首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
White matter (WM) degeneration is an important feature of Huntington’s disease (HD) neuropathology. To investigate WM degeneration we used Diffusion Tensor Imaging and Tract-Based Spatial Statistics to compare Fractional Anisotropy, Mean Diffusivity (MD), parallel diffusivity and perpendicular diffusivity (λ⊥) in WM throughout the whole brain in 17 clinically diagnosed HD patients and 16 matched controls. Significant WM diffusivity abnormalities were identified primarily in the corpus callosum (CC) and external/extreme capsules in HD patients compared to controls. Significant correlations were observed between motor symptoms and MD in the CC body, and between global cognitive impairment and λ⊥ in the CC genu. Probabilistic tractography from these regions revealed degeneration of functionally relevant interhemispheric WM tracts. Our findings suggest that WM degeneration within interhemispheric pathways plays an important role in the deterioration of cognitive and motor function in HD patients, and that improved understanding of WM pathology early in the disease is required.  相似文献   

2.

Slowed information processing speed is among the earliest markers of cognitive impairment in multiple sclerosis (MS) and has been associated with white matter (WM) structural integrity. Localization of WM tracts associated with slowing, but not significant impairment, on specific cognitive tasks in pediatric and young age onset MS can facilitate early and effective therapeutic intervention. Diffusion tensor imaging data were collected on 25 MS patients and 24 controls who also underwent the Symbol Digit Modalities Test (SDMT) and the computer-based Cogstate simple and choice reaction time tests. Fractional anisotropy (FA), mean (MD), radial (RD) and axial (AD) diffusivities were correlated voxel-wise with processing speed measures. All DTI metrics of several white matter tracts were significantly different between groups (p < 0.05). Notably, higher MD, RD, and AD, but not FA, in the corpus callosum correlated with lower scores on both SDMT and simple reaction time. Additionally, all diffusivity metrics in the left corticospinal tract correlated negatively with SDMT scores, whereas only MD in the right superior fronto-occipital fasciculus correlated with simple reaction time. In conclusion, subtle slowing of processing speed is correlated with WM damage in the visual-motor processing pathways in patients with young age of MS onset.

  相似文献   

3.
Huntington disease (HD) is most widely known for its selective degeneration of striatal neurons but there is also growing evidence for white matter (WM) deterioration. The primary objective of this research was to conduct a large‐scale analysis using multisite diffusion‐weighted imaging (DWI) tractography data to quantify diffusivity properties along major prefrontal cortex WM tracts in prodromal HD. Fifteen international sites participating in the PREDICT‐HD study collected imaging and neuropsychological data on gene‐positive HD participants without a clinical diagnosis (i.e., prodromal) and gene‐negative control participants. The anatomical prefrontal WM tracts of the corpus callosum (PFCC), anterior thalamic radiations (ATRs), inferior fronto‐occipital fasciculi (IFO), and uncinate fasciculi (UNC) were identified using streamline tractography of DWI. Within each of these tracts, tensor scalars for fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity coefficients were calculated. We divided prodromal HD subjects into three CAG‐age product (CAP) groups having Low, Medium, or High probabilities of onset indexed by genetic exposure. We observed significant differences in WM properties for each of the four anatomical tracts for the High CAP group in comparison to controls. Additionally, the Medium CAP group presented differences in the ATR and IFO in comparison to controls. Furthermore, WM alterations in the PFCC, ATR, and IFO showed robust associations with neuropsychological measures of executive functioning. These results suggest long‐range tracts essential for cross‐region information transfer show early vulnerability in HD and may explain cognitive problems often present in the prodromal stage. Hum Brain Mapp 36:3717–3732, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
Leber's hereditary optic neuropathy (LHON) is a mitochondrial disease characterized by retinal ganglion cell degeneration and optic nerve atrophy, leading to a loss of central vision. The aim of this study was to explore the topographical pattern of damage to the brain white matter (WM) tracts from patients with chronic LHON using diffusion tensor (DT) MRI and tract-based spatial statistics (TBSS). Brain dual-echo and DT MRI scans were acquired from 13 patients with chronic LHON and 25 matched controls using a 3.0?T scanner. TBSS analysis was performed using the FMRIB's Diffusion Toolbox. A complete neuro-ophthalmologic examination, including standardized automated Humphrey perimetry as well as average and temporal peripapillary retinal nerve fiber layer thickness (PRNFL) measurements, was obtained in all patients. Mean average and temporal PRNFL thicknesses were decreased significantly in LHON patients. Compared to controls, TBSS analysis revealed significant diffusivity abnormalities in these patients, which were characterized by a decreased fractional anisotropy (FA) and an increased mean diffusivity and radial diffusivity, affecting exclusively the optic tracts and optic radiations (OR). In patients, a significant correlation was found between optic tract average FA and mean visual acuity (r?=?0.57, p?=?0.04). In LHON patients, DT MRI reveals a microstructural alteration of the WM along the entire visual pathways, with a sparing of the other main WM tracts of the brain. Damage to the OR may be secondary either to trans-synaptic degeneration, which in turn is due to neuroaxonal loss in the retina and optic nerve, or to local mitochondrial dysfunction.  相似文献   

5.
Frataxin deficiency in Friedreich’s ataxia (FRDA) causes cardiac, endocrine, and nervous system manifestations. Frataxin is a mitochondrial protein, and adequate amounts are essential for cellular iron homeostasis. The main histological lesion in the brain of FRDA patients is neuronal atrophy and a peculiar proliferation of synaptic terminals in the dentate nucleus termed grumose degeneration. This cerebellar nucleus may be especially susceptible to FRDA because it contains abundant iron. We examined total iron and selected iron-responsive proteins in the dentate nucleus of nine patients with FRDA and nine normal controls by biochemical and microscopic techniques. Total iron (1.53 ± 0.53 μmol/g wet weight) and ferritin (206.9 ± 46.6 μg/g wet weight) in FRDA did not significantly differ from normal controls (iron: 1.78 ± 0.88 μmol/g; ferritin: 210.9 ± 9.0 μg/g) but Western blots exhibited a shift to light ferritin subunits. Immunocytochemistry of the dentate nucleus revealed loss of juxtaneuronal ferritin-containing oligodendroglia and prominent ferritin immunoreactivity in microglia and astrocytes. Mitochondrial ferritin was not detectable by immunocytochemistry. Stains for the divalent metal transporter 1 confirmed neuronal loss while endothelial cells reacting with antibodies to transferrin receptor 1 protein showed crowding of blood vessels due to collapse of the normal neuropil. Regions of grumose degeneration were strongly reactive for ferroportin. Purkinje cell bodies, their dendrites and axons, were also ferroportin-positive, and it is likely that grumose degeneration is the morphological manifestation of mitochondrial iron dysmetabolism in the terminals of corticonuclear fibers. Neuronal loss in the dentate nucleus is the likely result of trans-synaptic degeneration.  相似文献   

6.
The extent of central nervous system involvement in Kennedy's disease (KD) relative to other motor neuron disease (MND) phenotypes still needs to be clarified. In this study, we investigated cortical and white matter (WM) MRI alterations in 25 patients with KD, compared with 24 healthy subjects, 25 patients with sporadic amyotrophic lateral sclerosis (ALS), and 35 cases with lower motor neuron‐predominant disease (LMND). LMND patients were clinically differentiated into 24 fast and 11 slow progressors. Whole‐brain cortical thickness, WM tract‐based spatial statistics and corticospinal tract (CST) tractography analyses were performed. No significant difference in terms of cortical thickness was found between groups. ALS patients showed widespread decreased fractional anisotropy and increased mean (MD) and radial diffusivity (radD) in the CST, corpus callosum and fronto‐temporal extra‐motor tracts, compared with healthy controls and other patient groups. CST tractography showed significant alterations of DT MRI metrics in ALS and LMND‐fast patients whereas KD and LMND‐slow patients were comparable with healthy controls. Our study demonstrated the absence of WM abnormalities in patients with KD and LMND‐slow, in contrast with diffuse WM damage in ALS and focal CST degeneration in LMND‐fast, supporting the use of DT MRI measures as powerful tools to differentiate fast‐ and slow‐progressing MND syndromes, including KD.  相似文献   

7.
The aim of the study is to analyze diffusion tensor imaging (DTI) characteristics of the Guillain‐Mollaret triangle (GMT) in patients with hypertrophic olivary degeneration (HOD) and to investigate their correlation with previously reported histopathology. DTI was performed in 10 patients diagnosed with HOD. Fractional anisotropy, apparent diffusion coefficient, axial diffusivity, and radial diffusivity were measured in the inferior olivary nucleus (IO), the central tegmental tract, the red and the dentate nuclei, and the superior cerebellar peduncle of HOD patients and compared to age, sex, and side‐matched 10 neurologically normal population. The prominent finding on DTI in affected IO was an increase in radial diffusivity compatible with demyelination. While conventional magnetic resonance imaging did not show any sign of involvement in the other components of GMT, DTI demonstrated signal changes in all anatomical components of the GMT. Main DTI findings in GMT of patients with HOD were an increase in radial diffusivity representing demyelination and an increase in axial diffusivity that is reflective of neuronal hypertrophy. DTI parameters can reflect the spatiotemporal evolution of transneuronal degeneration associated with HOD in a manner consistent with the known pathologic stages of HOD.  相似文献   

8.
Neuropathological studies have demonstrated decreased Purkinje cells in cerebellar cortex and changes in the dentate nucleus of the cerebellum, the projection target for the Purkinje cells, in autistic spectrum disorders (ASD). The dentatorubrothalamic tract is formed by efferents from the dentate nucleus projecting toward the red nucleus with axon collaterals to this nucleus and continuing to innervate the ventral lateral and ventral anterior nuclei of the thalamus. In the current study, we assessed whether the dentatorubrothalamic tract is altered in ASD using Q-ball imaging (QBI). The QBI tractography was performed in 13 children with high functioning ASD (HFA), 11 children with low functioning ASD (LFA), and 14 typically developing children (TD). Regions of interest in dentate nucleus and red nucleus in both hemispheres were objectively placed to sort bilateral dorsal?Crostral (DR), dorsal?Ccaudal (DC), ventral?Crostral (VR), and ventral?Ccaudal (VC) portions of the dentatorubrothalamic pathway. Group differences in fractional anisotropy (FA), axial diffusivity, radial diffusivity, and fiber volume of individual pathways were analyzed. Significantly reduced FA was found in children with LFA and HFA, compared to the TD group in tracts originating in all four subdivisions of the right dentate nucleus. Tract-based morphometry (TBM) analysis demonstrated significant reductions of FA in caudal midbrain (p?<?0.0001), dorsal?Ccaudal dentate (p?=?0.0013), and ventral?Ccaudal dentate (p?=?0.0061) on the right in the LFA group. The FA values in TBM segments of right VR and VC pathways were significantly correlated with communication skills in the combined HFA/LFA group, while there was a significant correlation found between TBM segments of right DR pathway and daily living skills (r?=?0.76; p?=?0.004). Decreased white matter integrity in dorsal portions of the dentatorubrothalamic tract may be related to motor features in ASD, while changes in the ventral portions are related more to communication behavior.  相似文献   

9.
White matter (WM) microstructure, as determined by diffusion tensor imaging (DTI), is increasingly recognized as an important determinant of cognitive function and is also altered in neuropsychiatric disorders. Little is known about genetic and environmental influences on WM microstructure, especially in early childhood, an important period for cognitive development and risk for psychiatric disorders. We studied the heritability of DTI parameters, fractional anisotropy (FA), radial diffusivity (RD) and axial diffusivity (AD) along 34 tracts, including 10 bilateral fiber pathways and the respective subdivision, using quantitative tractography in a longitudinal sample of healthy children at 1 year (N = 215) and 2 years (N = 165) of age. We found that heritabilities for whole brain AD, RD, and FA were 0.48, 0.69, and 0.72 at age 1, and 0.59, 0.77, and 0.76 at age 2 and that mean heritabilities of tract‐averaged AD, RD, and FA for individual bundles were moderate (over 0.4). However, the heritability of DTI change between 1 and 2 years of age was not significant for most tracts. We also demonstrated that point‐wise heritability tended to be significant in the central portions of the tracts and was generally spatially consistent at ages 1 and 2 years. These results, especially when compared to heritability patterns in neonates, indicate that the heritability of WM microstructure is dynamic in early childhood and likely reflect heterogeneous maturation of WM tracts and differential genetic and environmental influences on maturation patterns.  相似文献   

10.
White matter (WM) integrity has been related to cognitive ability in adults and children, but it remains largely unknown how WM maturation in early life supports emergent cognition. The associations between tract‐based measures of fractional anisotropy (FA) and axial and radial diffusivity (AD, RD) shortly after birth, at age 1, and at age 2 and cognitive measures at 1 and 2 years were investigated in 447 healthy infants. We found that generally higher FA and lower AD and RD across many WM tracts in the first year of life were associated with better performance on measures of general cognitive ability, motor, language, and visual reception skills at ages 1 and 2, suggesting an important role for the overall organization, myelination, and microstructural properties of fiber pathways in emergent cognition. RD in particular was consistently related to ability, and protracted development of RD from ages 1 to 2 years in several tracts was associated with higher cognitive scores and better language performance, suggesting prolonged plasticity may confer cognitive benefits during the second year of life. However, we also found that cognition at age 2 was weakly associated with WM properties across infancy in comparison to child and demographic factors including gestational age and maternal education. Our findings suggest that early postnatal WM integrity across the brain is important for infant cognition, though its role in cognitive development should be considered alongside child and demographic factors.  相似文献   

11.
Hematopoietic stem cell transplantation (HSCT) is often used in the treatment of hematologic disorders. Although it can be curative, the pre-transplant conditioning regimen can be associated with neurotoxicity. In this prospective study, we examined white matter (WM) integrity with diffusion tensor imaging (DTI) and neuropsychological functioning before and one year after HSCT in twenty-two patients with hematologic disorders and ten healthy controls evaluated at similar intervals. Eighteen patients received conditioning treatment with high-dose (HD) chemotherapy, and four had full dose total body irradiation (fTBI) and HD chemotherapy prior to undergoing an allogeneic or autologous HSCT. The results showed a significant decrease in mean diffusivity (MD) and axial diffusivity (AD) in diffuse WM regions one year after HSCT (p-corrected <0.05) in the patient group compared to healthy controls. At baseline, patients treated with allogeneic HSCT had higher MD and AD in the left hemisphere WM than autologous HSCT patients (p-corrected <0.05). One year post-transplant, patients treated with allogeneic HSCT had lower fractional anisotropy (FA) and higher radial diffusivity (RD) in the right hemisphere and left frontal WM compared to patients treated with autologous HSCT (p-corrected <0.05).There were modest but significant correlations between MD values and cognitive test scores, and these were greatest for timed tests and in projection tracts. Patients showed a trend toward a decline in working memory, and had lower cognitive test scores than healthy controls at the one-year assessment. The findings suggest a relatively diffuse pattern of alterations in WM integrity in adult survivors of HSCT.  相似文献   

12.
Previous neuroimaging studies have revealed that both gray matter (GM) and white matter (WM) are altered in several morphological aspects in amyotrophic lateral sclerosis (ALS). However, the relations between GM and WM measures and their contributions to clinical features remain in doubt. In this study, we acquired high-resolution diffusion tensor imaging along with structural magnetic resonance imaging data on 20 patients with clinical evidence of ALS and 21 matched healthy controls. WM microstructural metrics and cortical thickness were measured to characterize the whole brain WM and GM degenerative patterns. Probabilistic diffusion tractography was used to reconstruct the tracts from the WM regions characterized by fractional anisotropy (FA) decrease in patients. Decreased FA and increased radial diffusivity was observed in WM regions of the bilateral corticospinal tracts (CST) and callosal motor fibers in the ALS patients, while the superior longitudinal fasciculus exhibited a changing trend. Cortical thinning was found in the anatomically congruent regions, including the motor-related cortices (i.e., bilateral precentral gyri, dorsal premotor cortices, and left supplementary motor area), prefrontal and occipito-parietal regions. However, there was no significant relationship between FA reduction and cortical thinning. Finally, patients with faster clinical progression showed more severe cortical thinning of the left precentral gyrus and FA reduction of the left CST. Together, these findings suggest that ALS is multisystem degeneration involving both the widespread cortices and the underlying WM fibers. GM and WM changes might play distinct roles in the disease progression.  相似文献   

13.
In a multicenter setting, we applied voxel‐based methods to different structural MR imaging modalities to define the relative contributions of focal lesions, normal‐appearing white matter (NAWM), and gray matter (GM) damage and their regional distribution to cognitive deficits as well as impairment of specific cognitive domains in multiple sclerosis (MS) patients. Approval of the institutional review boards was obtained, together with written informed consent from all participants. Standardized neuropsychological assessment and conventional, diffusion tensor and volumetric brain MRI sequences were collected from 61 relapsing‐remitting MS patients and 61 healthy controls (HC) from seven centers. Patients with ≥2 abnormal tests were considered cognitively impaired (CI). The distribution of focal lesions, GM and WM atrophy, and microstructural WM damage were assessed using voxel‐wise approaches. A random forest analysis identified the best imaging predictors of global cognitive impairment and deficits of specific cognitive domains. Twenty‐three (38%) MS patients were CI. Compared with cognitively preserved (CP), CI MS patients had GM atrophy of the left thalamus, right hippocampus and parietal regions. They also showed atrophy of several WM tracts, mainly located in posterior brain regions and widespread WM diffusivity abnormalities. WM diffusivity abnormalities in cognitive‐relevant WM tracts followed by atrophy of cognitive‐relevant GM regions explained global cognitive impairment. Variable patterns of NAWM and GM damage were associated with deficits in selected cognitive domains. Structural, multiparametric, voxel‐wise MRI approaches are feasible in a multicenter setting. The combination of different imaging modalities is needed to assess and monitor cognitive impairment in MS. Hum Brain Mapp 37:1627‐1644, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

14.
Developmental dyslexia has been hypothesized to result from multiple causes and exhibit multiple manifestations, implying a distributed multidimensional effect on human brain. The disruption of specific white‐matter (WM) tracts/regions has been observed in dyslexic children. However, it remains unknown if developmental dyslexia affects the human brain WM in a multidimensional manner. Being a natural tool for evaluating this hypothesis, the multivariate machine learning approach was applied in this study to compare 28 school‐aged dyslexic children with 33 age‐matched controls. Structural magnetic resonance imaging (MRI) and diffusion tensor imaging were acquired to extract five multitype WM features at a regional level: white matter volume, fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity. A linear support vector machine (LSVM) classifier achieved an accuracy of 83.61% using these MRI features to distinguish dyslexic children from controls. Notably, the most discriminative features that contributed to the classification were primarily associated with WM regions within the putative reading network/system (e.g., the superior longitudinal fasciculus, inferior fronto‐occipital fasciculus, thalamocortical projections, and corpus callosum), the limbic system (e.g., the cingulum and fornix), and the motor system (e.g., the cerebellar peduncle, corona radiata, and corticospinal tract). These results were well replicated using a logistic regression classifier. These findings provided direct evidence supporting a multidimensional effect of developmental dyslexia on WM connectivity of human brain, and highlighted the involvement of WM tracts/regions beyond the well‐recognized reading system in dyslexia. Finally, the discriminating results demonstrated a potential of WM neuroimaging features as imaging markers for identifying dyslexic individuals. Hum Brain Mapp 37:1443‐1458, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
Cortical and subcortical nuclei degenerate in the dementias, but less is known about changes in the white matter tracts that connect them. To better understand white matter changes in behavioral variant frontotemporal dementia (bvFTD) and early-onset Alzheimer’s disease (EOAD), we used a novel approach to extract full 3D profiles of fiber bundles from diffusion-weighted MRI (DWI) and map white matter abnormalities onto detailed models of each pathway. The result is a spatially complex picture of tract-by-tract microstructural changes. Our atlas of tracts for each disease consists of 21 anatomically clustered and recognizable white matter tracts generated from whole-brain tractography in 20 patients with bvFTD, 23 with age-matched EOAD, and 33 healthy elderly controls. To analyze the landscape of white matter abnormalities, we used a point-wise tract correspondence method along the 3D profiles of the tracts and quantified the pathway disruptions using common diffusion metrics – fractional anisotropy, mean, radial, and axial diffusivity. We tested the hypothesis that bvFTD and EOAD are associated with preferential degeneration in specific neural networks. We mapped axonal tract damage that was best detected with mean and radial diffusivity metrics, supporting our network hypothesis, highly statistically significant and more sensitive than widely studied fractional anisotropy reductions. From white matter diffusivity, we identified abnormalities in bvFTD in all 21 tracts of interest but especially in the bilateral uncinate fasciculus, frontal callosum, anterior thalamic radiations, cingulum bundles and left superior longitudinal fasciculus. This network of white matter alterations extends beyond the most commonly studied tracts, showing greater white matter abnormalities in bvFTD versus controls and EOAD patients. In EOAD, network alterations involved more posterior white matter – the parietal sector of the corpus callosum and parahipoccampal cingulum bilaterally. Widespread but distinctive white matter alterations are a key feature of the pathophysiology of these two forms of dementia.  相似文献   

16.
Atypical age‐dependent changes of white matter (WM) microstructure play a central role in abnormal brain maturation of the children with autism spectrum disorder (ASD), but their early manifestations have not been systematically characterized. The entire brain core WM voxels were surveyed to detect differences in WM microstructural development between 31 children with ASD of 2–7 years and 19 age‐matched children with typical development (TD), using measurements of fractional anisotropy (FA) and radial diffusivity (RD) from diffusion tensor imaging (DTI). The anatomical locations, distribution, and extent of the core WM voxels with atypical age‐dependent changes in a specific tract or tract group were delineated and evaluated by integrating the skeletonized WM with a digital atlas. Exclusively, unidirectional FA increases and RD decreases in widespread WM tracts were revealed in children with ASD before 4 years, with bi‐directional changes found for children with ASD of 2–7 years. Compared to progressive development that raised FA and lowered RD during 2–7 years in the TD group, flattened curves of WM maturation were found in multiple major WM tracts of all five tract groups, particularly associational and limbic tracts, in the ASD group with trend lines of ASD and TD crossed around 4 years. We found atypical age‐dependent changes of FA and RD widely and heterogeneously distributed in WM tracts of children with ASD. The early higher WM microstructural integrity before 4 years reflects abnormal neural patterning, connectivity, and pruning that may contribute to aberrant behavioral and cognitive development in ASD. Hum Brain Mapp 37:819–832, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
Chronic exposure to manganese (Mn), which can be an occupational hazard or can result from liver failure, is associated with adverse motor and cognitive outcomes. Evidence from previous neuroimaging and magnetic resonance spectroscopy studies suggested alteration of function in Mn-exposed brains. However, the effect of chronic exposure of the human brain to Mn on white matter (WM) structure has not yet been determined. In the present study, we used diffusion tensor imaging (DTI) to investigate whether welders exposed to Mn demonstrate differences in WM integrity, compared with control subjects. Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were measured on a voxel-wise basis in 30 male welders with exposure to Mn and in 19 age- and gender-matched control subjects. Direct comparison between welders and controls using investigator-independent Statistical Parametric Mapping (SPM) voxel-wise analysis of DTI metrics revealed a reduction of FA in the corpus callosum (CC) and frontal WM in Mn-exposed welders. Further, marked increases in RD and negligible changes in AD suggested that the microstructural changes in the CC and frontal WM result from compromised radial directionality of fibers in these areas, caused primarily by demyelination. Correlation analysis with neurobehavioral performance also suggested that the microstructural abnormalities were associated with subtle motor and cognitive differences in welders.  相似文献   

18.

Background

Motor and cognitive impairment in Parkinson's disease (PD) is associated with dopaminergic dysfunction that stems from substantia nigra (SN) degeneration and concomitant α-synuclein accumulation. Diffusion magnetic resonance imaging (MRI) can detect microstructural alterations of the SN and its tracts to (sub)cortical regions, but their pathological sensitivity is still poorly understood.

Objective

To unravel the pathological substrate(s) underlying microstructural alterations of SN, and its tracts to the dorsal striatum and dorsolateral prefrontal cortex (DLPFC) in PD.

Methods

Combining post-mortem in situ MRI and histopathology, T1-weighted and diffusion MRI, and neuropathological samples of nine PD, six PD with dementia (PDD), five dementia with Lewy bodies (DLB), and 10 control donors were collected. From diffusion MRI, mean diffusivity (MD) and fractional anisotropy (FA) were derived from the SN, and tracts between the SN and caudate nucleus, putamen, and DLPFC. Phosphorylated-Ser129-α-synuclein and tyrosine hydroxylase immunohistochemistry was included to quantify nigral Lewy pathology and dopaminergic degeneration, respectively.

Results

Compared to controls, PD and PDD/DLB showed increased MD of the SN and SN-DLPFC tract, as well as increased FA of the SN-caudate nucleus tract. Both PD and PDD/DLB showed nigral Lewy pathology and dopaminergic loss compared to controls. Increased MD of the SN and FA of SN-caudate nucleus tract were associated with SN dopaminergic loss. Whereas increased MD of the SN-DLPFC tract was associated with increased SN Lewy neurite load.

Conclusions

In PD and PDD/DLB, diffusion MRI captures microstructural alterations of the SN and tracts to the dorsal striatum and DLPFC, which differentially associates with SN dopaminergic degeneration and Lewy neurite pathology. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.  相似文献   

19.
We combined tract‐based spatial statistics (TBSS) and magnetization transfer (MT) imaging to assess white matter (WM) tract‐specific short‐term changes in early primary‐progressive multiple sclerosis (PPMS) and their relationships with clinical progression. Twenty‐one PPMS patients within 5 years from onset underwent MT and diffusion tensor imaging (DTI) at baseline and after 12 months. Patients' disability was assessed. DTI data were processed to compute fractional anisotropy (FA) and to generate a common WM “skeleton,” which represents the tracts that are “common” to all subjects using TBSS. The MT ratio (MTR) was computed from MT data and co‐registered with the DTI. The skeletonization procedure derived for FA was applied to each subject's MTR image to obtain a “skeletonised” MTR map for every subject. Permutation tests were used to assess (i) changes in FA, principal diffusivities, and MTR over the follow‐up, and (ii) associations between changes in imaging parameters and changes in disability. Patients showed significant decreases in MTR over one year in the corpus callosum (CC), bilateral corticospinal tract (CST), thalamic radiations, and superior and inferior longitudinal fasciculi. These changes were located both within lesions and the normal‐appearing WM. No significant longitudinal change in skeletonised FA was found, but radial diffusivity (RD) significantly increased in several regions, including the CST bilaterally and the right inferior longitudinal fasciculus. MTR decreases, RD increases, and axial diffusivity decreases in the CC and CST correlated with a deterioration in the upper limb function. We detected tract‐specific multimodal imaging changes that reflect the accrual of microstructural damage and possibly contribute to clinical impairment in PPMS. We propose a novel methodology that can be extended to other diseases to map cross‐subject and tract‐specific changes in MTR. Hum Brain Mapp 35:723–733, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
Diffusion tensor MRI‐based tractography was used to investigate white matter (WM) changes in the major limbic (i.e., fornix and cingulum) and cortico‐cortical association pathways [i.e., the uncinate fasciculus, the inferior fronto‐occipital fasciculus, the inferior longitudinal fasciculus (ILF), the superior longitudinal fasciculus, and the corpus callosum] in 25 Alzheimer's disease (AD) patients, 19 amnestic mild cognitive impairment (aMCI) patients, and 15 healthy controls (HC). Mean diffusivity (MD), fractional anisotropy (FA), as well as axial (DA) and radial (DR) diffusivities were measured for each tract, using an atlas‐based tractography approach. The association of WM tract integrity with hippocampal volume was also assessed. MD values were significantly different among groups in all WM tracts (P values ranging from 0.002 to 0.03), except in the fornix (P = 0.06) and the inferior fronto‐occipital fasciculus (P = 0.09). Conversely, FA was significantly different among groups in the fornix only (P = 0.02). DA values were significantly different among groups in all WM tracts (P values ranging from 0.001 to 0.01), except in the fornix (P = 0.13) and the cingulum (P = 0.29). Significantly different DR values among groups were found in the fornix (P = 0.02) and the ILF (P = 0.01). In the fornix and cingulum, DR was significantly more increased than DA in both patient groups compared to HC. No difference in DA versus DR was found in cortico‐cortical WM tracts. DA values in the fornix were significantly correlated with the hippocampal volume. This study demonstrates a different pattern of WM involvement in the limbic and cortico‐cortical association pathways in aMCI and AD patients. Hum Brain Mapp, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号