首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Responses of motoneurons supplying muscles of the forelimbs, hindlimbs, back, and neck to stimulation of the medial pontomedullary reticular formation were studied with intracellular recording in cere-bellectomized cats under chloralose anesthesia.Stimulation of the midline or of a reticular region consisting of nucleus reticularis (n.r.) pontis caudalis and the dorsorostral part of n.r. gigantocellularis produced monosynaptic excitation of ipsilateral motoneurons supplying axial muscles and flexor and extensor muscles in both proximal and distal parts of the limbs. This widespread excitation appears to have been produced by rapidly conducting medial reticulospinal fibers.Stimulation of a second region consisting of n.r. ventralis and the ventrocaudal part of n. r. gigantocellularis produced monosynaptic excitation of ipsilateral neck and back motoneurons but only longer latency, apparently multisynaptic excitation of limb motoneurons. Collision tests indicated that this monosynaptic excitation did not involve fibers descending along the midline. It therefore appears to have been produced by lateral reticulospinal fibers.Reticular stimulation also produced short latency, monosynaptic inhibition of neck motoneurons, long latency, apparently polysynaptic inhibition of limb motoneurons and intermediate latency inhibition of back motoneurons. The latencies and properties of inhibitory responses of back motoneurons indicated that they were produced either disynaptically by fast fibers or monosynaptically by slower fibers.The data indicate that the medial pontomedullary reticular formation can be divided into a number of different zones each with a distinct pattern of connections with somatic motoneurons. These include the dorsorostrally located medial reticulospinal projection area, from which direct excitation of a wide variety of motoneurons can be evoked, the ventrocaudally located lateral reticulospinal projection area from which direct excitation of neck and back and direct inhibition of neck motoneurons can be evoked and the dorsal strip of n.r. gigantocellularis which has direct excitatory and inhibitory actions only on neck motoneurons.Supported in part by NSF Grant BMS 7500487 and N. I. H. Grants EY 02249, EY 00100 and NS 02619  相似文献   

2.
The lateral reticular nucleus in the cat   总被引:1,自引:0,他引:1  
The afferent paths from the spinal cord and from trigeminal afferents to the lateral reticular nucleus (LRN) were investigated by intracellular recording from 204 LRN neurones in preparations with a spinal cord lesion at C3 that spared only the ipsilateral ventral quadrant. Stimulation of nerves in the limbs evoked EPSPs and JPSPs in 201 of 204 tested LRN neurones. The strongest input was from the ipsilateral forelimb (iF) which evoked EPSPs in 49% and IPSPs in 73% of the LRN neurones. Each of the other limbs evoked EPSPs in approximately 20% and IPSPs in approximately 25% of the neurones. Stimulation of the ipsilateral trigeminal nerve (iTrig) evoked EPSPs in 32% and IPSPs in 46% of the neurones. The shortest latencies of the EPSPs and IPSPs indicated a disynaptic connection between primary afferents in the iF and iTrig and the LRN. The most direct pathways for excitatory and inhibitory responses from the other limbs were trisynaptic. Stimulation of the ventral part of the ipsilateral funiculus (iVLF) at C3 (C3iVLF) evoked monosynaptic responses in 189 of 201 tested LRN neurones. Monosynaptic EPSPs were recorded in 104 neurones and monosynaptic IPSPs in 126 neurones. Monosynaptic EPSPs and IPSPs were encountered in all parts of the LRN. Stimulation of the iVLF at L1 (L1iVLF) evoked monosynaptic EPSPs and IPSPs in the ventrolateral part of the LRN. The termination areas of excitatory and inhibitory fibres appeared to be the same. LRN neurones without monosynaptic EPSPs or IPSPs from the L1iVLF were located mainly in the dorsal part of the magnocellular division. Stimulation of the dorsal funiculi (DF) at C2 and the ipsilateral trigeminal nerve (iTrig) evoked excitatory and inhibitory responses in the LRN. The shortest latencies of EPSPs and IPSPs indicated disynaptic connections.  相似文献   

3.
The paramedian pontine and bulbar tegmentum was explored by microstimulation to outline the sites of origin of direct excitatory and inhibitory inputs to lateral rectus (LR) and medial rectus (MR) motoneurons (MNs). In order to avoid activation of fibers of passage and axon reflexes originating outside the stimulation sites, experiments were carried out 4--22 days after brain stem transections causing degeneration of vestibulo-ocular pathways. Additionally, in some experiments the paramedian tegmentum was isolated from the contralateral side by midline transections. Mapping of stimulus sites from which monosynaptic EPSPs and IPSPs were elicited brought out the following preoculomotor reticular regions: 1. LR-MNs received monosynaptic IPSPs from the contralateral reticular formation corresponding to Nucl. reticularis points caudalis (R.p.c.) and the rostral part of Nucl. reticularis gigantocellularis (R.gc.). 2. Monosynaptic inhibitory input to MR-MNs could only be demonstrated after degeneration of excitatory pathways ascending from the internuclear neurons of the VIth nucleus and from the ipsilateral vestibular nuclei. Monosynaptic IPSPs originated in the ipsilateral dorso-medial tegmentum through the entire extent of the Nucl. reticularis pontis oralis and rostral R.p.c. including the region of the ipsilateral VIth nucleus. 3. Monosynaptic excitation of LR-MNs was induced by stimulation of the ipsilateral R.p.c. and the rostral half of the paramedian bulbar tegmentum (R.gc.). 4. The sites from which monosynaptic EPSPs were evoked in MR-MNs were confined to the contralateral VIth nucleus and its immediate vicinity. No evidence could be obtained for direct excitatory inputs to MR-MNs from the ipsilateral paramedian tegmentum. It is concluded that the paramedian rhombencephalic reticular formation contains four pools of premotor neurons related to coordination of conjugate horizontal eye movements. Two of them are excitatory for LR- and MR-MNs with ipsilateral ON-directions, the other two mediate reciprocal inhibition of the antagonistic motor nuclei.  相似文献   

4.
1. Responses of neck motoneurons to stimulation of the interstitial nucleus of cajal (INC) were recorded intracellularly in cats under chloralose anesthesia. When stimuli were applied within or close to the INC, short latency, monosynaptic excitatory postsynaptic potentials (EPSPs) were evoked in many neck motoneurons. Such EPSPs were not evoked by stimulating mesencephalic regions outside the INC. 2. Stimulation of the ipsilateral INC produced monosynaptic EPSPs consistently in biventer cervicis-complexus (BCC) motoneurons, while such EPSPs were observed in about two thirds of the splenius (SP) motoneurons and half of the trapezius (TR) motoneurons tested. Stimulation of the contralateral INC produced weak monosynaptic EPSPs in about half the BCC motoneurons and in a few SP and TR motoneurons. All types of motoneurons also received longer latency, apparently polysynaptic, PSPs from both INCs. In BCC and TR motoneurons these were mainly EPSPs, in SP, mixed excitatory and inhibitory PSPs. 3. Monosynaptic EPSPs evoked by INC stimulation were not eliminated by acute and chronic parasagittal and transverse lesions placed to interrupt the bifurcating axons of all vestibulospinal and many reticulospinal neurons. No significant collision was observed between EPSPs evoked by INC and vestibular or reticular stimulation. The EPSPs evoked by stimulation of the INC therefore appear to have been produced by activation of interstitiospinal neurons rather than by an axon reflex mechanism. 4. The properties of a number of interstitiospinal neurons were observed while recording extracellularly from the mesencephalon to map the location of the INC. One third of the interstitiospinal neurons activated antidromically from the C4 segment could also be activated antidromically from L1. These lumbar-projecting neurons had conduction velocities ranging from 15--123 m/s. Several interstitiospinal neurons sending axons to the ventral horn of the neck segments were identified and two of these were found to be branching neurons that projected both to the neck and to lower levels of the spinal cord.  相似文献   

5.
Summary 1. We analysed the synaptic actions produced by Forel's field H (FFH) neurones on dorsal neck motoneurones and the pathways mediating the effects. 2. Stimulation of ipsilateral FFH induced negative field potentials of several hundred microvolts with the latency of about 1.1 ms in the medial ponto-medullary reticular formation, being largest in the ventral part of the nucleus reticularis pontis caudalis (NRPC), and in the dorsal part of the nucleus reticularis gigantocellularis (NRG). 3. Stimulation of ipsilateral FFH induced excitatory postsynaptic potentials (EPSPs) in 90% (47/52) and inhibitory postsynaptic potentials (IPSPs) in 19% (10/52) of the reticulospinal neurones (RSNs) in the NRPC and the NRG. Latencies of the EPSPs and IPSPs were 0.7–3.0 ms, the majority of which were in the monosynaptic range. The monosynaptic connexions were confirmed by spike triggered averarging technique both in excitatory (n=4) and inhibitory (n=2) pathways. 4. Single stimulation of FFH induced EPSPs at the segmental latencies of 0.3–1.0 ms in neck motoneurones, which were clearly in the monosynaptic range. Repetitive stimulation of FFH produced marked temporal facilitation of EPSPs in neck motoneurones. The facilitated components of the EPSPs had a little longer latencies and their amplitude reached several times as large as that evoked by single stimulation in all the tested motoneurones. These facilitated excitations are assumed to be mediated by RSNs in the NRPC and NRG, since RSNs were mono- and polysynaptically fired by stimulation of FFH and they were previously shown to directly project to neck moteneurones. 5. EPSPs were induced in 91% (82/91) of motoneurones supplying m. biventer cervicis and complexus (BCC; head elevator), 10% (3/29) of motoneurones supplying m. splenius (SPL; lateral head flexor). Eikewise, stimulation of FFH produced EMG responses in BCC muscles, while not in SPL muscle. Thus FFH neurones produce excitations preferentially in BCC motoneurones. 6. Systematic tracking in and around FFH revealed that the effective sites for evoking above effects were in FFH and extended caudally along their efferent axonal course. 7. These results suggested that FFH neurones connect with neck motoneurones (chiefly BCC, head elevator) mono-, diand/or polysynaptically and are mainly concerned with the control of vertical head movements.  相似文献   

6.
1. The synaptic pathways underlying tectal influence over pinna movements were studied using an acute electrophysiological approach. Under pentobarbital anesthesia, postsynaptic potentials were recorded intracellularly in antidromically identified, cat facial motoneurons following electrical stimulation of the superior colliculus. How collicular topography is reflected in these synaptic potentials was examined using multiple stimulation sites. The pathways responsible for tectally evoked synaptic potentials were studied by making acute brain stem lesions and by intra-axonal horseradish peroxidase (HRP) staining. 2. Monosynaptic excitatory potentials (EPSPs) with latencies ranging from 0.7 to 1.1 ms and amplitudes that were always less than 1 mV were recorded in motoneurons following stimulation of the contralateral superior colliculus. Larger disynaptic EPSPs ranging in latency from 1.2 to 2.0 ms were recorded both in isolation and in association with monosynaptic EPSPs. In addition, disynaptic inhibitory synaptic potentials (IPSPs) with latencies ranging from 1.5 to 2.5 ms were observed, often in combination with monosynaptic EPSPs. Both disynaptic EPSPs and IPSPs were graded, augmented by multiple stimuli and found in all categories of motoneurons. 3. Stimulation of the ipsilateral superior colliculus produced nearly the same spectrum of potentials and latencies as did contralateral tectal stimulation. Occlusion between ipsi- and contralaterally evoked IPSPs suggests there might be a common element in the inhibitory disynaptic pathways. 4. More discrete populations of facial motoneurons were investigated. Specifically, motoneurons innervating the platysma and orbicularis oculi muscles, the intrinsic ear muscles, and muscles that move the vibrissae all displayed tectally elicited mono- and di-synaptic potentials. Collicular input was not restricted to motoneurons involved in orienting the pinnae. 5. The presence, polarity, and amplitude of the synaptic potentials evoked in individual facial motoneurons exhibited variations that were related to the site of stimulation in either the ipsi- or contralateral colliculus. These variations are compatible with the idea that the collicular input to facial motoneurons is topographically organized. 6. Acute lesions at the level of the superior olive indicated that the pathway producing the contralateral monosynaptic EPSPs runs, near the midline, ipsilateral to the target facial nucleus, whereas the contralateral disynaptic and the ipsilateral mono- and disynaptic pathways lie further lateral.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Projections of neurones in Forel's field H (FFH) to the upper cervical cord and to the lower brainstem were demonstrated by retrograde labelling of the neurones with horseradish peroxidase (HRP). Systematic threshold mapping for evoking antidromic spikes of FFH neurones revealed that they projected to the neck motor nuclei and to pontomedullary reticular formation (PMRF). Stimulation of FFH evoked large monosynaptic excitatory postsynaptic potentials (EPSPs) in reticulospinal neurones (RSNs) of the PMRF, and mono- and disynaptic EPSPs in the dorsal neck motoneurones. Above EPSPs were evoked from areas confined to FFH, thus indicating that they were elicited by stimulation of FFH neurones. Monosynaptic EPSPs in motoneurones were small but disynaptic EPSPs were markedly facilitated following stimulation with train pulses, becoming several times larger than the monosynaptic EPSPs. Disynaptic EPSPs were supposed to be relayed by RSNs in the PMRF which are known to project to dorsal neck motoneurones. The mono- and disynaptic EPSPs were induced chiefly in motoneurones of the head elevator (m. biventer cervicis and complexus) and rarely of the neck lateral flexor (m. splenius). It was suggested that FFH neurones are involved in the control of vertical head movements.  相似文献   

8.
The aim of the study was to analyze interactions between neuronal networks mediating centrally initiated movements and reflex reactions evoked by peripheral afferents; specifically whether interneurons in pathways from group Ib afferents and from group II muscle afferents mediate actions of reticulospinal neurons on spinal motoneurons by contralaterally located commissural interneurons. To this end reticulospinal tract fibers were stimulated in the contralateral medial longitudinal fascicle (MLF) in chloralose-anesthetized cats in which the ipsilateral half of the spinal cord was transected rostral to the lumbosacral enlargement. In the majority of interneurons mediating reflex actions of group Ib and group II afferents, MLF stimuli evoked either excitatory or inhibitory postsynaptic potentials (EPSPs and IPSPs, respectively) or both EPSPs and IPSPs attributable to disynaptic actions by commissural interneurons. In addition, in some interneurons EPSPs were evoked at latencies compatible with monosynaptic actions of crossed axon collaterals of MLF fibers. Intracellular records from motoneurons demonstrated that both excitation and inhibition from group Ib and group II afferents are modulated by contralaterally descending reticulospinal neurons. The results lead to the conclusion that commissural interneurons activated by reticulospinal neurons affect motoneurons not only directly, but also by enhancing or weakening activation of premotor interneurons in pathways from group Ib and group II afferents. The results also show that both excitatory and inhibitory premotor interneurons are affected in this way and that commissural interneurons may assist in the selection of reflex actions of group Ib and group II afferents during centrally initiated movements.  相似文献   

9.
Summary Field potentials and postsynaptic potentials were recorded in the vestibular and abducens nuclei and neurons following vestibular nerve stimulation in anesthetized newborn kittens (within 72 h after birth). Stimulation of the ipsilateral vestibular nerve evoked an initial P wave and an N1 field potential in the vestibular nuclei. No N2 potential was evoked. Latencies of the peak of the P wave, the onset and the peak of the N1 potential were 0.99±0.16 ms, 1.66±0.18 ms, and 2.51±0.23 ms, respectively. Ipsilateral vestibular nerve stimulation evoked monosynaptic excitatory postsynaptic potentials (EPSPs) and polysynaptic inhibitory postsynaptic potentials (IPSPs) in vestibular nuclear neurons. Stimulation of the contralateral vestibular nerve evoked polysynaptic IPSPs in vestibular nuclear neurons. In abducens motoneurons, ipsilateral vestibular nerve stimulation evoked monosynaptic EPSPs and disynaptic IPSPs; contralateral vestibular nerve stimulation produced disynaptic EPSPs. We conclude that short circuit pathways of the vestibul-ovestibular and vestibulo-ocular reflex arc are present in the kitten already at birth.Supported by the Japanese Ministry of Education, Science, and Culture Grants-in-Aid for Scientific Research nos. 572 140 30 and 575 700 53  相似文献   

10.
Summary This study investigated the nature of synaptic inputs from the Forel's field H (FFH) in the medial mesodiencephalic junction to inferior oblique (IO) motoneurons in the oculomotor nucleus and superior oblique (SO) motoneurons in the trochlear nucleus in anesthetized cats, using intracellular recording techniques. Stimulation of the FFH induced monosynaptic EPSPs in IO motoneurons on both sides. Paired stimulation of the ipsilateral FFH and contralateral vestibular nerve substantiated that the FFH-induced EPSPs were caused mainly by direct excitatory fibers from the FFH to IO motoneurons and partly by axon collaterals of excitatory neurons in the vestibular nuclei. Among parts of the FFH, the medial part was most effective for producing the EPSPs. Systematic tracking with the stimulating electrode in and around the FFH revealed that effective sites of stimulation inducing negative field potentials in the IO subdivision of the oculomotor nucleus, identified as extracellular counterparts of the EPSPs in IO motoneurons, were also located in the interstitial nucleus of Cajal, nearby reticular formation and posterior commissure, besides within and near the medial part of the FFH. Areas far rostral, dorsal and ventral to the FFH were ineffective. EPSP-IPSPs or EPSPs were mainly induced in SO motoneurons on both sides by FFH stimulation. Latencies of these EPSPs and IPSPs were close to those of the EPSPs in IO motoneurons, indicating their monosynaptic nature. Effective stimulation sites for inducing these synaptic potentials overlapped those for the EPSPs in IO motoneurons. Based on these results, it was suggested that excitatory and inhibitory premotor neurons directly controlling IO and SO motoneurons were located within and near the medial part of the FFH.  相似文献   

11.
Summary Effects of stimulation in the medullary reticular formation (RF) on C3-C4 propriospinal neurones (PNs) were investigated in two series of experiments: (1) indirectly by analyzing how propriospinal transmission to forelimb motoneurones is modified by reticular stimuli; (2) directly by intracellular recording from C3-C4 neurones, which were identified as propriospinal by their antidromic activation from the C6 segment.Propriospinally mediated disynaptic EPSPs evoked in motoneurones from the pyramid (Pyr) and the red nucleus (NR) were effectively facilitated by conditioning stimulation in the RF with a time course of facilitation indicating monosynaptic linkage to the PNs. Propriospinally mediated trisynaptic IPSPs were facilitated less regularly and sometimes instead depressed by conditioning stimulation in the RF. The depression is at least partly due to inhibition of the first order PNs.Recording from C3-C4 PNs revealed that many of them were excited or inhibited by single stimuli in the RF. The brief latency of the EPSPs evoked in these neurones shows monosynaptic linkage from fast reticulospinal fibres. Some IPSPs were similarly monosynaptically evoked from fast fibres and observations are presented suggesting that longer latency IPSPs are monosynaptically mediated by slower fibres. Facilitation of propriospinal transmission to motoneurones as well as the EPSPs and IPSPs in PNs were evoked from a region within or close to the nucleus reticularis gigantocellularis.Convergence of monosynaptic EPSPs from Pyr, NR, tectum, and RF was common in C3-C4 PNs. Linear summation of the EPSPs from RF with those evoked from cortico-, rubro-, or tectospinal tracts shows that the former are not due to stimulation of collaterals which the latter tracts may have in RF. Mediation of the EPSPs and IPSPs by descending, rather than by antidromically activated ascending fibres, was indicated by temporal facilitation produced by RF stimuli, subliminal for evoking monosynaptic PSPs in the PNs. Stimulation of the labyrinth did not evoke disynaptic PSPs in any of the PNs investigated.It is concluded that the C3-C4 PNs projecting to forelimb motoneurones can be excited not only from the cortico-, rubro-, and tectospinal tracts (Illert et al. 1977, 1978) but also by reticulospinal fibres.Abbreviations LF lateral funiculus - MLF medial longitudinal fasciculus - NR nucleus ruber - PNs propriospinal neurones - Pyr pyramids - T tectum - RF reticular formation - i ipsilateral - co contralateral - Bi biceps - Br brachialis - DR deep radial - Tri triceps This work was supported by the Swedish Medical Research Council (Project No. 94)  相似文献   

12.
1. The organization of the synaptic pathways underlying midbrain tegmentum influence over the facial musculature was studied with the use of an acute electrophysiological approach in the cat. Under pentobarbital sodium anesthesia, synaptic potentials were recorded intracellularly in antidromically identified facial motoneurons following electrical stimulation of the paralemniscal zone. The cells of origin and the pathways responsible for the potentials evoked from the paralemniscal zone were defined with the use of retrograde transport of horseradish peroxidase (HRP). The putative role of the paralemniscal zone with regard to the production of disynaptic, tectally evoked potentials in facial motoneurons was investigated both by inactivating this nucleus with injections of lidocaine and by making acute brain stem lesions to sever the paralemniscal-facial and other afferent pathways. 2. Following paralemniscal stimulation, monosynaptic, excitatory postsynaptic potentials (EPSPs) with latencies ranging from 0.6 to 0.9 ms, steep rising phases, and amplitudes in excess of 4.0 mV were recorded in motoneurons of the temporal and auriculoposterior subdivisions, which supply the pinna muscles. Smaller amplitude EPSPs (less than 1.0 mV) with monosynaptic latencies were observed in the zygomatic subdivision. Polysynaptic EPSPs with latencies ranging from 1.0 to 1.8 ms were also observed in all three of these subdivisions. However, only long-latency EPSPs, arriving at 2.0 ms or later, were present in ventral subdivision motoneurons. 3. Inhibitory postsynaptic potentials (IPSPs) were also frequently recorded in facial motoneurons after paralemniscal stimulation. Monosynaptic IPSPs with latencies ranging from 0.8 to 1.2 ms and amplitudes in excess of 4.0 mV were recorded in facial motoneurons of the temporozygomatic and auriculoposterior subdivisions, as were polysynaptic IPSPs with latencies ranging from 1.2 to 1.8 ms. IPSPs were sometimes observed in combination with a smaller, shorter latency EPSPs. Only long-latency IPSPs of greater than 2.0 ms were recorded in ventral subdivision motoneurons. In all cases, both the EPSPs and the IPSPs were graded in character and could be augmented by multiple stimuli. 4. The contralateral paralemniscal zone and the supraoculomotor area, bilaterally, represented the two most prominent afferent sources labeled after HRP injection of the facial nucleus. The superior colliculus and numerous reticular formation regions were also identified as facial nucleus afferents by the presence of retrogradely labeled cells. The retrogradely labeled cells in the paralemniscal zone exhibited heterogeneous soma size. HRP-labeled axons of the paralemniscal-facial pathway were observed to cross the midline by traveling ventral to the brachium conjunctivum in the caudal mesencephalon.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The location of intercalated neurones mediating disynaptic excitation from tectum, tegmentum and pyramids to dorsal neck motoneurones has been investigated by: (a) recording field potentials in the lower brain stem evoked from the above systems, (b) systematic stimulation in the brain stem during intracellular recording from motoneurones innervating the splenius, biventer cervicis and complexus muscles, and (c) comparing the effects of lesions of the brain stem with kainic acid on the disynaptic EPSPs elicited from the above three systems. Electrical stimulation of the contralateral superior colliculus evoked monosynaptic field potentials which were largest in the caudal pontine reticular formation rostral to the abducens nucleus and in the rostral part of the medullary reticular formation caudal to the abducens nucleus. Likewise, stimulation of the ipsilateral tegmentum (the cuneiform and subcuneiform nucleus) evoked field potentials which were large in the caudal medulla and small in the pons. In contrast, stimulation of the contralateral tegmentum was ineffective in evoking field potentials. Stimulation of the pyramid 2-3 mm rostral to the obex elicited monosynaptic field potentials in the reticular formation of the lower brain stem that were only about 25% of those from the superior colliculus. In contrast to the field potentials from the superior colliculus, the pyramidal ones were large in the medulla and small in the pons. Lesions of the reticular formation in the lower brain stem by unilateral kainic acid injection caused disappearance of disynaptic EPSPs in motoneurones from the above three systems. These results strongly suggest that the intercalated neurones mediating pyramidal, tectal and tegmental EPSPs are reticulospinal neurones in the lower brain stem. Systematic stimulation in various locations of the lower brain stem showed that monosynaptic EPSPs were evoked from the regions of the reticular formation which received projection from the above three descending systems. The effective regions for evoking the EPSPs in splenius (SPL) were located somewhat more dorsally than for biventer cervicis and complexus (BCC) motoneurones. The descending axons of presumed reticulospinal neurones were stimulated with electrodes placed in medial, middle and lateral positions at the spinomedullary junction. Monosynaptic EPSPs in SPL and BCC motoneurones were evoked from the medial and middle electrodes but not from the lateral electrode.  相似文献   

14.
1. The effects of repetitive stimulation of the nucleus pontis caudalis and nucleus gigantocellularis (PnC-Gi) of the reticular formation on jaw opener and closer motoneurons were examined. The PnC-Gi was stimulated at 75 Hz at current intensities less than 90 microA. 2. Rhythmically occurring, long-duration, depolarizing membrane potentials in jaw opener motoneurons [excitatory masticatory drive potential (E-MDP)] and long-duration hyperpolarizing membrane potentials [inhibitory masticatory drive potentials (I-MDP)] in jaw closer motoneurons were evoked by 40-Hz repetitive masticatory cortex stimulation. These potentials were completely suppressed by PnC-Gi stimulation. PnC-Gi stimulation also suppressed the short-duration, stimulus-locked depolarizations [excitatory postsynaptic potentials (EPSPs)] in jaw opener motoneurons and short-duration, stimulus-locked hyperpolarizations [inhibitory postsynaptic potentials (IPSPs)] in jaw closer motoneurons, evoked by the same repetitive cortical stimulation. 3. Short pulse train (3 pulses; 500 Hz) stimulation of the masticatory area of the cortex in the absence of rhythmical jaw movements activated the short-latency paucisynaptic corticotrigeminal pathways and evoked short-duration EPSPs and IPSPs in jaw opener and closer motoneurons, respectively. The same PnC-Gi stimulation that completely suppressed rhythmical MDPs, and stimulus-locked PSPs evoked by repetitive stimulation to the masticatory area of the cortex, produced an average reduction in PSP amplitude of 22 and 17% in jaw closer and opener motoneurons, respectively. 4. PnC-Gi stimulation produced minimal effects on the amplitude of the antidromic digastric field potential or on the intracellularly recorded antidromic digastric action potential. Moreover, PnC-Gi stimulation had little effect on jaw opener or jaw closer motoneuron membrane resting potentials in the absence of rhythmical jaw movements (RJMs). PnC-Gi stimulation produced variable effects on conductance pulses elicited in jaw opener and closer motoneurons in the absence of RJMs. 5. These results indicate that the powerful suppression of cortically evoked MDPs in opener and closer motoneurons during PnC-Gi stimulation is most likely not a result of postsynaptic inhibition of trigeminal motoneurons. It is proposed that this suppression is a result of suppression of activity in neurons responsible for masticatory rhythm generation.  相似文献   

15.
Postsynaptic potentials were recorded from motoneurons in the facial nucleus in response to stimulation of the vestibular and trigeminal nerves. The motoneurons were identified by antidromic activation from their peripheral axons. Disynaptic excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs) and mixed EPSP/IPSPs were recorded in response to vestibular nerve stimulation, ranging in latency from 0.9 to 2.1 ms, with most at 1.5 ms. Activity in secondary vestibular axons recorded within the facial nucleus occurred at a latency of 0.7-1.1 ms. The amplitudes of the vestibular postsynaptic potentials were small, generally less than a millivolt, but double shocks produced marked summation. The average time to peak of ipsilateral vestibular EPSPs, 1.1 ms, was faster than that of either ipsilateral IPSPs, 1.6 ms, or contralateral EPSPs, 1.4 ms. The double-spiked vestibular activity was detectable in double-peaked PSPs. Disynaptic EPSPs, ranging in latency from 2.0 to 3.0 ms, were recorded in response to trigeminal nerve stimulation. The average time to peak was 1.3 ms. The multiple-spiked activity of the trigeminal neurons was detectable in multipeaked EPSPs. Inhibitory ipsilateral effects (Vi IPSPs) were recorded twice as often as excitatory ipsilateral effects (Vi EPSPs), being found in 29% versus 15% of the motoneurons. Contralateral effects were found in 13% of the motoneurons studied, and almost all were excitatory. Analysis of synaptic potential shapes suggested that the excitatory and inhibitory vestibular synapses probably contact distal dendrites preferentially, with the excitatory connections being somewhat closer to the soma. The trigeminal inputs probably contact the facial motoneurons more extensively near the soma. Horseradish peroxidase was injected into the facial nucleus, and retrograde uptake by vestibular neurons was studied. The majority of filled vestibular neurons was ipsilateral to the injection site, especially in the medial vestibular nucleus, ventral y group, and supravestibular nucleus. On the contralateral side, filled vestibular cells were found almost exclusively in the medial nucleus. Filled cells were also noted in the trigeminal nucleus, predominantly ipsilaterally at all rostrocaudal levels. We have demonstrated monosynaptic projections to facial motoneurons from both vestibular and trigeminal nuclei. The trigeminal input is likely to be involved in facial reflexes, especially blinking and grimacing. The afferent vestibular population overlaps that going to the oculomotor and cervical motoneurons; these projections may be collaterals of single vestibular neurons.4+.  相似文献   

16.
Summary The effects of brain stem stimulation on thoracic back motoneurons were studied in cats anesthetized with pentobarbital. The population sampled consisted of the extensors interspinales (IS), longissimus dorsi (LD) and spinalis dorsi (SD), and of unidentified (UIC) motoneurons. The location of the motoneurons, between Th 1 and Th 10, at widely varying distances from the stimulating electrode permitted linear regression analysis of the descending neural influences.EPSPs evoked by MLF stimulation in all types of motoneurons were produced by a pathway with an average conduction velocity in the thoracic cord of 127 m/sec, and were monosynaptic. IPSPs were also produced by MLF stimulation. The IPSPs in IS and UIC motoneurons were monosynaptic and were produced by a pathway with an average conduction velocity of 69 m/sec.Stimulation of Deiters' nucleus evoked short latency EPSPs in many motoneurons. EPSPs in LD and UIC motoneurons were shown to be monosynaptic, although latency scatter and sample size made accurate determination of vestibulospinal conduction velocity impossible.Stimulation of the labyrinth evoked disynaptic EPSPs and IPSPs in many cells, as previously observed in neck motoneurons. IPSPs were frequently produced by stimulation of the contralateral labyrinth, probably by a pathway with a relay in the contralateral medial vestibular nucleus. Ipsilateral stimulation usually produced EPSPs. The excitatory pathway relays in Deiters' nucleus and, we suggest, in the descending vestibular nucleus.Supported in part by a research grant from the Public Health Service (NSO2619).  相似文献   

17.
Summary Stimulation of the brain stem in cats anesthetized with pentobarbital evoked short-latency IPSPs in many neck motoneurons. From the segmental delay of these IPSPs, and from comparison of their latencies with those of monosynaptic EPSPs evoked in the same motoneuron population by stimulation of the brain stem, it is concluded that the IPSPs are monosynaptic and are produced by descending inhibitory fibers.As many as thirteen electrodes were inserted into the medulla and pons to compare threshold stimuli required to evoke monosynaptic IPSPs from different locations. The points with the lowest threshold were in the medial vestibular nucleus and the medial longitudinal fasciculus. The IPSPs are apparently produced by fibers that originate in the medial vestibular nucleus and reach the upper cervical segments via the MLF.Electrical stimulation of the ipsilateral labyrinth often produces disynaptic IPSPs in neck motoneurons, very probably by means of a relay in the medial nucleus. This inhibitory pathway between labyrinth and neck motoneurons, together with the previously described excitatory pathway relaying in Deiters' nucleus, provides some of the pathways utilized by the labyrinth in regulation of head position.  相似文献   

18.
Summary Intracellular recording was made in the C3-C4 segments from cell bodies of a previously described system of propriospinal neurones (PNs), which receive convergent monosynaptic excitation from different higher motor centres and mediate disynaptic excitation and inhibition from them to forelimb motoneurones. Inhibitory effects in these PNs have now been investigated with electrical stimulation of higher motor centres and forelimb nerves. Short-latency IPSPs were evoked by volleys in the cortico-, rubro- and tectospinal tracts and from the reticular formation. Latency measurements showed that those IPSPs which required temporal summation were disynaptically mediated. After transection of the corticospinal tract in C2, only small and infrequent disynaptic IPSPs were evoked from the pyramid. It is postulated that disynaptic pyramidal IPSPs only to a small extent are evoked by monosynaptic excitation of reticulospinal inhibitory neurones known to project directly to the PNs, and that they are mainly mediated by inhibitory interneurones in the C3-C4 segments. Tests with spatial facilitation revealed monosynaptic excitatory convergence from tecto-, rubro- and probably also from reticulospinal fibres on inhibitory interneurones monosynaptically excited from corticospinal fibres (interneuronal system I). Disynaptic IPSPs were also evoked in the great majority of the PNs by volleys in forelimb muscle and skin nerves. A short train of volleys was usually required to evoke these IPSPs from group I muscle afferents. In the case of cutaneous nerves and mixed nerves single volleys were often effective, and the lack of temporal facilitation of IPSPs produced by a train of volleys showed strong linkage from these nerves. The results obtained after transection of the dorsal column at different levels show that the relay is almost entirely rostral to the forelimb segments. Test with spatial facilitation revealed that interneurones monosynaptically activated from forelimb afferents receive convergent excitation from corticospinal but not or only weakly so from tecto- or rubrospinal fibres. There was also convergence from group I muscle afferents and low threshold cutaneous afferents on common interneurones. It is postulated that the disynaptic IPSPs from forelimb afferents are mediated by inhibitory interneurones (interneuronal system II) other than those receiving convergent descending excitation. Volleys in corticospinal fibres, in addition to the disynaptic IPSPs, evoke late IPSPs in the PNs. Similar late IPSPs were evoked from the ipsilateral forelimb by stimulation of the FRA. Monosynaptic IPSPs were evoked in the majority of the PNs on weak stimulation of the lateral reticular nucleus (LRN) and from regions dorsal to it. Results from threshold mapping suggest that these IPSPs are due to antidromic stimulation of ascending inhibitory neurones which also project to the C3-C4 PNs, and that the ascending collaterals terminate in the LRN or/and the base of the cuneate nuclei. Activity in the ascending collaterals may give higher centres information regarding inhibitory control of the PNs. It is postulated that interneuronal system I subserves descending feed-forward inhibition and interneuronal system II feed-back inhibition from the forelimb of transmission through the C3-C4 PNs to motoneurones.This work was supported by the Swedish Medical Research Council (project no. 94)  相似文献   

19.
Functional connections of single reticulospinal neurons (RSNs) in the nucleus reticularis gigantocellularis (NRG) with ipsilateral dorsal neck motoneurons were examined with the spike-triggered averaging technique. Extracellular spikes of single NRG-RSNs activated antidromically from the C6, but not from the L1 segment (C-RSNs) were used as the trigger. These neurons were monosynaptically activated from the superior colliculus and the cerebral peduncle. Single-RSN PSPs were recorded in 43 dorsal neck motoneurons [biventer cervicis and complexus (BCC) and splenius (SPL)] for 21 NRG-RSNs and 135 motoneurons tested. All synaptic potentials were EPSPs, and most of their latencies, measured from the triggering spikes, were 0.8–1.5 ms, which is in a monosynaptic range. The amplitudes of single-RSN EPSPs were 10–360 μV. Spike-triggered averaging revealed single-RSN EPSPs in multiple motoneurons of the same species (SPL or BCC), their locations extending up to nearly 1 mm rostrocaudally. Synaptic connections of single RSNs with both SPL and BCC motoneurons were also found with some predominance for one of them. The results provide direct evidence that NRG-RSNs make monosynaptic excitatory connections with SPL and BCC motoneurons. It appears that some NRG-RSNs connect predominantly with SPL motoneurons and others with BCC motoneurons. Received: 23 March 1999 / Accepted: 17 May 1999  相似文献   

20.
The postsynaptic effects evoked in lumbar motoneurones were studied following electrical stimulation of the brain stem in the cat. The spinal cord was transected at the lower thoracic level leaving only the ipsilateral ventral quadrant intact. With a stereotactical method a low threshold focus was found in the medial brain stem from which monosynaptic EPSPs could be evoked in flexor motoneurones. It is concluded that this effect is mediated by fibres descending in the ipsilateral medial longitudinal fascicle and it is tentatively suggested that these fibres originate from the ipsilateral upper medullary or lower pontine reticular formation. Monosynaptic EPSPs were also evoked in some extensor motoneurones from this medial brain stem region and at such a strength of stimulation that stimulus escape to the lateral vestibulospinal tract is excluded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号