首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Serotonin type 2A (5-HT2A) receptor-mediated neurotransmitter is known to activate hypothalamic–pituitary–adrenal (HPA) axis, regulate sleep–awake cycle, induce anorexia and hyperthermia. Interaction between melatonin and 5-HT2A receptors in the regulation of the sleep–awake cycle and head-twitch response in rat have been reported. Previous studies have shown that melatonin has suppressant effect on HPA axis activation, decreases core body temperature and induces hyperphagia in animals. However, melatonin interaction with 5-HT2A receptors in mediation of these actions is not yet reported. We have studied the acute effect of melatonin and its antagonist, luzindole on centrally administered (±)-1-(2,5-dimethoxy-4-iodophenyl) 2-amino propane (DOI; a 5-HT2A/2C agonist)-induced activation of HPA axis, hypophagia and hyperthermia in 24-h food-deprived rats. Like ritanserin [(1 mg/kg, i.p.) 5-HT2A/2C antagonist], peripherally administered melatonin (1.5 and 3 mg/kg, i.p.) did not affect the food intake, rectal temperature or basal adrenal ascorbic acid level. However, pretreatment of rats with it significantly reversed DOI (10 μg, intraventricular)-induced anorexia and activation of HPA axis. But the hyperthermia induced by DOI was not sensitive to reversal by melatonin. Mel1 receptor subtype antagonist luzindole (5 μg, intraventricular) did not modulate the DOI effect but antagonized the melatonin (3 mg/kg, i.p.) reversal of 5-HT2A agonist response. The present data suggest that melatonin reversal of DOI-induced hypophagia could be due to suppression of 5-HT2A mediated activation of HPA axis.  相似文献   

2.
The effect of 5-HT1 and 5-HT2 receptor agonists administered into the paraventricular hypothalamus was studied on the hyperphagia caused by neuropeptide Y (NPY) injected into the same area. The 5-HT2A/2C receptor agonist DOI (10–20 nmol/0.5 μl) significantly reduced NPY overeating while the 5-HT1A/1B receptor agonist RU 24969 (3.5–14 nmol/0.5 μl) and the 5-HT1B/2C receptor agonist mCPP (5–20 nmol/0.5 μl) had no such effect. The 5-HT2A receptor antagonist spiperone (5 μg/0.5 μl) and the corticotropin releasing factor antagonist α-helical-CRF9–41 (0.5–1 μg/0.5 μl completely antagonized the effect of 10 nmol DOI.  相似文献   

3.
In the present study, we examined changes in the firing rate and firing pattern of pyramidal neurons in medial prefrontal cortex (mPFC), and the effects of 5-HT2A/2C receptor agonist DOI and antagonist ritanserin on the neuronal firing in rats with 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta by using extracellular recording. The unilateral lesion of the nigrostriatal pathway significantly increased the mean firing rate of pyramidal neurons compared to sham-operated rats, and the firing pattern of these neurons also changed significantly towards a more bursty one. Systemic administration of DOI (20–320 μg/kg, i.v.) increased the mean firing rate of pyramidal neurons in sham-operated and the lesioned rats. The excitation was significant only at doses higher than 160 μg/kg and 320 μg/kg in sham-operated and the lesioned rats, respectively. In addition, the local application of DOI, 5 μg, in mPFC inhibited the firing rate of pyramidal neurons in sham-operated rats, while having no effect on firing rate in the lesioned rats. After treatment with GABAA receptor antagonist picrotoxinin, the local application of DOI, at the same dose, increased the mean firing rate of the neurons in sham-operated rats; however, DOI did not alter the firing activity of the neurons in the lesioned rats. These results indicate that the lesion of the nigrostriatal pathway leads to hyperactivity of pyramidal neurons in mPFC, and the decreased response of pyramidal neurons to DOI, suggesting dysfunction of 5-HT2A and 5-HT2C receptors on pyramidal neurons and GABAergic interneurons in the 6-OHDA-lesioned rats.  相似文献   

4.
(±)-1-(2,5-Dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI, 1.25, 2.5 and 5 mg/kg), a serotonin (5-HT)2A/2C agonist, produced an inverted U-shaped increase in DA release in rat medial prefrontal cortex (mPFC) with a significant effect only at 2.5 mg/kg. This effect was completely abolished by M100907 (0.1 mg/kg), a 5-HT2A antagonist, and WAY100635 (0.2 mg/kg), a 5-HT1A antagonist, neither of which when given alone affected dopamine release. DOI (2.5 mg/kg), but not the 5-HT2C agonist Ro 60-0175 (3 mg/kg), attenuated clozapine (20 mg/kg)-induced mPFC dopamine release. These results suggest that 5-HT2A receptor stimulation increases basal cortical dopamine release via 5-HT1A receptor stimulation, and inhibits clozapine-induced cortical dopamine release by diminishing 5-HT2A receptor blockade.  相似文献   

5.
We investigated the effect of the 5-HT1A receptor agonist (±)-8-hydroxy-2-(di-N-propylamino)tetralin (8-OH-DPAT) and the 5-HT2A/2C receptor agonist (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) on monosynaptic transmission in spinalized rats. 8-OH-DPAT significantly inhibited the excitation of α-motoneurons evoked by monosynaptic transmission without a direct effect on α-motoneuron excitation. DOI potentiated the excitation of α-motoneurons by both direct stimulation and monosynaptic transmission. These results indicate that activation of 5-HT1A receptors inhibits monosynaptic transmission, whereas activation of 5-HT2A/2C receptors enhances it.  相似文献   

6.
Serotonin (5-HT) modulates the phase adjusting effects of light on the mammalian circadian clock through the activation of presynaptic 5-HT1B receptors located on retinal terminals in the suprachiasmatic nucleus (SCN). The current study was conducted to determine whether activation of 5-HT1B receptors also alters photic regulation of nocturnal pineal melatonin production. Systemic administration of the 5-HT1B receptor agonist TFMPP attenuated the inhibitory effect of light on pineal melatonin synthesis in a dose-related manner with an apparent ED50 value of 0.9 mg/kg. The effect of TFMPP on light-induced melatonin suppression was blocked by the 5-HT1 receptor antagonist, methiothepin, but not by the 5-HT1A antagonist, WAY 100,635, consistent with the involvement of 5-HT1B receptors. The results are consistent with the interpretation that activation of presynaptic 5-HT1B receptors on retinal terminals in the SCN attenuates the effect of light on pineal melatonin production, as well as on circadian phase.  相似文献   

7.
Serotonin (5-HT)2A receptors are known to be involved in prepulse inhibition of the startle response (PPI), a measure of sensorimotor inhibition that is deficient in schizophrenia, Huntington's disease, and obsessive compulsive disorder. In the present studies, the localization of the 5-HT2A receptors responsible for modulating PPI was investigated using central injections of the hallucinogenic 5-HT2 agonist DOI and the novel 5-HT2A antagonist MDL 100,907. 5-HT2A receptors are densely localized in the nucleus accumbens (NAC) and the ventral pallidum (VP), areas known to be important components of neural circuitry that mediates the ventral forebrain modulation of PPI. In the present studies, it was found that the infusion of DOI (0.0–5.0 μg/0.5 μl) into the VP disrupted PPI without having effects on startle reactivity. In contrast, similar infusions into the NAC had no effect on PPI or startle reactivity. The infusion of MDL 100,907 into the VP was found to increase PPI by itself and to attenuate the PPI-disruptive effects of systemically administered DOI. It is concluded that 5-HT2A receptors within the VP are important for the modulation of PPI, presumably through interactions at intrinsic GABAergic or cholinergic interneurons.  相似文献   

8.
The present experiments investigated whether the enhanced premature (impulsive) responding induced by DOI, [(±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride], a 5-HT2A/2C receptor agonist, is mediated by activation of the dopaminergic system and if this effect of DOI occurs in the nucleus accumbens. Therefore, the effects of a dopamine (D1/2) receptor antagonist given alone or combined with DOI were examined on the performance of rats in a five-choice serial reaction time (5-CSRT) task. Secondly, the effects of DOI in nucleus accumbens core and shell were studied, in order to find the target brain area for DOI-induced premature responding. The results indicate that DOI (0.1 mg/kg, subcutaneously) increases the number of premature responses, as found previously. α-Flupenthixol (0.03 mg/kg), a D1/2 dopamine receptor antagonist, and raclopride (0.015 mg/kg), a D2 receptor antagonist, attenuated the DOI-induced enhancement in premature responding. SCH 23390 (0.005 mg/kg), a selective D1 receptor antagonist with little affinity to 5-HT2 receptors totally blocked the effect of DOI. Those doses of DA antagonists did not significantly decrease premature responding when given alone. On the other hand, higher doses of all of these dopamine antagonists increased the number of omissions and decreased the number of ITI hole responses. In contrast to subcutaneous administration, direct injections of DOI (1, 3, and 10 μg bilaterally) to the nucleus accumbens shell or core had no effect on premature responding. These results suggest that the activation of the dopamine system mediates, at least in part, the effect of a 5-HT2 agonist on premature responding, but the nucleus accumbens is not the primary site for this action.  相似文献   

9.
The analgesic effect of calcitonin when serotonin (5-HT) concentration is increased and the involvement of some 5-HT receptors were studied using the writhing test in mice. 5-hydroxytryptophan (5-HTP) administration increased both 5-HT levels in the central nervous system (CNS) and calcitonin analgesia. The 5-HT1A agonist (±)-8-hydroxy-2-dipropylaminotetralin hydrobromide (8-OH-DPAT) diminished calcitonin analgesia, this effect being antagonised by the 5-HT1A antagonist (WAY 100, 135). As the stimulation of 5-HT1A autoreceptors reduces the turnover of 5-HT, the effect of 8-OH-DPAT on calcitonin analgesia may be attributed to this decrease. The 5-HT2A–2C agonist (±)-1-(4-iodo-2,5-dimethoxyphenyl)-2-aminopropane hydrochloride (DOI) diminished calcitonin analgesia. A sub-analgesic dose of the 5-HT2A antagonist ketanserin failed to prevent this effect. The 5-HT3 agonist (±)-2-methyl-5-hydroxytryptamine maleate (2-methyl-5-HT) potentiated calcitonin analgesia, whereas it was significantly reduced by the 5-HT3 antagonist tropisetron. The effect of 2-methyl-5-HT on calcitonin analgesia was also reversed by tropisetron, This result suggests that the 5-HT3 receptor may play an important role in the relationship between calcitonin and the serotonergic system. Tropisetron also reversed the analgesia induced by calcitonin plus 5-HTP corroborating importance of the 5-HT3 receptors.  相似文献   

10.
The present study was conducted to identify serotonin (5-HT) receptor subtypes involved in the development of amygdala (AM) kindling. We used 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), a 5-HT1A agonist, and 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), a 5-HT2 agonist, both of which were injected subcutaneously 15 min prior to each daily electrical stimulation to the rat AM. Treatment with 8-OH-DPAT (1 mg/kg) slightly suppressed behavioral and electrographic seizure development during the course of kindling. In contrast, DOI (1 mg/kg) strongly facilitated kindling development and reduced the number of stimulations needed to produce generalized seizures. These facilitatory effects of DOI were completely blocked by pretreatment with a 5-HT2 antagonist ketanserin. The present results suggest that the activation of 5-HT1A receptors can retard the development of AM kindling, whereas 5-HT2 receptors play a facilitatory role in this developmental seizure process.  相似文献   

11.
Summary The anticonflict activity of m-CPP, a non-selective agonist of 5-HT receptors, was studied in the drinking conflict test in rats. m-CPP administered in doses of 0.125–0. 5 mg/kg increased the number of punished licks, the maximum effect having been observed after a dose of 0.25 mg/kg. The anticonflict effect of m-CPP (0.25 mg/kg) was antagonized by the non-selective 5-HT antagonist metergoline (1–4 mg/kg) and by the -adrenoceptor blocker SDZ 21009 (2 and 4 mg/kg) with affinity for 5-HT1A and 5-HT1B receptors. On the other hand, the 5-HT1A receptor antagonist NAN-190 (0.5 and 1 mg/kg), the 5-HT2 receptor antagonist ritanserin (0.25 and 0.5 mg/kg), and the -blockers betaxolol (8 mg/kg) and ICI 118,551 (8 mg/kg) with no affinity for 5-HT receptors did not affect the effect of m-CPP. The effect of m-CPP was not modified, either, in animals with the 5-HT lesion produced by p-chloroamphetamine.These results suggest that the anticonflict effect of m-CPP described above results from stimulation of 5-HT1B receptors — most probably these which are located postsynaptically.  相似文献   

12.
Electrical activity in the dorsal hippocampus was recorded in freely moving cats in response to intravenous administration of 5-HT1A agonist and antagonist drugs. Administration of low doses of the selective 5-HT1A agonists 8-OH-DPAT (5–20 μg/kg) and ipsapirone (20–100 μg/kg) produced rhythmic slow activity (theta) in the hippocampal EEG within 30 s. Similar effects were observed with BMY 7378 (20 and 100 μg/kg), which acts as an agonist at presynaptic (somatodendritic) 5-HT1A receptors and as an antagonist at postsynaptic 5-HT1A receptors. Power spectral analyses showed that all three compounds produced a dose-dependent increase in the EEG power occurring in the theta frequency band (3.5–8.0 Hz) as a proportion of total power from 0.25 to 30.0 Hz (relative theta power). The increase in relative theta power produced by 8-OH-DPAT (20 μg/kg) was greatly attenuated by spiperone (1 mg/kg), a highly effective 5-HT1A autoreceptor antagonist. Administration of spiperone alone had no significant effect on relative theta power. These results are discussed in relationship to the effects of these drugs on serotonergic neuronal activity. Our results suggest that preferential activation of presynaptic 5-HT1A receptors, and subsequent inhibition of serotonin neurotransmission, facilitates the appearance of hippocampal theta activity in awake cats.  相似文献   

13.
The purpose of the present study was to characterize the synaptic currents induced by bath-applied serotonin (5-HT) in 5-HT cells of the dorsal raphe nucleus (DRN) and to determine which 5-HT receptor subtypes mediate these effects. In rat brain slices, 5-HT induced a concentration-dependent increase in the frequency of inhibitory postsynaptic currents (IPSCs) in 5-HT neurons recorded intracellularly in the ventral part of the DRN (EC50: 86 μM); 5-HT also increased IPSC amplitude. These effects were blocked by the GABAA receptor antagonist, bicuculline (10 μM) and by the fast sodium channel blocker, TTX, suggesting that 5-HT had increased impulse flow in local GABAergic neurons. DAMGO (300 nM), a selective μ-agonist, markedly suppressed the increase in IPSC frequency induced by 5-HT (100 μM) in the DRN. A near maximal concentration of the selective 5-HT2A antagonist, MDL100,907 (30 nM), produced a large reduction (70%) in the increase in IPSC frequency induced by 100 μM 5-HT; SB242,084 (30 nM), a selective 5-HT2C antagonist, was less effective (24% reduction). Combined drug application suppressed the increase in 5-HT-induced IPSC frequency almost completely, suggesting involvement of both 5-HT2A and 5-HT2C receptors. Unexpectedly, the phenethylamine hallucinogen, DOI, a partial agonist at 5-HT2A/2C receptors, caused a greater increase (+334%) in IPSC frequency than did 5-HT 100 μM (+80%). This result may be explained by an opposing 5-HT1A inhibitory effect since the selective 5-HT1A antagonist, WAY-100635, enhanced the 5-HT-induced increase in IPSCs. These results indicate that within the DRN–PAG area there may be a negative feedback loop in which 5-HT induces an increase in IPSC frequency in 5-HT cells by exciting GABAergic interneurons in the DRN via 5-HT2A and, to a lesser extent, 5-HT2C receptors. Increased GABA tone may explain the previous observation of an indirect suppression of firing of a subpopulation of 5-HT cells in the DRN induced by phenethylamine hallucinogens in vivo.  相似文献   

14.
The petrosal ganglion supplies chemoafferent pathways via the glossopharyngeal (IXth) nerve to peripheral targets which release various neurotransmitters including serotonin (5-HT). Here, we combined rapid 5-HT application with patch clamp, whole-cell recording to investigate whether 5-HT receptors are expressed on isolated petrosal neurons (PN), cultured from 7–12 day-old rat pups. In responsive cells, the dominant effect of 5-HT was a rapid depolarization associated with a conductance increase in 43% of the neurons (53/123); however, in a minority population (6%; 8/123), 5-HT caused membrane depolarization associated with a conductance decrease. In the former group, 5-HT produced a transient inward current (I5-HT) in neurons voltage-clamped near the resting potential (-60 mV); the effect was mimicked by the 5-HT3 receptor-specific agonist, 2-methyl-5-HT, suggesting it was mediated by 5-HT3 receptors. Further, I5-HT was selectively inhibited by the 5-HT3 receptor-specific antagonist MDL72222 (1–10 μM), but was unaffected by either 5-HT1/5-HT2 receptor antagonist, spiperone, or by 5-HT2 receptor-specific antagonist, ketanserin (50–100 μM). I5-HT displayed moderate inward rectification and had a mean reversal potential (±S.E.M.) of −4.3±6.6 mV (n=6). Application of 5-HT (dose range: 0.1–100 μM) produced a dose–response curve that was fitted by the Hill equation with EC50=3.4 μM and Hill coefficient=1.6 (n=8). The activation phase of I5-HT (10 μM 5-HT at −60 mV) was well fitted by a single exponential with mean (±S.E.M.) time constant of 45±30 ms (n=6). The desensitization phase of I5-HT was best fitted by a single exponential with mean (±S.E.M.) time constant of 660±167 ms (n=6). Fluctuation analysis yielded an apparent mean single-channel conductance (±S.E.M) of 2.7±1.5 pS (n=4) at −60 mV. In the minority (6%) population of neurons which responded to 5-HT with a conductance decrease, the depolarization was blocked by the 5-HT2 receptor antagonist, ketanserin (50 μM). Taken together, these results suggest that 5-HT3 receptors are the major subtype expressed by rat petrosal neurons, and therefore are candidates for facilitating chemoafferent excitation in response to 5-HT released from peripheral targets.  相似文献   

15.
An electrophysiological study was performed using chloral hydrate-anesthetized rats to determine whether tandospirone, a 5-HT1A agonist, affects neuronal activities of the medial vestibular nucleus (MVN), since serotonergic innervation and 5-HT1A receptors are present in this nucleus. Tandospirone applied microiontophoretically at a current of 20–60 nA caused an inhibition of tilt-induced firing of α-type neurons, which showed increased and decreased firing with lateral tilt ipsilateral and contralateral to the recording site, respectively, along with that of β-type neurons which exhibited the reverse responses to ipsilateral and contralateral tilt stimulation. The inhibition was antagonized during simultaneous, iontophoretic application of WAY-100635 (20–60 nA), a 5-HT1A receptor antagonist, although WAY-100635 alone rarely affected spontaneous or tilt-induced firing in either type of neurons. These results suggest that tandospirone acts on a 5-HT1A receptor to inhibit transmission of otolith information to α- and β-type MVN neurons.  相似文献   

16.
We have used intracellular recording techniques to examine the effects of 5-hydroxytryptamine (5-HT, serotonin) on 5-HT-containing neurones of the guinea pig dorsal raphe nucleus in vitro. Bath-applied 5-HT (30–300 μM) had two opposing effects on the membrane excitability of these cells, reflecting the activation of distinct 5-HT receptor subtypes. As demonstrated previously in the rat, 5-HT evoked a hyperpolarization and inhibition of 5-HT neurones, which appeared to involve the activation of an inwardly rectifying K+ conductance. This hyperpolarizing response was blocked by the 5-HT1A receptor-selective antagonist WAY-100635 (30–100 nM). In the presence of WAY-100635, 5-HT induced a previously unreported depolarizing, excitatory response of these cells, which was often associated with an increase in the apparent input resistance of the neurone, likely due to the suppression of a K+ conductance. Like the hyperpolarizing response to 5-HT, this depolarization could be recorded in the presence of the Na+ channel blocker tetrodotoxin. In addition, the response was not significantly attenuated by the α1-adrenoceptor antagonist prazosin (500 nM), indicating that it is not due to the release of noradrenaline, or to the direct activation of α1-adrenoceptors by 5-HT. The 5-HT3 receptor antagonist granisetron (1 μM) and the 5-HT4 receptor antagonist SB 204070 (100 nM) failed to reduce the depolarizing response to 5-HT; however, ketanserin (100 nM), mesulergine (100 nM) and lysergic acid diethylamide (1 μM) significantly reduced or abolished the depolarization, indicating that this effect of 5-HT is mediated by 5-HT2 receptors.  相似文献   

17.
The effects of the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) on the epileptiform activity has been investigated in adult WAG/RIJ rats. Either intraperitoneal (0.1–0.5 mg/kg) or intracerebroventricular (2–20 μg/rat) administration of 8-OH-DPAT caused marked, dose-dependent increases in the number and mean cumulative duration of spike-wave discharges. These effects were attenuated by NAN-190, a 5-HT1A receptor antagonist. These data indicate that serotonergic system regulates the epileptiform activity in this genetic model of human absence epilepsy.  相似文献   

18.
Stimulation of spinal serotonin (5-HT)2A/2C receptors has previously been reported to lead to either a pro-nociceptive or an anti-nociceptive response. Behavioral data have indicated that the pro-nociceptive effect is related to the release of substance P (SP). The aim of this in vivo microdialysis study was to investigate if stimulation of spinal 5-HT2A/2C receptors by the selective agonist (±)-2,5-dimethoxy-4-iodoamphetamine (DOI) induces spontaneous or capsaicin-evoked increase in the release of SP-like immunoreactivity (SP-LI) in the rat dorsal horn. A dose of capsaicin (25 μM in the perfusion medium administered for 30 min), which did not lead to a significant release of SP-LI on its own, induced a significant increase of greater than 4-fold of the SP-LI level following spinal application of 50 nmol DOI. Higher (500 nmol) or lower (5 nmol) doses of DOI failed to induce a similar effect. In rats with a peripheral inflammation, induced by carrageenan, capsaicin (25 μM) induced a non-significant increase of SP-LI. A significant 8-fold increase of the SP-LI level was detected following administration of 50 nmol DOI in combination with capsaicin. The effect of DOI, which was completely prevented by co-administration of the 5-HT2A receptor antagonist ketanserin in control animals without peripheral inflammation, was only partly blocked in animals with carrageenan induced peripheral inflammation. In conclusion, stimulation of 5-HT2A/2C receptors facilitates the capsaicin-evoked release of SP-LI in the dorsal horn in both animals with and without carrageenan-induced unilateral inflammation. The observation that the highest dose of DOI failed to induce SP-LI release may be due to an inhibitory postsynaptic action at this dose.  相似文献   

19.
3,4-Methylenedioxymethamphetamine (MDMA, “ecstasy”) is a widely used recreational drug. Despite an increase in the number of fatalities related to its use, no definite therapeutic method has been established thus far. In the present study, risperidone's ability to attenuate MDMA-induced hyperthermia and its mechanism of action were investigated in rats. The pharmacological effect of MDMA was evaluated using microdialysis. In the body temperature experiment, administration of risperidone before and after MDMA administration significantly suppressed MDMA-induced hyperthermia in a dose-dependent fashion. Furthermore, risperidone completely inhibited MDMA-induced hyperthermia at a low ambient temperature. Moreover, pretreatment with ritanserin, ketanserin, or R-96544, all of which are 5-HT2A-receptor antagonists, significantly prevented MDMA-induced hyperthermia. On the other hand, pretreatment with WAY-100635 (a 5-HT1A receptor antagonist), SB 206553 (a 5-HT2B/2C receptor antagonist), or SB 242084 (a 5-HT2C receptor antagonist) did not prevent MDMA-induced hyperthermia. Pretreatment with haloperidol, which blocks the dopamine (DA) receptors D2 and D1, significantly prevented MDMA-induced hyperthermia. However, sulpiride and L-741626, which are D2 receptor blockers, did not prevent MDMA-induced hyperthermia. Pretreatment with SCH 23390 (a D1 receptor antagonist) significantly prevented MDMA-induced hyperthermia. Furthermore, postadministration of ritanserin, haloperidol, and SCH23390 reversed MDMA-induced hyperthermia. These results demonstrate that the mechanism underlying the suppression of MDMA-induced hyperthermia by risperidone is primarily based on the drug's potent 5-HT2A receptor blocking effect, and to a lesser extent, on its D1 receptor blocking effect. A microdialysis study showed that when MDMA (10 mg/kg) was subcutaneously (s.c.) injected into the rats, the DA and serotonin (5-HT) levels in the anterior hypothalamus of the rats increased approximately 10- and 50-fold, respectively, as compared to their preadministration levels. These increases in the DA and 5-HT levels after MDMA injection were significantly suppressed by pretreatment with risperidone (0.5 mg/kg). This suggested that both the DA and 5-HT systems were involved in the induction of hyperthermia by MDMA. Taken together, the present study's results indicate that risperidone may be an effective drug for the treatment of MDMA-induced hyperthermia in humans.  相似文献   

20.
Serotonin (5-HT)1A receptor agonism may be of interest in regard to both the antipsychotic action and extrapyramidal symptoms (EPS) of antipsychotic drugs (APD) based, in part, on the effect of 5-HT1A receptor stimulation on the release of dopamine (DA) in the nucleus accumbens (NAC) and striatum (STR), respectively. We investigated the effect of R(+)-8-hydroxy-2-(di-n-propylamino)-tetralin (R(+)-8-OH-DPAT) and n-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-n-(2-pyridinyl)cyclohexanecarboxamide trihydrochloride (WAY100635), a selective 5-HT1A receptor agonist and antagonist, respectively, on basal and APD-induced DA release. In both STR and NAC, R(+)-8-OH-DPAT (0.2 mg/kg) decreased basal DA release; R(+)-8-OH-DPAT (0.05 mg/kg) inhibited DA release produced by the 5-HT2A/D2 receptor antagonists clozapine (20 mg/kg), low dose risperidone (0.01 and 0.03 mg/kg) and amperozide (10 mg/kg), but not that produced by high dose risperidone (0.1 and 1.0 mg/kg) or haloperidol (0.01–1.0 mg/kg), potent D2 receptor antagonists. This R(+)-8-OH-DPAT-induced inhibition of the effects of clozapine, risperidone and amperozide was antagonized by WAY100635 (0.05 mg/kg). WAY100635 (0.1–0.5 mg/kg) alone increased DA release in the STR but not NAC. The selective 5-HT2A receptor antagonist M100907 (1 mg/kg) did not alter the effect of R(+)-8-OH-DPAT or WAY100635 alone on basal DA release in either region. These results suggest that 5-HT1A receptor stimulation inhibits basal and some APD-induced DA release in the STR and NAC, and that this effect is unlikely to be mediated by an interaction with 5-HT2A receptors. The significance of these results for EPS and antipsychotic action is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号