首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Flood P  Coates KM 《Anesthesiology》2002,96(4):987-993
BACKGROUND: Droperidol is used in neuroleptanesthesia and as an antiemetic. Although its antiemetic effect is thought to be caused by dopaminergic inhibition, the mechanism of droperidol's anesthetic action is unknown. Because gamma-aminobutyric acid type A (GABAA) and neuronal nicotinic acetylcholine receptors (nAChRs) have been implicated as putative targets of other general anesthetic drugs, the authors tested the ability of droperidol to modulate these receptors. METHODS: gamma-Aminobutyric acid type A alpha1beta1gamma2 receptor, alpha7 and alpha4beta2 nAChRs were expressed in Xenopus oocytes and studied with two-electrode voltage clamp recording. The authors tested the ability of droperidol at concentrations from 1 nm to 100 microm to modulate activation of these receptors by their native agonists. RESULTS: Droperidol inhibited the GABA response by a maximum of 24.7 +/- 3.0%. The IC50 for inhibition was 12.6 +/- 0.47 nm droperidol. At high concentrations, droperidol (100 microm) activates the GABAA receptor in the absence of GABA. Inhibition of the GABA response is significantly greater at hyperpolarized membrane potentials. The activation of the alpha7 nAChR is also inhibited by droperidol, with an IC50 of 5.8 +/- 0.53 microm. The Hill coefficient is 0.95 +/- 0.1. Inhibition is noncompetitive, and membrane voltage dependence is insignificant. CONCLUSIONS: Droperidol inhibits activation of both the GABAA alpha1beta1gamma2 and alpha7 nAChR. The submaximal GABA inhibition occurs within a concentration range such that it might be responsible for the anxiety, dysphoria, and restlessness that limit the clinical utility of high-dose droperidol anesthesia. Inhibition of the alpha7 nAChR might be responsible for the anesthetic action of droperidol.  相似文献   

2.
Background: With the exception of [gamma]-aminobutyric acidA (GABAA) receptors, the major molecular targets underlying the anesthetizing actions of thiopental have yet to be established. Neuronal nicotinic acetylcholine receptors (nAChRs) are closely related to GABAA receptors and hence might also be major targets. If so, they might be expected to be substantially inhibited by surgical concentrations (EC50 = 25 [mu]m) of thiopental and to display the same stereoselectivity as does general anesthesia.

Methods: Neuronal [alpha]4[beta]2, neuronal [alpha]7 and muscle [alpha][beta][gamma][delta] nAChRs were expressed in Xenopus oocytes. Peak acetylcholine-activated currents were measured at -70 mV using the two-electrode voltage clamp technique. Racemic thiopental and its two optical isomers were applied with and without preincubation and at high and low concentrations of acetylcholine.

Results: Inhibition of all three nAChRs was enhanced by preincubation with thiopental, a protocol that mimics the pharmacologic situation in vivo. Using this protocol, inhibition was further enhanced by high concentrations of acetylcholine, with IC50 = 18 +/- 2, 34 +/- 4, and 20 +/- 2 [mu]m (mean +/- SEM) thiopental for the neuronal [alpha]4[beta]2, neuronal [alpha]7 and muscle [alpha][beta][gamma][delta] nAChRs, respectively, with Hill coefficients near unity. Neither the neuronal [alpha]7 nor the muscle [alpha][beta][gamma][delta] nAChR differentiated between the optical isomers of thiopental. However, R (+)-thiopental was significantly more effective than the S (-) isomer at inhibiting the neuronal [alpha]4[beta]2 nAChR; interestingly, this is diametrically opposite to their stereoselectivity for general anesthesia.  相似文献   


3.
Intravenous Anesthetics Differentially Modulate Ligand-gated Ion Channels   总被引:6,自引:0,他引:6  
Background: Heteromeric neuronal nicotinic acetylcholine receptors (nAChRs) are potently inhibited by volatile anesthetics, but it is not known whether they are affected by intravenous anesthetics. Ketamine potentiates [gamma]-aminobutyric acid type A (GABAA) receptors at high concentrations, but it is unknown whether there is potentiation at clinically relevant concentrations. Information about the effects of intravenous anesthetics with different behavioral profiles on specific ligand-gated ion channels may lead to hypotheses as to which ion channel effect produces a specific anesthetic behavior.

Methods: A heteromeric nAChR composed of [alpha]4 and [beta]4 subunits was expressed heterologously in Xenopus laevis oocytes. Using the two-electrode voltage clamp technique, peak ACh-gated current was measured before and during application of ketamine, etomidate, or thiopental. The response to GABA of [alpha]1[beta]2[gamma]2s GABAA receptors expressed in human embryonic kidney cells and Xenopus oocytes was compared with and without coapplication of ketamine from 1 [mu]m to 10 mm.

Results: Ketamine caused potent, concentration-dependent inhibition of the [alpha]4[beta]4 nAChR current with an IC50 of 0.24 [mu]m. The inhibition by ketamine was use-dependent; the antagonist was more effective when the channel had been opened by agonist. Ketamine did not modulate the [alpha]1[beta]2[gamma]2s GABAA receptor response in the clinically relevant concentration range. Thiopental caused 27% inhibition of ACh response at its clinical EC50. Etomidate did not modulate the [alpha]4[beta]4 nAChR response in the clinically relevant concentration range, although there was inhibition at very high concentrations.  相似文献   


4.
Background: Previous studies have shown that propofol and sevoflurane enhance the function of [gamma]-aminobutyric acid type A (GABAA) receptors. However, it is not known whether these two drugs modulate the same molecular pathways. In addition, little is known about receptor function in the presence of both propofol and sevoflurane. The aim of this study was to better understand the interactions of propofol and sevoflurane with the GABAA receptor.

Methods: Wild-type [alpha]1, [beta]2, [gamma]2s GABAA receptor subunit complementary DNAs were transfected into human embryonic kidney cells grown on glass coverslips using a calcium phosphate transfection method. After transfection (36-72 h), cells were whole cell patch clamped and exposed to combinations of the following: 0.3-1,000 [mu]m [gamma]-aminobutyric acid (GABA), 0-10 [mu]m propofol, and 0-1,650 [mu]m sevoflurane. Chemicals were delivered to the cells using two 10-channel infusion pumps and a rapid solution exchanger.

Results: Both propofol and sevoflurane alone enhanced the amplitude of GABAA receptor responses to submaximal concentrations of GABA in a dose-dependent manner. The enhancement was underpinned by an increase in the apparent affinity of the receptor for GABA. Coapplication of both anesthetics further enhanced the apparent affinity of the receptor for GABA.  相似文献   


5.
Background: The neuronal mechanisms responsible for dissociative anesthesia remain controversial. N-methyl-D-aspartate (NMDA) receptors are inhibited by ketamine and related drugs at concentrations lower than those required for anesthetic effects. Thus, the authors studied whether ligand-gated ion channels other than NMDA receptors might display a sensitivity to ketamine and dizocilpine that is consistent with concentrations required for anesthesia.

Methods: Heteromeric human neuronal nicotinic acetylcholine receptors (hnAChR channels [alpha]2[beta]2, [alpha]2[beta]4, [alpha]3[beta]2, [alpha]3[beta]4, [alpha]4[beta]2 and [alpha]4[beta]4), 5-hydroxytryptamine3 (5-HT3), [alpha]1[beta]2[gamma]2S[gamma]-aminobutyric acid type A (GABAA) and [alpha]1 glycine receptors were expressed in Xenopus oocytes, and effects of ketamine and dizocilpine were studied using the two-electrode voltage-clamp technique.

Results: Both ketamine and dizocilpine inhibited hnAChRs in a noncompetitive and voltage-dependent manner. Receptors containing [beta]4 subunits were more sensitive to ketamine and dizocilpine than those containing [beta]2 subunits. The inhibitor concentration for half-maximal response (IC50) values for ketamine of hnAChRs composed of [beta]4 subunits were 9.5-29 [mu]M, whereas those of [beta]2subunits were 50-92 [mu]M. Conversely, 5-HT3 receptors were inhibited only by concentrations of ketamine and dizocilpine higher than the anesthetic concentrations. This inhibition was mixed (competitive/noncompetitive). GABAA and glycine receptors were very resistant to dissociative anesthetics.  相似文献   


6.
Background: The general anesthetic etomidate acts via [gamma]-aminobutyric acid type A (GABAA) receptors, enhancing activation at low GABA and prolonging deactivation. Azi-etomidate is a photo-reactive etomidate derivative with similar pharmacological actions, which has been used to identify putative binding sites. The authors examine the irreversible effects of azi-etomidate photo-modification on functional GABAA receptors in cell membranes.

Methods: GABAA receptors ([alpha]1[beta]2[gamma]2L) were expressed in both Xenopus oocytes and human embryonic kidney cells exposed to 365 nm light-activated azi-etomidate with or without GABA, then extensively washed. Receptor-mediated chloride currents were measured using voltage clamp electrophysiology to assess the ratio of peak responses at 10 [mu]m and 1 mm GABA (I10/I1000) and deactivation time course.

Results: After azi-etomidate photo-modification, I10/I1000 ratios were persistently enhanced and deactivation was prolonged, mimicking reversible azi-etomidate actions. Azi-etomidate and ultraviolet light were required to produce irreversible receptor modulation. Adding GABA during photo-modification greatly enhanced irreversible modulation. Azi-etomidate modification also dose-dependently reduced maximal GABA-activated currents, consistent with accumulation of permanently desensitized receptors. Excess etomidate during azi-etomidate photo-modification competitively reduced permanent desensitization. Persistent channel modulation was blocked by 320-fold excess etomidate but enhanced when 32-fold excess etomidate was present.  相似文献   


7.
Background: Previous studies have shown that specific amino acid residues in the putative second transmembrane segment (TM2) of the [gamma]-aminobutyric acid receptor type A (GABAA) receptor play a critical role in the enhancement of GABAA receptor function by halothane, enflurane, and isoflurane. However, very little is known about the actions of sevoflurane and desflurane on recombinant GABAA receptors. The aim of this study was to examine the effects of sevoflurane and desflurane on potentiation of GABA-induced responses in the wild-type GABAA receptor and in receptors mutated in TM2 of the [alpha]1, [alpha]2, or [beta]2 subunits.

Methods: GABAA receptor [alpha]1 or [alpha]2, [beta]2 or [beta]3, and [gamma]2s subunit cDNAs were expressed for pharmacologic study by transfection of human embryonic kidney 293 cells and assayed using the whole cell voltage clamp technique. Concentration-response curves and EC50 values for agonist were determined in the wild-type [alpha]1[beta]2[gamma]2s and [alpha]2[beta]3[gamma]2s receptors, and in receptors harboring mutations in TM2, such as [alpha]1(S270W)[beta]2[gamma]2s, [alpha]1[beta]2(N265W)[gamma]2s, and [alpha]2(S270I)[beta]3[gamma]2s. The actions of clinically relevant concentration of volatile anesthetics (isoflurane, sevoflurane, and desflurane) on GABA activated Cl- currents were compared in the wild-type and mutant GABAA receptors.

Results: Both sevoflurane and desflurane potentiated submaximal GABA currents in the wild-type GABAA [alpha]1[beta]2[gamma]2s receptor and [alpha]2[beta]3[gamma]2s receptor. Substitution of Ser270 in TM2 of the [alpha] subunit by a larger amino acid, tryptophan (W) or isoleucine (I), as in [alpha]1(S270W)[beta]2[gamma]2s and [alpha]2(S270I)[beta]3[gamma]2s, completely abolished the potentiation of GABA-induced currents by these anesthetic agents. In contrast, mutation of Asn265 in TM2 of the [beta] subunit to tryptophan (W) did not prevent potentiation of GABA-induced responses. The actions of sevoflurane and desflurane in the wild-type receptor and in mutated receptors were qualitatively and quantitatively similar to those observed for isoflurane.  相似文献   


8.
Intravenous anesthetics differentially modulate ligand-gated ion channels   总被引:9,自引:0,他引:9  
Flood P  Krasowski MD 《Anesthesiology》2000,92(5):1418-1425
BACKGROUND: Heteromeric neuronal nicotinic acetylcholine receptors (nAChRs) are potently inhibited by volatile anesthetics, but it is not known whether they are affected by intravenous anesthetics. Ketamine potentiates gamma-aminobutyric acid type A (GABAA) receptors at high concentrations, but it is unknown whether there is potentiation at clinically relevant concentrations. Information about the effects of intravenous anesthetics with different behavioral profiles on specific ligand-gated ion channels may lead to hypotheses as to which ion channel effect produces a specific anesthetic behavior. METHODS: A heteromeric nAChR composed of alpha4 and beta4 subunits was expressed heterologously in Xenopus laevis oocytes. Using the two-electrode voltage clamp technique, peak ACh-gated current was measured before and during application of ketamine, etomidate, or thiopental. The response to GABA of alpha1beta2gamma2s GABAA receptors expressed in human embryonic kidney cells and Xenopus oocytes was compared with and without coapplication of ketamine from 1 microm to 10 mm. RESULTS: Ketamine caused potent, concentration-dependent inhibition of the alpha4beta4 nAChR current with an IC50 of 0.24 microm. The inhibition by ketamine was use-dependent; the antagonist was more effective when the channel had been opened by agonist. Ketamine did not modulate the alpha1beta2gamma2s GABAA receptor response in the clinically relevant concentration range. Thiopental caused 27% inhibition of ACh response at its clinical EC50. Etomidate did not modulate the alpha4beta4 nAChR response in the clinically relevant concentration range, although there was inhibition at very high concentrations. CONCLUSIONS: The alpha4beta4 nAChR, which is predominantly found in the central nervous system (CNS), is differentially affected by clinically relevant concentrations of intravenous anesthetics. Ketamine, commonly known to be an inhibitor at the N-methyl-D-aspartate receptor, is also a potent inhibitor at a central nAChR. It has little effect on a common CNS GABAA receptor in a clinically relevant concentration range. Interaction between ketamine and specific subtypes of nAChRs in the CNS may result in anesthetic behaviors such as inattention to surgical stimulus and in analgesia. Thiopental causes minor inhibition at the alpha4beta4 nAChR. Modulation of the alpha4beta4 nAChR by etomidate is unlikely to be important in anesthesia practice based on the insensitivity of this receptor to clinically used concentrations.  相似文献   

9.
Background: A major action of volatile anesthetics is enhancement of [gamma]-aminobutyric acid receptor type A (GABAAR) currents. In recombinant GABAARs consisting of several subunit mixtures, mutating the [alpha]1 subunit serine at position 270 to isoleucine [[alpha]1(S270I)] was reported to eliminate anesthetic-induced enhancement at low GABA concentrations. In the absence of studies at high GABA concentrations, it remains unclear whether [alpha]1(S270I) affects enhancement versus inhibition by volatile anesthetics. Furthermore, the majority of GABAARs in mammalian brain are thought to consist of [alpha]1, [beta]2, and [gamma]2 subunits, and the [alpha]1(S270I) mutation has not been studied in the context of this combination.

Methods: Recombinant GABAARs composed of [alpha]1[beta]2 or [alpha]1[beta]2[gamma]2L subunit mixtures were studied electrophysiologically in whole Xenopus oocytes in the voltage clamp configuration. Currents elicited by GABA (0.03 [mu]m to 1 mm) were measured in the absence and presence of isoflurane or halothane. Anesthetic effects on GABA concentration responses were evaluated for individual oocytes.

Results: In wild-type [alpha]1[beta]2[gamma]2L GABAA, anesthetics at approximately 2 minimum alveolar concentration (MAC) shifted GABA concentration response curves to the left approximately threefold, decreased the Hill coefficient, and enhanced currents at all GABA concentrations. The [alpha]1(S270I) mutation itself rendered the GABAAR more sensitive to GABA and reduced the Hill coefficient. At low GABA concentrations (EC5), anesthetic enhancement of peak current was much smaller in [alpha]1(S270I)[beta]2[gamma]2Lversus wild-type channels. Paradoxically, the leftward shift of the whole GABA concentration-response relation by anesthetics was the same in both mutant and wild-type channels. At high GABA concentrations, volatile anesthetics reduced currents in [alpha]1(S270I)[beta]2[gamma]2L GABAARs. In parallel studies on [alpha]1[beta]2 ([gamma]-less) GABAARs, anesthetic-induced leftward shifts in wild-type receptors were more than eightfold at 2 MAC, and the [alpha]1(S270I) mutation nearly eliminated anesthetic-induced leftward shift.  相似文献   


10.
Background: Volatile anesthetics prolong inhibitory postsynaptic potentials in central neurons via an allosteric action on the [gamma]-aminobutyric acid type A (GABAA) receptor, an effect that may underlie the hypnotic actions of these agents. Inhaled anesthetics such as isoflurane act to enhance responses to submaximal concentrations of GABA, but it is not clear whether their effect is mediated by an increase in the binding of the agonist or by changes in receptor gating behavior. To address this question, the authors studied the effects of isoflurane on a mutant GABAA receptor with a gating defect that decreases receptor sensitivity by lowering agonist efficacy. They then compared the effects of clinically relevant concentrations of isoflurane on the actions of GABA and piperidine-4-sulfonic acid (P4S), a partial agonist at the GABAA receptor.

Methods: The authors created a mutant of the GABAA receptor [alpha]1 subunit (L277A) by site-directed mutagenesis. The mutant subunit was coexpressed with [beta]2 and [gamma]2S subunits in HEK293 cells, and responses to GABA and P4S were recorded using the whole-cell patch clamp technique. EC50 values were determined for the full agonist GABA and the partial agonist P4S. The authors also determined the relative efficacy ([epsilon]) of P4S. These measurements were then repeated in the presence of isoflurane.

Results: The concentration-response curve for GABA was shifted to the right (EC50 = 278 [mu]m) in the [alpha]1(L277A)[beta]2[gamma]2S mutant receptor, compared with the corresponding wild-type [alpha]1[beta]2[gamma]2S GABAA receptor (EC50 = 16 [mu]m). P4S is a partial agonist at both receptors, with a dramatically decreased relative efficacy at the mutant receptor ([epsilon] = 0.24). When the mutant receptor was studied in the presence of isoflurane, the concentration-response curves for both GABA and P4S were shifted to the left (EC50 for GABA = 78 [mu]m); the efficacy of P4S also increased significantly ([epsilon] = 0.40).  相似文献   


11.
Background: The cardiac safety of droperidol given at antiemetic doses is a matter of debate. Although droperidol potently inhibits human ether-a-go-go-related gene (HERG) channels, the molecular mode of this interaction is unknown. The role of amino acid residues typically mediating high-affinity block of HERG channels is unclear. It is furthermore unresolved whether droperidol at antiemetic concentrations induces action potential prolongation and arrhythmogenic early afterdepolarizations in cardiac myocytes.

Methods: Molecular mechanisms of HERG current inhibition by droperidol were established using two-electrode voltage clamp recordings of Xenopus laevis oocytes expressing wild-type and mutant channels. The mutants T623A, S624A, V625A, Y652A, and F656A were generated by site-directed mutagenesis. The effect of droperidol on action potentials was investigated in cardiac myocytes isolated from guinea pig hearts using the patch clamp technique.

Results: Droperidol inhibited currents through HERG wild-type channels with a concentration of half-maximal inhibition of 0.6-0.9 [mu]m. Droperidol shifted the channel activation and the steady state inactivation toward negative potentials while channel deactivation was not affected. Current inhibition increased with membrane potential and with increasing duration of current activation. Inhibition of HERG channels was similarly reduced by all mutations. Droperidol at concentrations between 5 and 100 nm prolonged whereas concentrations greater than 300 nm shortened action potentials. Early afterdepolarizations were not observed.  相似文献   


12.
Background: Positive modulation of [gamma]-aminobutyric acid type A (GABAA) receptor function is recognized as an important component of the central nervous system depressant effects of many general anesthetics, including propofol. The role for GABAA receptors as an essential site in the anesthetic actions of propofol was recently challenged by a report that the propofol analog 4-iodopropofol (4-iodo-2,6-diisopropylphenol) potentiated and directly activated GABAA receptors, yet was devoid of sedative-anesthetic effects in rats after intraperitoneal injection. Given the important implications of these findings for theories of anesthesia, the authors compared the effects of 4-iodopropofol with those of propofol using established in vivo and in vitro assays of both GABAA receptor-dependent and -independent anesthetic actions.

Methods: The effects of propofol and 4-iodopropofol were analyzed on heterologously expressed recombinant human GABAA [alpha]1[beta]2[gamma]2 receptors, evoked population spike amplitudes in rat hippocampal slices, and glutamate release from rat cerebrocortical synaptosomes in vitro. Anesthetic potency was determined by loss of righting reflex in Xenopus laevis tadpoles, in mice after intraperitoneal injection, and in rats after intravenous injection.

Results: Like propofol, 4-iodopropofol enhanced GABA-induced currents in recombinant GABAA receptors, inhibited synaptic transmission in rat hippocampal slices, and inhibited sodium channel-mediated glutamate release from synaptosomes, but with reduced potency. After intraperitoneal injection, 4-iodopropofol did not produce anesthesia in mice, but it was not detected in serum or brain. However, 4-iodopropofol did produce anesthesia in tadpoles (EC50 = 2.5 +/- 0.5 [mu]m) and in rats after intravenous injection (ED50 = 49 +/- 6.2 mg/kg).  相似文献   


13.
BACKGROUND: With the exception of gamma-aminobutyric acidA (GABAA) receptors, the major molecular targets underlying the anesthetizing actions of thiopental have yet to be established. Neuronal nicotinic acetylcholine receptors (nAChRs) are closely related to GABAA receptors and hence might also be major targets. If so, they might be expected to be substantially inhibited by surgical concentrations (EC50 = 25 micrometer) of thiopental and to display the same stereoselectivity as does general anesthesia. METHODS: Neuronal alpha4beta2, neuronal alpha7 and muscle alphabetagammadelta nAChRs were expressed in Xenopus oocytes. Peak acetylcholine-activated currents were measured at -70 mV using the two-electrode voltage clamp technique. Racemic thiopental and its two optical isomers were applied with and without preincubation and at high and low concentrations of acetylcholine. RESULTS: Inhibition of all three nAChRs was enhanced by preincubation with thiopental, a protocol that mimics the pharmacologic situation in vivo. Using this protocol, inhibition was further enhanced by high concentrations of acetylcholine, with IC50 = 18 +/- 2, 34 +/- 4, and 20 +/- 2 micrometer (mean +/- SEM) thiopental for the neuronal alpha4beta2, neuronal alpha7 and muscle alphabetagammadelta nAChRs, respectively, with Hill coefficients near unity. Neither the neuronal alpha7 nor the muscle alphabetagammadelta nAChR differentiated between the optical isomers of thiopental. However, R(+)-thiopental was significantly more effective than the S(-) isomer at inhibiting the neuronal alpha4beta2 nAChR; interestingly, this is diametrically opposite to their stereoselectivity for general anesthesia. CONCLUSIONS: Both central neuronal and peripheral muscle nAChRs can be substantially inhibited by thiopental at surgical EC50 concentrations but with either no stereoselectivity or one opposite to that for general anesthesia. Thus, nAChRs are probably not crucial targets for producing thiopental anesthesia, although nAChRs may play a part in the side effects produced by this agent.  相似文献   

14.
Background: The mechanisms underlying the therapeutic actions of gabapentin remain poorly understood. The chemical structure and behavioral properties of gabapentin strongly suggest actions on inhibitory neurotransmission mediated by [gamma]-aminobutyric acid (GABA); however, gabapentin does not directly modulate GABAA or GABAB receptors. Two distinct forms of GABAergic inhibition occur in the brain: postsynaptic conductance and a persistent tonic inhibitory conductance primarily generated by extrasynaptic GABAA receptors. The aim of this study was to determine whether gabapentin increased the tonic conductance in hippocampal neurons in vitro. As a positive control, the effects of vigabatrin, which irreversibly inhibits GABA transaminase, were also examined.

Methods: GABAA receptors in hippocampal neurons from embryonic mice were studied using whole cell patch clamp recordings. Miniature inhibitory postsynaptic currents and the tonic current were recorded from cultured neurons that were treated for 36-48 h with gabapentin, vigabatrin, or gabapentin and vigabatrin. To determine whether gabapentin increased the expression of GABAA receptors, Western blots were stained with antibodies selective for [alpha]1, [alpha]2, and [alpha]5 subunits.

Results: GABAA receptors were insensitive to the acute application of gabapentin, whereas chronic treatment increased the amplitude of the tonic current threefold (EC50 = 209 [mu]m) but did not influence miniature inhibitory postsynaptic currents. Vigabatrin increased the tonic conductance, and the maximally effective concentration did not occlude the actions of gabapentin, which suggests that these compounds act by different mechanisms. Neither gabapentin nor vigabatrin increased the expression of GABAA receptors in the neurons.  相似文献   


15.
Background: Classic benzodiazepine agonists induce their clinical effects by binding to a site on [gamma]-aminobutyric acid type A (GABAA) receptors and enhancing receptor activity. There are conflicting data regarding whether the benzodiazepine site is allosterically coupled to [gamma]-aminobutyric acid binding versus the channel open-close (gating) equilibrium. The authors tested the hypothesis that benzodiazepine site ligands modulate [alpha]1[beta]2[gamma]2L GABAA receptor gating both in the absence of orthosteric agonists and when the orthosteric sites are occupied.

Methods: GABAA receptors were recombinantly expressed in Xenopus oocytes and studied using two-microelectrode voltage clamp electrophysiology. To test gating effects in the absence of orthosteric agonist, the authors used spontaneously active GABAA receptors containing a leucine-to-threonine mutation at residue 264 on the [alpha]1 subunit. To examine effects on gating when orthosteric sites were fully occupied, they activated wild-type receptors with high concentrations of a partial agonist, piperidine-4-sulfonic acid.

Results: In the absence of orthosteric agonists, the channel activity of [alpha]1L264T[beta]2[gamma]2L receptors was increased by diazepam and midazolam and reduced by the inverse benzodiazepine agonist FG7142. Flumazenil displayed very weak agonism and blocked midazolam from further activating mutant channels. In wild-type receptors activated with saturating concentrations of piperidine-4-sulfonic acid, midazolam increased maximal efficacy.  相似文献   


16.
Background: Ligand-gated ion channels are considered to be potential general anesthetic targets. Although most general anesthetics potentiate the function of [gamma]-aminobutyric acid receptor type A (GABAA), the gaseous anesthetics nitrous oxide and xenon are reported to have little effect on GABAA receptors but inhibit N-methyl-d-aspartate (NMDA) receptors. To define the spectrum of effects of nitrous oxide and xenon on receptors thought to be important in anesthesia, the authors tested these anesthetics on a variety of recombinant brain receptors.

Methods: The glycine, GABAA, GABA receptor type C (GABAC), NMDA, [alpha]-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), kainate, 5-hydroxytryptamine3 (5-HT3), and nicotinic acetylcholine (nACh) receptors were expressed in Xenopus oocytes and effects of nitrous oxide and xenon, and as equipotent concentrations of isoflurane and ethanol, were studied using the two-electrode voltage clamp.

Results: Nitrous oxide (0.58 atmosphere [atm]) and xenon (0.46 atm) exhibited similar effects on various receptors. Glycine and GABAA receptors were potentiated by gaseous anesthetics much less than by isoflurane, whereas nitrous oxide inhibited GABAC receptors. Glutamate receptors were inhibited by gaseous anesthetics more markedly than by isoflurane, but less than by ethanol. NMDA receptors were the most sensitive among glutamate receptors and were inhibited by nitrous oxide by 31%. 5-HT3 receptors were slightly inhibited by nitrous oxide. The nACh receptors were inhibited by gaseous and volatile anesthetics, but ethanol potentiated them. The sensitivity was different between [alpha]4[beta]2 and [alpha]4[beta]4 nACh receptors; [alpha]4[beta]2 receptors were inhibited by nitrous oxide by 39%, whereas [alpha]4[beta]4 receptors were inhibited by 7%. The inhibition of NMDA and nACh receptors by nitrous oxide was noncompetitive and was slightly different depending on membrane potentials for NMDA receptors, but not for nACh receptors.  相似文献   


17.
Background: Barbiturates enhance [gamma]-aminobutyric acid type A (GABAA) receptor function and also inhibit the [alpha]-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subtype of glutamate receptor. The relative contribution of these actions to the behavioral properties of barbiturates is not certain. Because AMPA receptor complexes that lack the GluR2 subunit are relatively insensitive to pentobarbital inhibition, GluR2 null mutant mice provide a novel tool to investigate the importance of AMPA receptor inhibition to the anesthetic effects of barbiturates.

Methods: GluR2 null allele (-/-), heterozygous (+/-), and wild-type (+/+) mice were injected with pentobarbital (30 and 35 mg/kg intraperitoneally). Sensitivity to anesthetics was assessed by measuring the latency to loss of righting reflex, sleep time, and the loss of corneal, pineal, and toe-pinch withdrawal reflexes. In addition, patch-clamp recordings of acutely dissociated CA1 hippocampal pyramidal neurons from (-/-) and (+/+) mice were undertaken to investigate the effects of barbiturates on kainate-activated AMPA receptors and GABA-activated GABAA receptors.

Results: Behavioral tests indicate that sensitivity to pentobarbital was increased in (-/-) mice. In contrast, AMPA receptors from (-/-) neurons were less sensitive to inhibition by pentobarbital (concentrations that produced 50% of the maximal inhibition [IC50], 301 vs. 51 [mu]M), thiopental (IC50, 153 vs. 34 [mu]M), and phenobarbital (IC50, 930 vs. 205 [mu]M) compared with wild-type controls, respectively. In addition, the potency of kainate was greater in (-/-) neurons, whereas no differences were observed for the potentiation of GABAA receptors by pentobarbital.  相似文献   


18.
Background The neuronal mechanisms responsible for dissociative anesthesia remain controversial. N-methyl-D-aspartate (NMDA) receptors are inhibited by ketamine and related drugs at concentrations lower than those required for anesthetic effects. Thus, the authors studied whether ligand-gated ion channels other than NMDA receptors might display a sensitivity to ketamine and dizocilpine that is consistent with concentrations required for anesthesia. METHODS: Heteromeric human neuronal nicotinic acetylcholine receptors (hnAChR channels alpha2beta2, alpha2beta4, alpha3beta2, alpha3beta4, alpha4beta2 and alpha4beta4), 5-hydroxytryptamine3 (5-HT3), alpha1beta2gamma2S gamma-aminobutyric acid type A (GABAA) and alpha1 glycine receptors were expressed in Xenopus oocytes, and effects of ketamine and dizocilpine were studied using the two-electrode voltage-clamp technique. RESULTS: Both ketamine and dizocilpine inhibited hnAChRs in a noncompetitive and voltage-dependent manner. Receptors containing beta1 subunits were more sensitive to ketamine and dizocilpine than those containing beta2 subunits. The inhibitor concentration for half-maximal response (IC50) values for ketamine of hnAChRs composed of beta4 subunits were 9.5-29 microM, whereas those of beta2 subunits were 50-92 microM. Conversely, 5-HT3 receptors were inhibited only by concentrations of ketamine and dizocilpine higher than the anesthetic concentrations. This inhibition was mixed (competitive/noncompetitive). GABAA and glycine receptors were very resistant to dissociative anesthetics. CONCLUSIONS: Human nAChRs are inhibited by ketamine and dizocilpine at concentrations possibly achieved in vivo during anesthesia in a subunit-dependent manner, with beta subunits being more critical than alpha subunits. Conversely, 5-HT3, GABAA, and glycine receptors were relatively insensitive to dissociative anesthetics.  相似文献   

19.
Background: A new benzodiazepine derivative, CNS 7056, has been developed to permit a superior sedative profile to current agents, i.e., more predictable fast onset, short duration of sedative action, and rapid recovery profile. This goal has been achieved by rendering the compound susceptible to metabolism via esterases. The authors now report on the profile of CNS 7056 in vitro and in vivo.

Methods: The affinity of CNS 7056 and its carboxylic acid metabolite, CNS 7054, for benzodiazepine receptors and their selectivity profiles were evaluated using radioligand binding. The activity of CNS 7056 and midazolam at subtypes ([alpha]1[beta]2[gamma]2, [alpha]2[beta]2[gamma]2, [alpha]3[beta]2[gamma]2, [alpha]5[beta]2[gamma]2) of the [gamma]-aminobutyric acid type A (GABAA) receptor was evaluated using the whole cell patch clamp technique. The activity of CNS 7056 at brain benzodiazepine receptors in vivo was measured in rats using extracellular electrophysiology in the substantia nigra pars reticulata. The sedative profile was measured in rodents using the loss of righting reflex test.

Results: CNS 7056 bound to brain benzodiazepine sites with high affinity. The carboxylic acid metabolite, CNS 7054, showed around 300 times lower affinity. CNS 7056 and CNS 7054 (10 [mu]m) showed no affinity for a range of other receptors. CNS 7056 enhanced GABA currents in cells stably transfected with subtypes of the GABAA receptor. CNS 7056, like midazolam and other classic benzodiazepines, did not show clear selectivity between subtypes of the GABAA receptor. CNS 7056 (intravenous) caused a dose-dependent inhibition of substantia nigra pars reticulata neuronal firing and recovery to baseline firing rates was reached rapidly. CNS 7056 (intravenous) induced loss of the righting reflex in rodents. The duration of loss of righting reflex was short (< 10 min) and was inhibited by pretreatment with flumazenil.  相似文献   


20.
Background: Dorsal horn neurons of the spinal cord participate in neuronal pain transmission. During spinal and epidural anesthesia, dorsal horn neurons are exposed to local anesthetics and opioids. Droperidol is usually given with opioids to avoid nausea and vomiting. A recently developed method of "entire soma isolation" has made it possible to study directly the action of droperidol on different components of Na+ current in dorsal horn neurons.

Methods: Using a combination of the whole-cell patch-clamp recording from spinal cord slices and the entire soma isolation method, we studied the direct action of droperidol on two types of Na+ currents in dorsal horn neurons of young rats.

Results: The tetrodotoxin-sensitive Na+ current in isolated somata consisted of a fast inactivating ([tau]F, 0.5-2 ms; 80-90% of the total amplitude) and a slow inactivating ([tau]S, 6-20 ms; 10-20% of the total amplitude) component. Droperidol, at concentrations relevant for spinal and epidural anesthesia, selectively and reversibly suppressed the fast component with a half-maximum inhibiting concentration (IC50) of 8.3 [mu]m. The slow inactivating component was much less sensitive to droperidol; the estimated IC50 value was 809 [mu]m.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号