首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rechargeable lithium-ion batteries require a vigorous improvement if we want to use them massively for high energy applications. Silicon and metal lithium anodes are excellent alternatives because of their large theoretical capacity when compared to graphite used in practically all rechargeable Li-ion batteries. However, several problems need to be addressed satisfactorily before a major fabrication effort can be launched; for instance, the growth of lithium dendrites is one of the most important to take care due to safety issues. In this work we attempt to predict the mechanism of dendrite growth by simulating possible behaviors of charge distributions in the anode of an already cracked solid electrolyte interphase of a nanobattery, which is under the application of an external field representing the charging of the battery; thus, elucidating the conditions for dendrite growth. The extremely slow drift velocity of the Li-ions of ∼1 mm per hour in a typical commercial Li-ion battery, makes the growth of a dendrite take a few hours; however, once a Li-ion arrives at an active site of the anode, it takes an extremely short time of ∼1 ps to react. This large difference in time-scales allows us to perform the molecular dynamics simulation of the ions at much larger drift velocities, so we can have valuable results in reasonable computational times. The conditions before the growth are assumed and conditions that do not lead to the growth are ignored. We performed molecular dynamics simulations of a pre-lithiated silicon anode with a Li : Si ratio of 21 : 5, corresponding to a fully charged battery. We simulate the dendrite growth by testing a few charge distributions in a nanosized square representing a crack of the solid electrolyte interphase, which is where the electrolyte solution comes into direct contact with the LiSi alloy anode. Depending on the selected charge distributions for such an anode surface, the dendrites grow during the simulation when an external field is applied. We found that dendrites grow when strong deviations of charge distributions take place on the surface of the crack. Results from this work are important in finding ways to constrain lithium dendrite growth using tailored coatings or pre-coatings covering the LiSi alloy anode.

Dendrite formation conditions on a SEI crack exposing the silicon anode to the electrolyte during the charging of a LIB.  相似文献   

2.
The development of new electrode materials for lithium-ion batteries (LIBs) has attracted significant attention because commercial anode materials in LIBs, like graphite, may not be able to meet the increasing energy demand of new electronic devices. Tin dioxide (SnO2) is considered as a promising alternative to graphite due to its high specific capacity. However, the large volume changes of SnO2 during the lithiation/delithiation process lead to capacity fading and poor cycling performance. In this review, we have summarized the synthesis of SnO2-based nanomaterials with various structures and chemical compositions, and their electrochemical performance as LIB anodes. This review addresses pure SnO2 nanomaterials, the composites of SnO2 and carbonaceous materials, the composites of SnO2 and transition metal oxides, and other hybrid SnO2-based materials. By providing a discussion on the synthesis methods and electrochemistry of some representative SnO2-based nanomaterials, we aim to demonstrate that electrochemical properties can be significantly improved by modifying chemical composition and morphology. By analyzing and summarizing the recent progress in SnO2 anode materials, we hope to show that there is still a long way to go for SnO2 to become a commercial LIB electrode and more research has to be focused on how to enhance the cycling stability.

The development of new electrode materials for lithium-ion batteries (LIBs) has attracted significant attention because commercial anode materials in LIBs, like graphite, may not be able to meet the increasing energy demand of new electronic devices.  相似文献   

3.
Free-standing and flexible carbon nanofiber membranes (CNMs) with a three-dimensional network structure were fabricated based on PMDA/ODA polyimide by combining electrospinning, imidization, and carbonization strategies. The influence of carbonization temperature on the physical-chemical characteristics of CNMs was investigated in detail. The electrochemical performances of CNMs as free-standing electrodes without any binder or conducting materials for lithium-ion batteries were also discussed. Furthermore, the surface state and internal carbon structure had an important effect on the nitrogen state, electrical conductivity, and wettability of CNMs, and then further affected the electrochemical performances. The CNMs/Li metal half-cells exhibited a satisfying charge–discharge cycle performance and excellent rate performance. They showed that the reversible specific capacity of CNMs carbonized at 700 °C could reach as high as 430 mA h g−1 at 50 mA g−1, and the value of the specific capacity remained at 206 mA h g−1 after 500 cycles at a high current density of 1 A g−1. Overall, the newly developed carbon nanofiber membranes will be a promising candidate for flexible electrodes used in high-power lithium-ion batteries, supercapacitors and sodium-ion batteries.

Free-standing and flexible carbon nanofiber membranes (CNMs) with a three-dimensional network structure were fabricated based on PMDA/ODA polyimide by combining electrospinning, imidization, and carbonization strategies.  相似文献   

4.
Silicon is regarded as the next generation anode material for lithium-ion batteries because of its high specific capacity, low intercalation potential and abundant reserves. However, huge volume changes during the lithiation and delithiation processes and low electrical conductivity obstruct the practical applications of silicon anodes. In this study, a treble-shelled porous silicon (TS-P-Si) structure was synthesized via a three-step approach. The TS-P-Si anode delivered a capacity of 858.94 mA h g−1 and a capacity retention of 87.8% (753.99 mA h g−1) after being subjected to 400 cycles at a current density of 400 mA g−1. The good cycling performance was due to the unique structure of the inner silicon oxide layer, middle silver nano-particle layer and outer carbon layer, leading to a good conductivity and a decreased volume change of this silicon-based anode.

In this paper, a treble-shelled porous silicon structure is synthesized through three-step approach to enhance the structural stability and conductivity.  相似文献   

5.
Integrated Al/Ni electrodes of lithium-ion batteries (LIBs) with variant atomic ratios were successfully fabricated by a one-step laser-sintering process. The microstructure, phase composition, and pore structure were controlled by the raw material composition and laser parameters. The electrodes showed working merits without any conductive agent and binder, or even the collector used in a traditional battery. It was shown that the electrode consisted of multi-phases, i.e., Al, Al3Ni2, Al3Ni, and Ni, when the Al/Ni atomic ratio was higher than 5 : 5. A lower Al/Ni atomic ratio less than 5 : 5 favored the formation of a dual-phase electrode consisting of Al3Ni2 and Ni. As the Al content increased, the specific surface area of the as-sintered electrodes increased in the initial stage and then decreased. The formation of pores was closely related to the content of the residual Al phase after the laser sintering. The residual Al phase filled the pores when the Al content was high, leading to a lower pore size. In contrast, the liquid Al phase completely reacted with the Ni component, leaving a large number of pores at its original sites. The linked pores can serve as transport channels for Li+ ions, provide mass sites for electrochemical reactions, and also buffer huge volume changes of the active material. Among the electrodes, the one with an Al/Ni ratio of 3 : 7 showed the best cycling/rate performance, i.e., a capacity of 522.8 mA h g−1 by a current of 0.1 A g−1 after 200 cycles, even holding to 338.4 mA h g−1 by a big current impact at 2 A g−1. It formed a metallurgical combination between the conductive network and the active material with multiple porous structures, which is helpful for the electrodes to provide high capacity and maintain structural stability during cycling. In addition, the average laser-sintering time of a single electrode was within 10 s, which is suitable for industrial mass production.

Integrated Al/Ni electrodes of lithium-ion batteries (LIBs) with variant atomic ratios are successfully fabricated by a one-step laser sintering process. The electrodes show working merits without any conductive agent, binder, or the collector.  相似文献   

6.
To enhance the electrochemical properties of silicon anodes in lithium-ion batteries, dimethylacrylamide (DMAA) was selected as a novel electrolyte additive. The addition of 2.5 wt% DMAA to 1.0 M LiPF6/EC : DMC : DEC : FEC (3 : 3 : 3 : 1 weight ratio) electrolyte significantly enhanced the electrochemical properties of the silicon anode including the first coulombic efficiency, rate performance and cycle performance. The solid electrolyte interphase (SEI) layers developed on the silicon anode in different electrolytes were investigated by a combination of electrochemical and spectroscopic studies. The improved electrochemical performances of the Si anode were ascribed to the effective passivation of DMAA on the silicon anode. The addition of DMAA helped develop a uniform SEI layer, which prevented side reactions at the interface of silicon and electrolyte.

To enhance the electrochemical properties of silicon anodes in lithium-ion batteries, dimethylacrylamide (DMAA) was selected as a novel electrolyte additive.  相似文献   

7.
In this study, an ultrathin 2-dimensional hierarchical nickel oxide nanobelt film array was successfully assembled and grown on a Ni substrate as a binder-free electrode material for lithium ion batteries. In the typical synthesis process, the evolution of the nickel oxide array structure was controlled by adjusting the amount of surfactant, duration of reaction time and hydrothermal temperature. By virtue of the beneficial structural characteristics of the nanobelt film array, the as-obtained NiO array electrode exhibits excellent lithium storage capacity (1035 mA h g−1 at 0.2C after 70 cycles and 839 mA h g−1 at 0.5C after 70 cycles) for LIBs. This excellent electrochemical performance is attributed to the nanobelt film (3–5 nm thickness) array structures, which have immense open spaces that offer more Li+ storage active sites and adequate buffering space to reduce internal mechanical stress and shorten the Li+ diffusion distance. Additionally, this array structure is designed to achieve a binder-free and non-conductive additive electrode without complex coating and compressing during the electrode preparation process.

In this study, an ultrathin 2-dimensional hierarchical nickel oxide nanobelt film array was successfully assembled and grown on a Ni substrate as a binder-free electrode material for lithium ion batteries.  相似文献   

8.
3D plum candy-like NiCoMnO4 microspheres have been prepared via ultrasonic spraying and subsequently wrapped by graphene through electrostatic self-assembly. The as-prepared NiCoMnO4 powders show hollow structures and NiCoMnO4@graphene exhibits excellent electrochemical performances in terms of rate performance and cycling stability, achieving a high reversible capacity of 844.6 mA h g−1 at a current density of 2000 mA g−1. After 50 cycles at 1000 mA g−1, NiCoMnO4@graphene delivers a reversible capacity of 1045.1 mA h g−1 while the pristine NiCoMnO4 only has a capacity of 143.4 mA h g−1. The hierarchical porous structure helps to facilitate electron transfer and Li-ion kinetic diffusion by shortening the Li-ion diffusion length, accommodating the mechanical stress and volume change during the Li-ion insertion/extraction processes. Analysis from the electrochemical performances reveals that the enhanced performances could be also attributed to the reduced charge-transfer resistance and enhanced Li-ion diffusion kinetics because of the graphene-coating. Moreover, Schottky electric field, due to the difference in work function between graphene and NiCoMnO4, might be favorable for the redox activity of the NiCoMnO4. In light of the excellent electrochemical performance and simple preparation, we believe that 3D plum candy-like NiCoMnO4@graphene composites are expected to be applied as a promising anode materials for high-performance lithium ion batteries.

3D plum candy-like NiCoMnO4 microspheres have been prepared via ultrasonic spraying and subsequently wrapped by graphene through electrostatic self-assembly.  相似文献   

9.
Triblock copolymer polydopamine-polyacrylic-polyoxyethylene (PDA-PAA-PEO) with excellent performance as a binder for silicon anodes was synthesized. Its structure was confirmed by 1H-NMR, FTIR and UV-vis spectroscopy. Results of electrochemical measurements indicated that a silicon anode based on PDA-PAA-PEO binder exhibited excellent cycle performance with a reversible capacity of 1597 mA h g−1 after 200 cycles at a current density of 0.5 C, much better than that of an electrode based on a polyvinylidene-fluoride binder. Improvement of the cycle performance and reversible capacity for silicon anodes could be attributed to the strong adhesive and high ion conductivity of PDA-PAA-PEO.

Triblock copolymer polydopamine-polyacrylic-polyoxyethylene with strong adhesion as a novel binder enhance the cycle performance of silicon anode.  相似文献   

10.
With a high specific capacity (4200 mA h g−1), silicon based materials have become the most promising anode materials in lithium-ions batteries. However, the large volume expansion makes the capacity reduce rapidly. In this work, a periodic silicon/carbon (Si/C) multilayer thin film was synthesized by magnetron sputtering method on copper foil. The titanium (Ti) film (about 20 nm) as the transition layer was deposited on the copper foil prior to the deposition of the multilayer film. Superior electrochemical lithium storage performance was obtained by the multilayer thin film. The initial discharge and charge specific capacity of the Si (15 nm)/C (5 nm) multilayer film anode are 2640 mA h g−1 and 2560 mA h g−1 with an initial coulombic efficiency of ∼97%. The retention specific capacity is about 2300 mA h g−1 and there is ∼87% capacity retention after 200 cycles.

With a high specific capacity (4200 mA h g−1), silicon based materials have become the most promising anode materials in lithium-ions batteries.  相似文献   

11.
Herein, we introduce the detailed electrochemical reaction mechanism of Bi2S3 (bulk as well as nanostructure) as a highly efficient anode material with Li-ions in an all-solid-state Li-ion battery (LIB). Flower-like Bi2S3 nanostructures were synthesized by a hydrothermal method and were used as an anode material in a LIB with LiBH4 as a solid electrolyte. The X-ray diffraction (XRD) pattern verified the formation of Bi2S3 nanostructures, which belongs to the orthorhombic crystal system (JCPDS no. 00-006-0333) with the Pbnm space group. Morphological studies confirmed the flower-like structure of the obtained product assembled from nanorods with the length and diameter in the range of 150–400 nm and 10–150 nm respectively. The electrochemical galvanostatic charge–discharge profile of these nanostructures demonstrates exciting results with a high discharge and charge capacity of 685 mA h g−1 & 494 mA h g−1 respectively at 125 °C. The discharge and charge capacities were observed as 375 mA h g−1 and 352 mA h g−1 after 50 cycles (with 94% coulombic efficiency), which are much better than the cells having bulk Bi2S3 as the anode material.

Bi2S3 with a hydride based solid electrolyte (LiBH4) was demonstrated to exhibit high capacity Li-storage for the first time. Nano Bi2S3 aids the better cyclic performance than commercially available bulk Bi2S3 with a very low capacity decay.  相似文献   

12.
Three-dimensional hierarchical Co3O4 microspheres assembled by well-aligned 1D porous nanorods have been synthesized by hydrothermal methods with the help of CTAB and subsequent heat treatment. The morphology and compositional characteristics of the hierarchical Co3O4 microspheres have been investigated using different techniques. Based on the SEM and TEM analyses, the growth direction of the nanorods is in the [110] direction. The hierarchical Co3O4 microspheres have a comparatively large Brunauer–Emmett–Teller surface area of about 50.2 m2g−1, and pore size distribution is mainly concentrated at 12 nm. On the basis of the time tracking experiment, a possible growth mechanism has been proposed. It demonstrates that the overall mechanism includes nucleation, oriented growth and self-assembly processes. These hierarchical Co3O4 microspheres provide several favorable features for Li-ion battery applications: (1) large Brunauer–Emmett–Teller surface area, (2) porous structure, and (3) hierarchical structure. Therefore, measurement of the electrochemical properties indicates that the specific capacity can maintain a stable value of about 1942 mA h g−1 at a current of 100 mA g−1 within 100 cycles.

Three-dimensional hierarchical Co3O4 microspheres assembled by well-aligned 1D porous nanorods were successfully fabricated. The sample exhibited excellent electrochemical properties as anode materials for LIBs.  相似文献   

13.
We fabricated lithium cobalt oxide (LiCoO2, LCO) electrodes in the absence and presence of TiO2 layers as cathodes for lithium-ion batteries (LIBs) using a sputtering deposition method under an Ar atmosphere. In particular, TiO2 coating layers on sputtered LCO electrodes were directly deposited in a layer-by-layer form with varying TiO2 sputtering times from 60 to 120 s. These sputtered electrodes were heated at 600 °C in an air atmosphere for 3 h. The thicknesses of TiO2 layers in TiO2-coated LCO electrodes were controlled from ∼2 to ∼10 nm. These TiO2-coated LCO electrodes exhibited superior electrochemical performance, i.e. high capacities (93–107 mA h g−1@0.5C), improved retention of >60% after 100 cycles, and high-rate cycling properties (64 mA h g−1@1C after 100 cycles). Such an improved performance of TiO2-coated LCO electrodes was found to be attributed to relieved volumetric expansion of LCO and protection of LCO electrodes against HF generated during cycling.

We fabricated lithium cobalt oxide (LiCoO2, LCO) electrodes in the absence and presence of TiO2 layers as cathodes for lithium-ion batteries (LIBs) using a sputtering deposition method under an Ar atmosphere.  相似文献   

14.
Aqueous rechargeable lithium-ion batteries (ARLBs) are regarded as a competitive challenger for large-scale energy storage systems because of their high safety, modest cost, and green nature. A kind of modified composite material composed of H2V3O8 nanorods and graphene sheets (HVO/G) has been effectively made by a one-step hydrothermal method and following calcination at 523 K. XRD, SEM, TEM, and TG are used to determine the phase structures and morphologies of the composite materials. Owing to the advantage of the layered structure of H2V3O8 nanorods, the excellent conductivity of the graphene sheets, and the 3D network structure of the modified composite, the ARLBs with HVO/G can deliver an adequate specific capacity of 271 mA h g−1 at 200 mA g−1 and have a retention rate of 73.4% after 50 cycles. The average discharge capacity of ARLB with HVO/G as anode has a considerable improvement over that of HVO/CNTs and HVO, whatever the current rate used. Moreover, we find that the diffusion coefficient of lithium-ion increases by an order of magnitude through the theoretical calculation for HVO/G ARLB. The new ARLB with HVO/G electrode is a potential energy storage system with great advantages, such as simple preparation, easy assembly process, excellent safety and low-cost environmental protection.

Aqueous rechargeable lithium-ion batteries (ARLBs) are regarded as a competitive challenger for large-scale energy storage systems because of their high safety, modest cost, and green nature.  相似文献   

15.
In order to effectively relieve the large volume changes of silicon anodes during the cycling process in lithium ion batteries (LIBs), we developed a vinyltriethoxysilane crosslinked poly(acrylic acid sodium) polymeric binder (PVTES-NaPAA) for the Si anodes. The PVTES-NaPAA binder was synthesized by using a free radical co-polymerization method with VTES and NaPAA as precursors. In this binder, NaPAA with carboxyl groups can provide strong adhesion between Si particles and the current collector. Furthermore, VTES can be hydrolyzed and condense with each other to form a three-dimensional crosslinked network; the special network makes it possible to improve the Si electrode stability, resulting in an excellent cycling performance (78.2% capacity retention after 100 cycles) and high coulombic efficiency (99.9% after 100 cycles).

The PVTES-NaPAA binder possesses a three-dimensional crosslinked network and exhibits an excellent cycling performance.  相似文献   

16.
Natural molybdenite, an inexpensive and naturally abundant material, can be directly used as an anode material for lithium-ion batteries. However, how to release the intrinsic capacity of natural molybdenite to achieve high rate performance and high capacity is still a challenge. Herein, we introduce an innovative, effective, and one-step approach to preparing a type of heterostructure material containing 1T@2H MoS2 crafted from insertion and expansion of natural molybdenite. The metallic 1T phase formed in situ can significantly improve the electronic conductivity of MoS2. At the same time, 1T@2H MoS2 heterostructures can provide an internal electric field (E-field) to accelerate the migration rate of electrons and ions, promote the charge transfer behaviour, and ensure the reaction reversibility and lithium storage kinetics. Such worm-like 1T@2H MoS2 heterostructures also have a large specific surface area and a large number of defects, which will help shorten the lithium-ion transmission distance and provide more ion transmission channels. As a result, it exhibits a discharge capacity of 788 mA h g−1 remarkably at 100 mA g−1 after 485 cycles and stable cycling performance. It also shows excellent magnification performance of 727 mA h g−1 at 1 A g−1, compared to molybdenite concentrate. Briefly, this work''s heterostructure architectures open up a new avenue for applying natural molybdenite in lithium-ion batteries, which has the potential to achieve large-scale commercial applications.

Natural molybdenite, an inexpensive and naturally abundant material, can be directly used as an anode material for lithium-ion batteries.  相似文献   

17.
This study marks the first ever attempt at the successful fabrication of a novel reactive membrane to combat fouling through layer-by-layer (LBL) surface modification with polyelectrolyte (PE), followed by anisotropic triangular silver nanoparticles (TSNP). The morphology and the presence of TSNP on the membrane was confirmed by HR-TEM, FE-SEM and XPS. The charge density of the novel membrane (PE-TSNP) was increased 15.6 fold, as a result of the sharp-tip morphology of the TSNP forming tip-based “hot spots” on the membrane surface and high-atom-density active facets, which also enhanced the membrane hydrophilicity by 36%. Owing to these improved features, the novel membrane displayed remarkable antibacterial and anti-adhesion properties by achieving 100% bactericidal effect against high initial bacterial concentration (107 CFU mL−1). The membrane flux was improved by 31% while retaining a high flux recovery rate of 98.2% against biofouling. The membrane also mitigated organic and bio-organic fouling by maintaining high flux recovery rates of 96% and 95% respectively. As compared with a spherical silver nanoparticle modified membrane (PE-SSNP), the PE-TSNP membrane was 25.7% more hydrophilic and achieved 10% higher bacterial killing. Moreover, the novel membrane displayed 9.5%, 11.6%, and 14% higher flux recovery rates than that of the PE-SSNP membrane against biofouling, organic and bio-organic fouling respectively. Furthermore, the novel membrane retained a long-term biocidal capability of 93% even after 4 months of successive tests. ICP-MS revealed silver ion leaching of 4 μg L−1 and the total silver loss of 14% from the PE-TSNP membrane after 14 days.

Enhanced antibacterial, anti-adhesion and fouling mitigation strategy imparted by shape dependent membrane modification via anisotropic triangular silver nanoparticles.  相似文献   

18.
Herein, we present a simple and rapid method to synthesize porous silicon/carbon microtube composites (PoSi/CMTs) by adopting a unique configuration of acid etching solution. The CMTs can act as both conductive agent and buffer for Si volume change during the charge and discharge process. The highly reversible capacity and excellent rate capability can be ascribed to the structure, where porous silicon powders are wrapped by a network of interwoven carbon microtubes. The composites show specific capacities of more than 1712 mA h g−1 at a current density of 100 mA g−1, 1566 mA h g−1 at 200 mA g−1, 1407 mA h g−1 at 400 mA g−1, 1177 mA h g−1 at 800 mA g−1, 1107 mA h g−1 at 1000 mA g−1, 798 mA hg−1 at 2000 mA g−1, and 581 mA h g−1 at 3000 mA g−1 and maintain a value of 1127 mA h g−1 after 100 cycles at a current density of 200 mA g−1. Electrochemical impedance spectroscopy (EIS) measurements prove that charge transfer resistance of PoSi/CMT composites is smaller than that of pure PoSi. In this study, we propose a quick, economical and feasible method to prepare silicon-based anode materials for lithium-ion batteries.

We added additives to the acid etching solution and prepared the silicon/carbon microtubes composites using a simple and fast method.  相似文献   

19.
Porous biomass carbon derived from corn stalks was prepared via carbonization and activation of CaCl2. Combined with its microstructure, the formation mechanism and electrochemical properties were analyzed. The addition of CaCl2 was the key factor to form the porous structure, and the proportion of CaCl2 had a significant impact on the pores distribution and electrochemical properties. The resulting sample had a specific surface area of 370.6 m2 g−1 and an average pore size of 9.65 nm. The sample was circulated at 0.2C for 100 cycles, the specific discharge capacity was 783 mA h g−1. After 60 cycles at different rates, when the current was restored to 0.2C again, the discharge specific capacity quickly recovered. This showed that the sample had excellent rate performance and cycle stability for lithium-ion batteries.

Porous biomass carbon derived from corn stalks was prepared via carbonization and activation of CaCl2.  相似文献   

20.
As a non-active material component, the binder can effectively maintain the integrity of battery electrodes. In this work, based on the inspired structure of fishing nets, a three-dimensional mesh adhesive using widely sourced raw materials CMC and β-CD was designed. These cross-linked cyclodextrins have the advantage of dispersing the stress at the anchor point and moderating the significant volume changes of the Si anode. The Si/β-CD-CMC electrode maintains a reversible capacity of 1702 mA h g−1 even after 200 cycles at a high current of 0.5C. This work represents a significant step forward in Si anode binders and enables the cross-linked cyclodextrins to have potential applications in energy storage systems.

A three-dimensional mesh β-CD-CMC adhesive was designed based on the structure of fishing nets. This cross-linked binder has the ability to disperse the stress at the anchor point and moderate the significant volume changes of the Si anode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号