首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serotonin type 2A (5-HT2A) receptor-mediated neurotransmitter is known to activate hypothalamic–pituitary–adrenal (HPA) axis, regulate sleep–awake cycle, induce anorexia and hyperthermia. Interaction between melatonin and 5-HT2A receptors in the regulation of the sleep–awake cycle and head-twitch response in rat have been reported. Previous studies have shown that melatonin has suppressant effect on HPA axis activation, decreases core body temperature and induces hyperphagia in animals. However, melatonin interaction with 5-HT2A receptors in mediation of these actions is not yet reported. We have studied the acute effect of melatonin and its antagonist, luzindole on centrally administered (±)-1-(2,5-dimethoxy-4-iodophenyl) 2-amino propane (DOI; a 5-HT2A/2C agonist)-induced activation of HPA axis, hypophagia and hyperthermia in 24-h food-deprived rats. Like ritanserin [(1 mg/kg, i.p.) 5-HT2A/2C antagonist], peripherally administered melatonin (1.5 and 3 mg/kg, i.p.) did not affect the food intake, rectal temperature or basal adrenal ascorbic acid level. However, pretreatment of rats with it significantly reversed DOI (10 μg, intraventricular)-induced anorexia and activation of HPA axis. But the hyperthermia induced by DOI was not sensitive to reversal by melatonin. Mel1 receptor subtype antagonist luzindole (5 μg, intraventricular) did not modulate the DOI effect but antagonized the melatonin (3 mg/kg, i.p.) reversal of 5-HT2A agonist response. The present data suggest that melatonin reversal of DOI-induced hypophagia could be due to suppression of 5-HT2A mediated activation of HPA axis.  相似文献   

2.
Midbrain somatodendritic 5-HT1A autoreceptors play a central inhibitory role in the regulation of serotonergic neurotransmission. Given that serotonergic neurotransmission appears to be altered in experimental cholestatic liver disease we examined alterations in midbrain 5-HT1A autoreceptor binding and physiological responses in rats with experimental cholestatic liver disease in comparison to non-cholestatic controls. Using a standard receptor binding assay cholestatic rats exhibited an increase in midbrain 5-HT1A receptor number but no change in receptor affinity compared to controls. Midbrain 5-HT1A receptor mRNA expression as determined by semiquantitative RT–PCR was similar in cholestatic and non-cholestatic animals. In addition, cholestatic rats exhibited enhanced 5-HT1A autoreceptor-mediated hypothermic and hyperphagic responses compared to non-cholestatic controls after the administration of the highly specific 5-HT1A receptor agonist LY293284. These findings indicate that experimental cholestatic liver injury is associated with enhanced 5-HT1A autoreceptor-mediated physiological responsiveness in the setting of increased midbrain 5-HT1A receptor number but not affinity.  相似文献   

3.
We have used intracellular recording techniques to examine the effects of 5-hydroxytryptamine (5-HT, serotonin) on 5-HT-containing neurones of the guinea pig dorsal raphe nucleus in vitro. Bath-applied 5-HT (30–300 μM) had two opposing effects on the membrane excitability of these cells, reflecting the activation of distinct 5-HT receptor subtypes. As demonstrated previously in the rat, 5-HT evoked a hyperpolarization and inhibition of 5-HT neurones, which appeared to involve the activation of an inwardly rectifying K+ conductance. This hyperpolarizing response was blocked by the 5-HT1A receptor-selective antagonist WAY-100635 (30–100 nM). In the presence of WAY-100635, 5-HT induced a previously unreported depolarizing, excitatory response of these cells, which was often associated with an increase in the apparent input resistance of the neurone, likely due to the suppression of a K+ conductance. Like the hyperpolarizing response to 5-HT, this depolarization could be recorded in the presence of the Na+ channel blocker tetrodotoxin. In addition, the response was not significantly attenuated by the α1-adrenoceptor antagonist prazosin (500 nM), indicating that it is not due to the release of noradrenaline, or to the direct activation of α1-adrenoceptors by 5-HT. The 5-HT3 receptor antagonist granisetron (1 μM) and the 5-HT4 receptor antagonist SB 204070 (100 nM) failed to reduce the depolarizing response to 5-HT; however, ketanserin (100 nM), mesulergine (100 nM) and lysergic acid diethylamide (1 μM) significantly reduced or abolished the depolarization, indicating that this effect of 5-HT is mediated by 5-HT2 receptors.  相似文献   

4.
We evaluated the effects of adrenalectomy (ADX) and replacement with glucocorticoid receptor agonists on serotonin (5-HT) 5-HT1A and 5-HT2 receptor binding in rat brain. 5-HT1A receptor binding was increased in the CA2–CA4 and the dentate gyrus of the hippocampus 1 week after ADX. This effect was prevented by the systemic administration of aldosterone (10 μg/μl/h) but not by RU28362 (10 μg/μl/h). No significant effect was observed on 5-HT2 receptor binding in rat cortex. The expression of 5-HT transporter mRNA was unchanged in the raphe nucleus as measured by in situ hybridization.  相似文献   

5.
6.
A single exposure to the elevated plus-maze test (EPM) increases open arms avoidance and reduces or abolishes the anxiolytic-like effect of benzodiazepines assessed during a second trial, a phenomenon defined as “one-trial tolerance” (OTT). It has been emphasized that the dorsal portion of the midbrain periaqueductal gray (dPAG) plays a role on this enhanced aversion phenomenon in maze-experienced rodents. Given that intra-dPAG injections of a wide range of serotonergic 5-HT1A, 5-HT2A and 5-HT2C receptor agonists produce anxiolytic-like effects in maze-naïve rodents, the present study examined the effects of the 5-HT1A receptor agonist 8-OH-DPAT (5.6 and 10.0 nmol in 0.15 µl) the preferential 5-HT2A receptor agonist DOI (2.0 and 8.0 nmol in 0.1 µl) and the preferential 5-HT2C receptor agonist MK-212 (21.2 and 63.6 nmol in 0.1 µl) microinjected into the dPAG prior to Trial 1 and Trial 2 on the behaviour of mice in the EPM. Test sessions were recorded and subsequently scored for anxiety-like behaviour (percentage of open arms entries and time) as well as general locomotor activity (closed arm entries). The results showed a lack of 8-OH-DPAT (5.6 and 10.0 nmol) effect on the behaviour of maze-naïve and maze-experienced mice, while intra-dPAG microinfusions of DOI (8 nmol) reduced anxiety-like behaviour only in maze-experienced mice that had received a similar treatment prior to Trial 1. Furthermore, intra-dPAG MK-212 (63.6 nmol) showed an anxiolytic-like effect on both Trial 1 and Trial 2. Importantly, these effects were observed in the absence of any significant change in closed arm entries, the parameter considered to be a valid index of locomotor activity in the plus-maze. These results support the dPAG as a crucial structure involved in the neurobiology of the OTT phenomenon as well as accounting the role of the 5-HT2A and 5-HT2C receptors located within this midbrain structure on the emotional state induced by EPM test and retest paradigm mice.  相似文献   

7.
8.
The thyroid hormone triiodothyronine (T3) augments and accelerates the effects of antidepressant drugs. Although the majority of studies showing this have used tricyclics, a few studies have shown similar effects with the selective serotonin re-uptake inhibitor (SSRI) fluoxetine. In this study we investigated the effects of fluoxetine (5 mg/kg), T3 (20 μg/kg) and the combination of these drugs, each administered daily for 7 days, on serotonergic function in the rat brain, using in vivo microdialysis. Fluoxetine alone induced a trend towards desensitization of 5-HT1A autoreceptors as shown by a reduction in the effect of 8-OH-DPAT to lower 5-HT levels in frontal cortex, and desensitized 5-HT1B autoreceptors in frontal cortex. The combination of fluoxetine and T3 induced desensitization of 5-HT1B autoreceptors in hypothalamus. Since there is evidence linking hypothalamic function and depression, we suggest that this effect may partly account for the therapeutic efficacy of the combination of an SSRI and T3.  相似文献   

9.
10.
11.
We investigated the effect of the 5-HT1A receptor agonist (±)-8-hydroxy-2-(di-N-propylamino)tetralin (8-OH-DPAT) and the 5-HT2A/2C receptor agonist (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) on monosynaptic transmission in spinalized rats. 8-OH-DPAT significantly inhibited the excitation of α-motoneurons evoked by monosynaptic transmission without a direct effect on α-motoneuron excitation. DOI potentiated the excitation of α-motoneurons by both direct stimulation and monosynaptic transmission. These results indicate that activation of 5-HT1A receptors inhibits monosynaptic transmission, whereas activation of 5-HT2A/2C receptors enhances it.  相似文献   

12.
Sleep, waking, and EEG power spectra were investigated in rats after intrathecal (IT) administration of a 5-HT1A agonist and a 5-HT1A antagonist. Total slow wave sleep (TSWS) was increased and waking was decreased over the 8-h recording period after the 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) (38 nmol). Within TSWS, SWS1 was unchanged while SWS-2 tended to be increased. The 5-HT1A antagonist 1-[2-Methoxyphenyl)-4-(4-(2-phthalimido)-butyl]piperazine hydrobomide (NAN-190) did not change and sleep/waking stages. Combined treatment with 8-OH-DPAT and NAN-190 increased variance. Following the combination, sleep and waking were not significantly different from control. SWS-2 tended to be reduced compared to the effect of 8-OH-DPAT alone. There were no systematic changes in neither waking nor TSWS fronto-frontal or fronto-parietal EEG power spectrum after any of the treatments, indicating that sleep quality was not changed. The results confirm earlier data suggesting that in the spinal cord, stimulation of 5-HT1A receptors have a dampening effect on transmission of sensory information, leading to deactivation and thereby increased sleep tendency. The reason why the 8-OH-DPAT effect was not clearly antagonized by the putative 5-HT1A antagonist NAN-190, may be due to the generally weak antagonistic and also partial agonistic effect of NAN-190 as reported in the literature.  相似文献   

13.
(±)-1-(2,5-Dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI, 1.25, 2.5 and 5 mg/kg), a serotonin (5-HT)2A/2C agonist, produced an inverted U-shaped increase in DA release in rat medial prefrontal cortex (mPFC) with a significant effect only at 2.5 mg/kg. This effect was completely abolished by M100907 (0.1 mg/kg), a 5-HT2A antagonist, and WAY100635 (0.2 mg/kg), a 5-HT1A antagonist, neither of which when given alone affected dopamine release. DOI (2.5 mg/kg), but not the 5-HT2C agonist Ro 60-0175 (3 mg/kg), attenuated clozapine (20 mg/kg)-induced mPFC dopamine release. These results suggest that 5-HT2A receptor stimulation increases basal cortical dopamine release via 5-HT1A receptor stimulation, and inhibits clozapine-induced cortical dopamine release by diminishing 5-HT2A receptor blockade.  相似文献   

14.
Selective labeling of 5-HT1A and 5-HT1B binding sites in bovine brain   总被引:1,自引:0,他引:1  
Stephen J. Peroutka   《Brain research》1985,344(1):167-171
Drug interactions with serotonin(1A) 5-HT1A and serotonin(1B) (5-HT1B) binding sites were analyzed in bovine brain membranes. 5-HT1A binding sites were directly labeled with [3H]8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) in bovine hippocampal membranes. 5-HT1B binding sites were labeled by [3H]5-HT in bovine striatal membranes where less than 15% of specific binding sites are sensitive to nanomolar concentrations of 8-OH-DPAT. Each of the 12 agents tested was more potent at the 5-HT1A than 5-HT1B binding site. 5-HT, bufotenine, N,N-dimethyltryptamine (DMT) and quipazine were only slightly more potent at the 5-HT1A binding site. By contrast, 8-OH-DPAT, TVX Q 7821 and buspirone were significantly more potent at [3H]8-OH-DPAT binding sites in bovine hippocampus than at [3H]5-HT binding sites in bovine striatum. These findings suggest that 5-HT1A, and 5-HT1B binding sites have distinct pharmacological profiles and can be directly labeled with appropriate [3H]ligands in specific brain regions.  相似文献   

15.
Recent studies have established that the expression of defensive rage behavior in the cat is mediated over a descending pathway from the medial hypothalamus to the dorsolateral quadrant of the midbrain periaqueductal gray matter (PAG). The present study was designed to determine the roles played by 5-HT1A and 5-HT2/1C receptors in this region of PAG in modulating defensive rage behavior elicited from the cat's medial hypothalamus. Monopolar stimulating electrodes were implanted into the medial hypothalamus from which defensive rage behavior could be elicited by electrical stimulation. During the course of the study, the `hissing' component of the defensive rage response was used as a measure of defensive rage behavior. Cannula-electrodes were implanted into sites within the PAG from which defensive rage could also be elicited by electrical stimulation in order that 5-HT compounds could be microinjected into behaviorally identifiable regions of the PAG at a later time. Microinjections of the selective 5-HT1A agonist, (+)-8-hydroxy-dipropylaminotetralin hydrobromide (8-OHDPAT) (50 pmol, 2.0 and 3.0 nmol), into the PAG suppressed the hissing response in a dose-dependent manner. Administration of the selective 5-HT1A antagonist, 4-iodo-N-[2-[4-(methoxyphenyl)-1-piperazinyl] ethyl]-N-2-pyridinyl-benzamide hydrochloride (p-MPPI) (1.5 and 3.0 nmol), blocked the suppressive effects of 8-OHDPAT upon hissing. In contrast, microinjections of the 5-HT2/1C receptor agonist (+)-1-(4-iodo-2,5-dimethoxyphenyl)-2-aminopropane hydrochloride ((+)-DOI hydrochloride) (0.01, 1.0 and 1.5 nmol) facilitated the occurrence of hissing elicited from the medial hypothalamus in a dose-dependent manner. Immunohistochemical analysis revealed the presence of 5-HT axons and preterminals throughout the PAG, and in particular, in its dorsolateral aspect which receives major inputs from the medial hypothalamus in association with defensive rage behavior. The overall findings of the study provide evidence that activation of 5-HT1A and 5-HT2/1C receptors within the midbrain PAG differentially modulate the expression of defensive rage behavior elicited from the medial hypothalamus of the cat.  相似文献   

16.
Mitsukuni Murasaki and Sadanori Miura: The Future of 5-HT1A Receptor Agonists. (Aryl-Piperazine Derivatives) Prog. Neuro- Psychopharmacol-& Biol Psychiat, 1992, 16(6): 833–845.
1. 1. At present the dominant position among anti-anxiety medications has changed from meprobamate to the benzodiazepine derivatives.
2. 2. In order to avoid benzodiazepine's (BZ) undesirable side effects such as impairment of psycho-motor function, memory impairment, low dose dependence and withdrawal symptoms, a third generation anxiolytic agent, buspirone, the focus of the aryl-piperazine group of anti-anxiety agents, has been introduced recently.
3. 3. Aryl-piperazine derivatives work as 5-HT1A receptor partial agonists and are known as serotonin normalizers.
4. 4. Therefore, they are expected to have not only an anxiolytic function but also an anti-depressant effect as well.
5. 5. A characteristic of the aryl-piperazine derivatives is that they have no sedative and muscle relaxant effects, and they do not have BZ's undesirable side-effects, especially in regard to withdrawal symptoms. However they have a rather weak anxiolytic action and a slow onset of action.
6. 6. Aryl-piperazine derivatives will not take the place of BZ, but the use of BZ and buspirone as bridge medications, making the most of the strong points of both, can be proposed as a way to compensate for their respective disadvantages.
Keywords: aryl-piperazine derivatives; future of new anxiolytics; 5-HT1A receptor agonist; nonbenzodiazepine anxiolytic  相似文献   

17.
Age-dependent differences in the ability of N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) to irreversibly inactivate 5-HT1A receptors were investigated in female Fischer 344 rats (ages 3 and 22 months). In the hippocampus, frontal cortex and amygdala, EEDQ reduced 5-HT1A receptor density (33–70%) and drug affinity (2.3–6.2 fold) as determined by Scatchard analyses using [3H]8-hydroxy-2-(di-N-propylamino)tetralin. In the frontal cortex, the reduction in Bmax values was significantly greater in 3 months vs. 22 months groups. These region-specific and age-dependent alterations in 5-HT1A receptors may be of pathophysiological significance in age-related cognitive decline and Alzheimer's disease.  相似文献   

18.
The localization of serotonin2A (5-HT2A) receptors in the adult rat spinal cord and dorsal root ganglia was examined by using a polyclonal antibody that recognizes the C-terminus peptides of the mouse 5-HT2A receptor. Positive cell bodies of 5-HT2A receptor were found in several regions of the spinal cord. Generally, large-to-intermediate sized neuronal cell bodies were intensely immunolabeled. Motoneurons in the ventral horn were the most intensely labeled. Dot-like immunoreactive profiles were located beneath the cell membrane of motoneurons. Neuronal somata in the intermediolateral nucleus of the thoracic spinal cord were moderately labeled. The immunoreactivity in the dorsal horn was weak. A considerable number of glial cell bodies in the white matter were immunostained. The majority of both small and large sized neurons were 5-HT2A immunopositive in the dorsal root ganglion.  相似文献   

19.
Helium pressure of more than 2 MPa is a well known factor underlying pressure-dependent central neuroexcitatory disorders, referred to as the high-pressure neurological syndrome. This includes an increase in both serotonin (5-HT) and dopamine (DA) release. The relationship between the increase in 5-HT transmission produced by helium pressure and its effect on DA release has been clarified in a recent study, which have first demonstrated that the helium pressure-induced increase in DA release was dependent on some 5-HT receptor activation. In the present study, we examined in freely moving rats the role of 5-HT2A and 5-HT2C receptors in the increase in DA release induced by 8 MPa helium pressure. We used the 5-HT2A receptor antagonist ketanserin and the 5-HT2C receptor agonist m-CPP which have been demonstrated to reduce DA function. Because neither ketanserin is an ideal 5-HT2A receptor antagonist nor m-CPP an ideal 5-HT2C receptor agonist, additional experiments were made at normal pressure to check up on the selectivity of ketanserin and m-CPP for 5-HT2A and 5-HT2C receptors, respectively. Administration of m-CPP reduced both DA basal level and the helium pressure-induced increase in DA release, whereas administration of ketanserin only showed a little effect on the increase in DA release produced by high helium pressure. These results suggest that the 5-HT2C receptor, but not the 5-HT2A receptor, would play a crucial role in the helium pressure-induced increase in DA release. This further suggests that helium pressure may simultaneously induce an increase in 5-HT transmission at the level of 5-HT2A receptors and a decrease in 5-HT transmission at the level of 5-HT2C receptors.  相似文献   

20.
This bipartite study uses behavioral and biochemical means to explore the involvement of both pre- and post-synaptic 5-HT1A receptors in the control of food intake and neuroendocrine regulation. In the pharmacological study, the administration of the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT; 60 μg/kg b.wt., i.p.) to rats caused a significant increase in 2 h intake of a high carbohydrate (CARB)/sugar diet (P < 0.05) during the relatively inactive feeding period of the late light cycle. No significant change was detected in the intake of Purina laboratory chow at 2 h, or of the intake of either diet at 4 h and 24 h after 8-OH-DPAT administration. Injection of 8-OH-DPAT induced a drop in insulin levels in rats maintained on high CARB/sugar diets only (−90%; P<0.05). It also caused an increase in circulating glucose levels in both high CARB/sugar (240%; P<0.01) and chow fed (123%; P<0.05) rats; it did so more intensely in high CARB/sugar-fed rats. In the biochemical study, radioligand binding techniques were used to assess 5-HT1A receptor density in the hypothalamus, as well as the relationship between 5-HT1A receptors and circulating levels of insulin and glucose. Chronic and acute administration (25 mg/kg b.wt./5 injections, and 50 mg/kg b.wt., respectively, i.p.) of the potent hypoglyce mic agent tolbutamide (TOL) caused a significant increase in 5-HT1A receptor density (+243% and +132.6%, respectively; P<0.05) in the medial hypothalamus but not in the lateral hypothalamus, as compared to vehicle-treated rats. Chronic glucose replacement therapy showed a trend towards reversing the depressed circulating glucose levels as well as the medial hypothalamic 5-HT1A receptor density to control levels. These studies indicate that the pre-synaptic mechanism of 8-OH-DPAT-induced hyperphagia may require specific circulating levels of insulin and glucose, which are regulated via post-synaptic 5-HT1A receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号