlu2/3 receptor agonist (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IV). In addition, BINA reduced (-)DOB-induced head twitch behavior and Fos expression in mPFC, effects reversed by pretreatment with the mGlu2/3 receptor antagonist 2S-2-amino-2-(1S,2S-2-carboxycyclopropan-1-yl) -3 - (xanth-9-yl-)propionic acid (LY341495). These data confirm the relevance of excitatory signaling in the mPFC to the behavioral actions of hallucinogens and further support the targeting of mGlu2 receptors as a novel strategy for treating glutamatergic dysfunction in schizophrenia.  相似文献   

19.
Glutamatergic abnormalities are involved in several psychiatric disorders. Clinical evidence demonstrates altered glutamatergic neurotransmission in patients suffering from obsessive-compulsive disorder. MGS0039, (1R,2R,3R,5R,6R)-2-amino-3-(3,4-dichlorobenzyloxy)-6-fluorobicyclo[3.1.0]hexane-2,6-dicarboxylic acid, is a novel group II metabotropic glutamate (mGlu) receptor antagonist. We examined MGS0039's potential anti-obsessive-compulsive disorder activity, using the marble-burying behavior test as a model of obsessive-compulsive disorder. MGS0039 as well as LY341495 ((2S,1'S,2'S)-2-(9-xanthylmethyl)-2-(2'-carboxycycloprolyl)glycine), another group II mGlu receptor antagonist, inhibited marble-burying behavior. We also demonstrated that this effect was significantly attenuated by a group II mGlu receptor agonist. This data indicates that group II mGlu receptor antagonists may exert anti-obsessive-compulsive disorder effects in clinical use.  相似文献   

20.
In the brain, group-III metabotropic glutamate (mGlu) receptors mGlu(4), mGlu(7) and mGlu(8) receptors play a critical role in controlling the release process at many glutamatergic synapses. The pharmacological profile of mGlu(4) receptor has been studied extensively, allowing us to propose a pharmacophore model for this receptor subtype. Surprisingly, the activity of only a few compounds have been reported on mGlu(7) and mGlu(8) receptors. In order to identify new possibilities for the design of selective compounds able to discriminate between the members of the group-III mGlu receptors, we have undertaken a complete pharmacological characterization of mGlu(8) receptor and compared it with that of mGlu(4) receptor, using the same expression system, and the same read out. The activities of 32 different molecules revealed that these two mGlu receptors subtypes share a similar pharmacological profile. Only small differences were noticed in addition to that previously reported with S-carboxyglutamate (S-Gla) being a partial agonist at mGlu(4) receptor and a full antagonist at mGlu(8) receptor. These include: a slightly higher relative potency of the agonists 1S,3R and 1S,3S-aminocyclopentane-1,3-dicarboxylic acid (ACPD), S-4-carboxyphenylglycine (S-4CPG) and S-4-carboxy-3-hydroxyphenylglycine (S-4C3HPG), and a slightly higher potency of the antagonists 2-aminobicyclo[3.1.0]hexane-2, 6-dicarboxylic acid (LY354740) and RS-alpha-methyl-4-phosphonophenylglycine (MPPG) on mGlu(8) receptor. When superimposed on the mGlu(4) receptor pharmacophore model, these molecules revealed three regions that may be different between the ligand binding sites of mGlu(8) and mGlu(4) receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号