首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Rearrangements between tandemly repeated DNA sequences are a common source of genetic instability. Such rearrangements underlie several human genetic diseases. In many organisms, the mismatch-repair (MMR) system functions to stabilize repeats when the repeat unit is short or when sequence imperfections are present between the repeats. We show here that the action of single-stranded DNA (ssDNA) exonucleases plays an additional, important role in stabilizing tandem repeats, independent of their role in MMR. For perfect repeats of approximately 100 bp in Escherichia coli that are not susceptible to MMR, exonuclease (Exo)-I, ExoX, and RecJ exonuclease redundantly inhibit deletion. Our data suggest that >90% of potential deletion events are avoided by the combined action of these three exonucleases. Imperfect tandem repeats, less prone to rearrangements, are stabilized by both the MMR-pathway and ssDNA-specific exonucleases. For 100-bp repeats containing four mispairs, ExoI alone aborts most deletion events, even in the presence of a functional MMR system. By genetic analysis, we show that the inhibitory effect of ssDNA exonucleases on deletion formation is independent of the MutS and UvrD proteins. Exonuclease degradation of DNA displaced during the deletion process may abort slipped misalignment. Exonuclease action is therefore a significant force in genetic stabilization of many forms of repetitive DNA.  相似文献   

3.
Tests of 29 human variable number of tandem repeat probes in inbred mouse lines showed that 80% (23/29) cross-hybridize, and 48% (14/29) produce multiple band, minisatellite polymorphisms (fingerprint patterns). Mini-satellite-type polymorphisms detected by 11 probes were characterized in eight different strains; on average, 240 polymorphic differences were detected between pairs of strains. Reproducible fingerprint patterns permit the study of the segregation of the minisatellite polymorphisms in experimentally designed crosses. As an example, we constructed primary minisatellite genetic linkage maps containing 346 polymorphic bands, distributed in 101 groups of closely linked systems, from genotypes on a recombinant inbred panel (C57BL/6J X DBA/2J); 38 of the groups were assigned by linkage to 15 autosomal chromosomes. The minisatellite genetic maps of C57BL/6J and DBA/2J can be applied in other linkage studies involving these strains.  相似文献   

4.
DNA rearrangement mediated by inverted repeats.   总被引:14,自引:0,他引:14       下载免费PDF全文
Inverted repeats of DNA are widespread in the genomes of eukaryotes and prokaryotes and can mediate genome rearrangement. We studied rearrangement mediated by plasmid-borne inverted repeats in Escherichia coli. We show that inverted repeats can mediate an efficient and recA-independent recombination event. Surprisingly, the product of this recombination is not that of simple inversion between the inverted repeats, but almost exclusively an unusual head-to-head dimer with complex DNA rearrangement. Moreover, this recombination is dramatically reduced by increasing the distance separating the repeats. These results can be readily explained by a model involving reciprocal switching of the leading and lagging strands of DNA replication within the inverted repeats, which leads to the formation of a Holliday junction. Reciprocal strand switching during DNA replication might be a common mechanism for genome rearrangement associated with inverted duplication.  相似文献   

5.
Summary We investigated the possible association between alleles of a simple tandem repeat DNA polymorphism in the human glycogen synthase gene and non-obese non-insulin-dependent diabetes (NIDDM) in Japanese subjects. Nine alleles (−4G, −3G, −2G, −1G, 0G, 1G, 2G, 3G, and 4G) were identified in the study group of 164 patients with NIDDM and 115 non-diabetic subjects. The overall frequency distribution of the glycogen synthase gene alleles was significantly different between the two groups (p =0.0316). The 2G allele was found more frequently in patients with NIDDM than in non-diabetic subjects (17.7 % vs 8.7 %, p =0.0016). These results suggest that the 2G allele could be a genetic marker of NIDDM in Japanese subjects. [Diabetologia (1994) 37: 536–539] Received: 13 November 1993 and in revised form: 3 January 1994  相似文献   

6.
Simple sequence repeats in prokaryotic genomes   总被引:1,自引:0,他引:1  
Simple sequence repeats (SSRs) in DNA sequences are composed of tandem iterations of short oligonucleotides and may have functional and/or structural properties that distinguish them from general DNA sequences. They are variable in length because of slip-strand mutations and may also affect local structure of the DNA molecule or the encoded proteins. Long SSRs (LSSRs) are common in eukaryotes but rare in most prokaryotes. In pathogens, SSRs can enhance antigenic variance of the pathogen population in a strategy that counteracts the host immune response. We analyze representations of SSRs in >300 prokaryotic genomes and report significant differences among different prokaryotes as well as among different types of SSRs. LSSRs composed of short oligonucleotides (1-4 bp length, designated LSSR(1-4)) are often found in host-adapted pathogens with reduced genomes that are not known to readily survive in a natural environment outside the host. In contrast, LSSRs composed of longer oligonucleotides (5-11 bp length, designated LSSR(5-11)) are found mostly in nonpathogens and opportunistic pathogens with large genomes. Comparisons among SSRs of different lengths suggest that LSSR(1-4) are likely maintained by selection. This is consistent with the established role of some LSSR(1-4) in enhancing antigenic variance. By contrast, abundance of LSSR(5-11) in some genomes may reflect the SSRs' general tendency to expand rather than their specific role in the organisms' physiology. Differences among genomes in terms of SSR representations and their possible interpretations are discussed.  相似文献   

7.
To analyze the macromolecular organization of human centromeric regions, we used alpha-satellite, or alphoid, repetitive DNA sequences specific to the centromeres of human chromosomes 6 (D6Z1), X (XC), and Y (YC-2) and the technique of pulsed-field gel electrophoresis. Genomic DNA from 24 normal, unrelated individuals was digested and separated into fragments ranging from 23 kilobases (kb) to 2 megabases (Mb) in length. Digestion with 12 different restriction enzymes with 4- to 8-base-pair recognition sequences and hybridization with alphoid sequences revealed chromosome-specific hybridization patterns. Similarities in the organization of the centromeric regions of the three chromosomes included NotI, SfiI, and SalI fragments of greater than 2 Mb and Sau3A1 and Alu I fragments of less than 150 kb. Each restriction enzyme with a 6-base-pair recognition sequence (Ava II, BamHI, HindIII, Hpa I, Pst I, Sal I, Sst I, and Xba I) detected polymorphic DNA fragments of 50 kb to 2 Mb. Forty percent or more of the individuals screened revealed a unique hybridization pattern with these enzymes and at least one of the three chromosome-specific alphoid probes. Five individuals differed from one another in hybridization pattern for each of the three enzymes HindIII, HpaI, and SstI and for each of the three centromeric probes. All 24 individuals could be distinguished on the basis of unique hybridization patterns with only two enzymes and one chromosome-specific alphoid probe. Family studies showed that these polymorphisms are inherited. The high frequency of these macro restriction fragment length polymorphisms illustrates the high degree of variability of the centromeric region among normal individuals and demonstrates its usefulness for DNA fingerprinting and pericentromeric mapping by linkage analysis.  相似文献   

8.
Newly arisen DNA repeats in primate phylogeny.   总被引:6,自引:4,他引:6       下载免费PDF全文
We discovered the presence of an Alu and an Xba repetitive DNA element within introns 4 and 7, respectively, of the human alpha-fetoprotein (AFP) gene; these elements are absent from the same gene in the gorilla. The Alu element is flanked by 12-base-pair direct repeats, AGGATGTTGTGG ... (Alu) ... AGGATGTTGTGG, which presumably arose by way of duplication of the intronic target site AGGATGTTGTGG at the time of the Alu insertion. In the gorilla, only a single copy of the unoccupied target site is present, which is identical to the terminal repeat flanking the human Alu element. There are two copies of an Xba repeat in the human AFP gene, apparently the only two in the genome. Xba1 and Xba2, located within introns 8 and 7, respectively, differ from each other at 3 of 303 positions. Xba1 is referred to as the old (ancestral) repeat because it lacks direct repeats. The new (derived) Xba2 is flanked by direct repeats, TTTCTTTTT ... (Xba) ... TTTCTTCTT, and is thought to have arisen as a result of transposition of Xba1. The ancestral Xba1 and a single copy of the Xba2 target site are present at orthologous positions in the gorilla, but the new Xba2 is absent. We conclude that the Alu and Xba DNA repeats emerged in the human genome at a time postdating the human-gorilla divergence and became established as genetic novelties in the human lineage. We submit that the chronology of divergence of primate lines of evolution can be correlated with the timing of insertion of new DNA repeats into the genomes of those primates.  相似文献   

9.
We are constantly exposed to sources of agents that directly damage the genetic material. This exposure comes from environmental sources but also from within our own organisms. DNA damage occurs at a high frequency due to metabolic processes and environmental factors such as various exposures and the intake of food and drugs. The stability and correct function of the DNA is necessary for normal cellular functions and there is good evidence that damage to the DNA can lead to cellular dysfunction, cancer and other diseases, or cell death. To avoid or minimize the damage to DNA we have evolved an elaborate set of DNA repair pathways that survey the DNA and fix the errors. There are several human diseases that are known to be defective in these repair pathways, and the accumulation of DNA damage with time in their genome may then be the cause of the associated high incidence of cancer or of an expedited ageing process. The prevention and/or repair of DNA damage thus represent major concerns in biology and medicine.  相似文献   

10.
Germ-line and somatic mtDNA mutations are hypothesized to act together to shape our history and our health. Germ-line mtDNA mutations, both ancient and recent, have been associated with a variety of degenerative diseases. Mildly to moderately deleterious germ-line mutations, like neutral polymorphisms, have become established in the distant past through genetic drift but now may predispose certain individuals to late-onset degenerative diseases. As an example, a homoplasmic, Caucasian, tRNA(Gln) mutation at nucleotide pair (np) 4336 has been observed in 5% of Alzheimer disease and Parkinson disease patients and may contribute to the multifactorial etiology of these diseases. Moderately to severely deleterious germ-line mutations, on the other hand, appear repeatedly but are eliminated by selection. Hence, all extant mutations of this class are recent and associated with more devastating diseases of young adults and children. Representative of these mutations is a heteroplasmic mutation in MTND6 at np 14459 whose clinical presentations range from adult-onset blindness to pediatric dystonia and basal ganglial degeneration. To the inherited mutations are added somatic mtDNA mutations which accumulate in random arrays within stable tissues. These mutations provide a molecular clock that measures our age and may cause a progressive decline in tissue energy output that could precipitate the onset of degenerative diseases in individuals harboring inherited deleterious mutations.  相似文献   

11.
A procedure has been described for microdissection and microcloning of human chromosomal DNA sequences in which universal amplification of the dissected fragments by Mbo I linker adaptor and polymerase chain reaction is used. A very large library comprising 700,000 recombinant plasmid microclones from 30 dissected chromosomes of human chromosome 21 was constructed. Colony hybridization showed that 42% of the clones contained repetitive sequences and 58% contained single or low-copy sequences. The insert sizes generated by complete Mbo I cleavage ranged from 50 to 1100 base pairs with a mean of 416 base pairs. Southern blot analysis of microclones from the library confirmed their human origin and chromosome 21 specificity. Some of these clones have also been regionally mapped to specific sites of chromosome 21 by using a regional mapping panel of cell hybrids. This chromosome microtechnology can generate large numbers of microclones with unique sequences from defined chromosomal regions and can be used for processes such as (i) isolating corresponding yeast artificial chromosome clones with large inserts, (ii) screening various cDNA libraries for isolating expressed sequences, and (iii) constructing region-specific libraries of the entire human genome. The studies described here demonstrate the power of this technology for high-resolution genome analysis and explicate their use in an efficient search for disease-associated genes localized to specific chromosomal regions.  相似文献   

12.
Entamoeba histolytica causes amebic dysentery and amebic liver abscess, major causes of morbidity and mortality worldwide. We have used differential hybridization screening to isolate an E. histolytica-specific cDNA clone. The cDNA was found to encode a serine-rich E. histolytica protein (SREHP) containing multiple tandem repeats. The structural motif of SREHP resembles some of the repetitive antigens of malarial species, especially the circumsporozoite proteins. A recombinant trpE fusion protein containing the tandem repeats of SREHP was recognized by immune serum from a patient with amebiasis, demonstrating that SREHP is a naturally immunogenic protein. An antiserum raised against the recombinant fusion protein specifically bound to two distinct bands with apparent molecular masses of 46 and 52 kDa in a crude preparation of E. histolytica trophozoite membranes. This antiserum also inhibited E. histolytica trophozoite adhesion to Chinese hamster ovary cells in vitro. The ability to isolate E. histolytica-specific genes, and to express those genes in Escherichia coli, may be important in studying the molecular basis of E. histolytica pathogenesis and for the future development of vaccines.  相似文献   

13.
Ding QL  Lu YL  Dai J  Xi XD  Wang XF  Wang HL 《Haemophilia》2012,18(4):621-625
Haemophilia A (HA) is the most common hereditary bleeding disorder caused by F8 gene mutation. Linkage analysis is an auxiliary strategy to direct mutation analysis for genetic counselling of HA. Here we characterize and validate a novel panel of six short tandem repeat (STR) loci for genetic counselling in Chinese HA pedigrees. The panel was analysed in 116 unrelated healthy female patients and 108 male patients, and verified in 169 unrelated pedigrees with HA. The six STR loci in the panel spanned a distance of 0.3 Mb from each side of the F8 gene. Three of them, F8Up226, F8Up146 and F8Down48, were first described here. Markers F8Up226, F8Up146, F8Int13, F8Int25, F8Down48 and DXS1073 exhibited the number of alleles 16, 9, 8, 6, 9 and 10, and heterozygosity rates of 74.8%, 44.8%, 60.9%, 42.6%, 61.7% and 62.0% respectively. Haplotype frequencies analysis suggested that the genotypes of haplotype provided a highly informative content (56.5%). The panel was informative in 167 of 169 unrelated haemophilic pedigrees with the combined diagnostic rate of 98.8%. In eight pedigrees could not be diagnosed by mutation detection linkage studies using the panel were informative in all the pedigrees and a reliable diagnosis was made in seven pedigrees. The novel panel of the six STR loci represents a high degree of informativeness and a low fraction of recombination. Linkage analysis using this panel provides an alternative strategy when direct mutation detection is not feasible for genetic counselling in Chinese HA families.  相似文献   

14.
Three VNTR loci were previously cloned from Mycobacterium tuberculosis in our laboratory. The VNTR sequences were used as queries to search for similar sequences in the GenBank database by the BLAST program. Direct and tandem repeats were identified visually. The search revealed 45 more loci of direct and tandem repeats. Comparison of the sequences to the ones in the genome sequence database of the M. tuberculosis CDC1551 strain revealed 22 different loci. Combining these results with previously reported experimental work, at least 24 loci should be polymorphic enough to be detected by simple PCR. The repeats are present both inside coding sequences and in intergenic regions on the 5' or 3' ends of genes. M. tuberculosis contains several VNTR. Studies of their functions may be useful for understanding the differences of phenotypes between strains.  相似文献   

15.
CCAAT displacement protein (CDP), a nuclear protein of 180-190 kDa, contains a triplicated motif, the cut domain, similar (80-90% conserved) to three repeats of 60-65 amino acids first identified in Drosophila cut, a homeo-domain protein involved in cell-fate decisions in development. Cut repeats bind DNA and exhibit subtle differences in target-site recognition. DNA sequences specifically bound by cut repeats were isolated by PCR-mediated DNA target-site selection. Sequences selected for cut repeat 2 and 3 (CR2 and CR3) binding are A+T-rich and favor an ATA motif with similar, but not identical, flanking base preferences. CR2 and CR3 discriminate among similar target sequences. CR1, which is more divergent from CR2 and CR3, displays the most restricted pattern of DNA sequence recognition. Methylation interference analysis demonstrates different protein-DNA contacts for CR1 and CR3 binding to a target sequence. Thus, CDP/cut is a complex protein whose DNA-binding properties reflect the combinatorial interaction of four domains (three cut repeats and one homeodomain) with target DNA sequences.  相似文献   

16.
The whole genome sequence (1.83 Mbp) of Haemophilus influenzae strain Rd was searched to identify tandem oligonucleotide repeat sequences. Loss or gain of one or more nucleotide repeats through a recombination-independent slippage mechanism is known to mediate phase variation of surface molecules of pathogenic bacteria, including H. influenzae. This facilitates evasion of host defenses and adaptation to the varying microenvironments of the host. We reasoned that iterative nucleotides could identify novel genes relevant to microbe-host interactions. Our search of the Rd genome sequence identified 9 novel loci with multiple (range 6-36, mean 22) tandem tetranucleotide repeats. All were found to be located within putative open reading frames and included homologues of hemoglobin-binding proteins of Neisseria, a glycosyltransferase (IgtC gene product) of Neisseria, and an adhesin of Yersinia. These tetranucleotide repeat sequences were also shown to be present in two other epidemiologically different H. influenzae type b strains, although the number and distribution of repeats was different. Further characterization of the IgtC gene showed that it was involved in phenotypic switching of a lipopolysaccharide epitope and that this variable expression was associated with changes in the number of tetranucleotide repeats. Mutation of IgtC resulted in attenuated virulence of H. influenzae in an infant rat model of invasive infection. These data indicate the rapidity, economy, and completeness with which whole genome sequences can be used to investigate the biology of pathogenic bacteria.  相似文献   

17.
DNA repair alkyltransferases protect organisms against the cytotoxic, mutagenic, and carcinogenic effects of alkylating agents by transferring alkyl adducts from DNA to an active cysteine on the protein, thereby restoring the native DNA structure. We used random sequence substitutions to gain structure-function information about the human O6-methylguanine-DNA methyltransferase (EC 2.1.1.63), as well as to create active mutants. Twelve codons surrounding but not including the active cysteine were replaced by a random nucleotide sequence, and the resulting random library was selected for the ability to provide alkyltransferase-deficient Escherichia coli with resistance to the methylating agent N-methyl-N'-nitro-N-nitrosoguanidine. Few amino acid changes were tolerated in this evolutionarily conserved region of the protein. One mutation, a valine to phenylalanine change at codon 139 (V139F), was found in 70% of the selected mutants; in fact, this mutant was selected much more frequently than the wild type. V139F provided alkyltransferase-deficient bacteria with greater protection than the wild-type protein against both the cytotoxic and mutagenic effects of N-methyl-N'-nitro-N-nitrosoguanidine, increasing the D37 over 4-fold and reducing the mutagenesis rate 2.7-5.5-fold. This mutant human alkyltransferase, or others similarly created and selected, could be used to protect bone marrow cells from the cytotoxic side effects of alkylation-based chemotherapeutic regimens.  相似文献   

18.
We have identified four genetic novelties that are fixed in specific primate lineages and hence can serve as phylogenetic time markers. One Alu DNA repeat is present in the human lineage but is absent from the great apes. Another Alu DNA repeat is present in the gorilla lineage but is absent from the human, chimpanzee, and orangutan. A progenitor Xba1 element is present in the human, chimpanzee, gorilla, and orangutan, but only in the human lineage did it give rise to a transposed progeny, Xba2. The saltatory appearance of Xba2 is an example of a one-time event in the evolutionary history of a species. The enolase pseudogene, known to be present as a single copy in the human, was found to be present in four other primates, including the baboon, an Old World monkey. Using the accepted value of 5 x 10(-9) nucleotide substitutions per site per year as the evolutionary rate for pseudogenes, we calculated that the enolase pseudogene arose approximately 14 million years ago. The calculated age for this pseudogene and its presence in the baboon are incongruent with each other, since Old World monkeys are considered to have diverged from the hominid lineage some 30 million years ago. Thus the rate of evolution in the enolase pseudogene is only about 2.5 x 10(-9) substitutions per site per year, or half the rate in other pseudogenes. It is concluded that rates of substitution vary between species, even for similar DNA elements such as pseudogenes. We submit that new DNA repeats arise in the genomes of species in irreversible and punctuated events and hence can be used as molecular time markers to decipher phylogenies.  相似文献   

19.
The penicillin biosynthetic genes (pcbAB, pcbC, penDE) of Penicillium chrysogenum AS-P-78 were located in a 106.5-kb DNA region that is amplified in tandem repeats (five or six copies) linked by conserved TTTACA sequences. The wild-type strains P. chrysogenum NRRL 1951 and Penicillium notatum ATCC 9478 (Fleming's isolate) contain a single copy of the 106.5-kb region. This region was bordered by the same TTTACA hexanucleotide found between tandem repeats in strain AS-P-78. A penicillin overproducer strain, P. chrysogenum E1, contains a large number of copies in tandem of a 57.9-kb DNA fragment, linked by the same hexanucleotide or its reverse complementary TGTAAA sequence. The deletion mutant P. chrysogenum npe10 showed a deletion of 57.9 kb that corresponds exactly to the DNA fragment that is amplified in E1. The conserved hexanucleotide sequence was reconstituted at the deletion site. The amplification has occurred within a single chromosome (chromosome I). The tandem reiteration and deletion appear to arise by mutation-induced site-specific recombination at the conserved hexanucleotide sequences.  相似文献   

20.
线粒体DNA遗传变异与人类环境适应性   总被引:1,自引:1,他引:0  
线粒体是真核生物细胞内的重要细胞器,处于新陈代谢和生物能量转换中心地位,在生命活动中发挥着重要作用。线粒体通过氧化磷酸化(oxidative phosphorylation, OXPHOS)产生人体用于工作的ATP和维持体温的热量,而线粒体偶联状态则决定着产生ATP和热量的相对水平。线粒体紧密偶联,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号