首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
2.
We have previously provided evidence that the stimulatory action of systemic nicotine on dopamine release in the rat nucleus accumbens is initiated in the ventral tegmental area (VTA), and that it appears to be mediated partly through an indirect, presynaptic mechanism. Thus, it was found that blockade of N-methyl-D-aspartate (NMDA) receptors in the VTA attenuates the enhancing effect of nicotine on extracellular levels of dopamine in the nucleus accumbens. Moreover, the nicotine-induced dopamine output in the nucleus accumbens was found to be blocked by pretreatment with methyllycaconitine (MLA) in the VTA, indicating a role for alpha7* nicotinic acetylcholine receptors (nAChRs) in this mechanism. Thus, nicotine may exert its effects in the VTA through stimulation of alpha7* nAChRs localized on excitatory amino acid (EAA)ergic afferents. To test this hypothesis, we here measured extracellular concentrations of glutamate and aspartate in the VTA in response to systemic nicotine, with or without concurrent infusion of MLA in the VTA, using microdialysis in anaesthetized rats. Since the medial prefrontal cortex is an important source of EAA input to the VTA, we also assessed the density of alpha-bungarotoxin binding sites in the VTA in rats lesioned bilaterally in the prefrontal cortex with ibotenic acid and in sham-lesioned rats by means of quantitative autoradiography. Nicotine (0.5 mg/kg, s.c.) significantly increased extracellular levels of both aspartate and glutamate in the VTA. MLA (0.3 mM) infused locally in the VTA prevented the nicotine-induced increase in glutamate and aspartate levels. Ibotenic acid lesions of the prefrontal cortex decreased the density of alpha-bungarotoxin binding sites in the VTA by about 30%. These data indicate that nicotine increases the extracellular levels of excitatory amino acids in the VTA through stimulation of nAChRs in the VTA and that part of the alpha7* nAChR population in the VTA is localized on neurons originating in the prefrontal cortex.  相似文献   

3.
4.
We examined the binding of the novel nicotinic acetylcholine receptor (nAChR) ligand [125I]iodomethyllycaconitine (iodoMLA) in the brains of M. cynomologous (macaque) monkeys. [125I]iodoMLA bound throughout the brain with the greatest density in the thalamus and moderate intensity in the basal ganglia and cortical regions. The Kd and Bmax in whole brain tissue were similar whether 1 mM nicotine (Kd 33.25 +/- 15.17 nM, Bmax 5.80 +/- 1.06 fmol/mg) or 2 microM of the alpha7-selective antagonist alpha-bungarotoxin (Kd 46.12 +/- 18.45 nM, Bmax 6.30 +/- 1.06 fmol/mg) was used for nonspecific binding. The subtype-selectivity of this ligand was further studied with competition binding studies using nicotine, alpha-bungarotoxin and noniodinated MLA. Each ligand completely inhibited [125I]iodoMLA binding throughout the monkey brain, with Ki values of 2.23 +/- 0.85 microM for nicotine, 2.72 +/- 1.71 nM for alpha-bungarotoxin and 1.83 +/- 0.35 nM MLA in the caudate and 2.03 +/- 1.14 microM, 2.65 +/- 0.86 nM and 3.32 +/- 0.71 nM, respectively, in the putamen. The alpha3beta2/alpha6*-selective antagonist alpha-conotoxin MII failed to inhibit [125I]iodoMLA binding in any brain region. In monkeys with cognitive deficits resulting from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration, [125I]iodoMLA binding was significantly increased in the striatum, similar to results previously observed for [125I]alpha-bungarotoxin. These results suggest that, under the present experimental conditions, [125I]iodoMLA was selective for alpha7-containing nAChRs and did not bind to alpha6-containing nAChRs. This radioligand may be a useful tool for selectively imaging alpha7-containing nAChRs in vivo.  相似文献   

5.
Research on acetylcholinesterase inhibitors (ChEIs) indicates that long term exposure increases the level of nicotinic acetylcholine receptors (nAChRs) but the effects of donepezil on nAChRs are not well studied. Therefore, we investigated the effects of sub-chronic donepezil administration on nAChRs in rats and rat pheochromocytoma PC-12 cells. Male Sprague Dawley rats were administered donepezil (0.7 and 2.4 micromoles/kg), nicotine (2.5 micromoles/kg) or saline subcutaneously twice daily for 14 days, PC-12 cells were incubated with 10(-6) to 10(-4) M donepezil for 72 hours and nAChR levels were determined by receptor binding assay using the nAChR ligands [3H]-epibatidine (EPI) for non-alpha 7 nAChRs and [3H]-methyllyconitine (MLA) for alpha 7 nAChRs. Chronic donepezil administration at 1.4 micromoles/kg/day and 4.8 micromoles/ kg/day significantly increased [3H]-epibatidine binding in the cortex to 126 +/- 1.3% and 127 +/- 3.2% of the saline control animals, respectively. [3H]-MLA binding in the cortex increased to 114 +/- 4.4% and 124 +/- 2.8% of the control group for the high and low dose groups, respectively. Hippocampal [3H]-EPI binding in the low dose and high dose groups significantly increased to 135 +/- 3.6% and 125 +/- 4.6% of the controls, respectively while there were no changes in the level of [3H]-MLA binding. In striatal homogenates, neither [3H]-EPI nor [3H]-MLA binding were significantly effected at either dose of donepezil. In PC-12 cells, [3H]-EPI binding was increased at the non-physiological 10(-4)M concentration only. There was no effect of donepezil on [3H]-MLA binding at any concentration examined. These results indicate that donepezil increases cortical alpha 7 and non-alpha 7 nAChRs, hippocampal non-alpha 7 nAChRs but does not influence striatal nAChR levels. Furthermore, the lack of an effect on the alpha 7-nAChRs in PC-12 cells suggests that the increase in cortical alpha 7 nAChRs may be an indirect effect of increased acetylcholine levels in vivo.  相似文献   

6.
The in vitro and in vivo binding characteristics of [125I]iodomethyllycaconitine ([125I]iodoMLA) were determined in the rat. [125I]iodoMLA binding to rat cerebral cortex membranes was saturable and reversible and its specific binding represented approximately 70-80% of the total binding. [125I]iodoMLA labeled a single site with Kd = 1.8 +/- 0.4 nM and Bmax = 68 +/- 3 fmol/mg protein. Kinetic analysis revealed a t1/2 for association and dissociation of 10.5 +/- 3.1 and 10.3 +/- 1.6 min, respectively. Pharmacological characterization of [125I]iodoMLA binding indicated that it was specific for the alpha7 nAChR. In vitro brain region binding studies revealed greater binding in regions known to contain high numbers of alpha7 nAChRs. The analysis of the biodistribution of intravenously administered [125I]iodoMLA indicated that it was rapidly cleared and exhibited poor brain penetration; nevertheless, the levels of [125I]iodoMLA in alpha7 nAChR-rich target regions were significantly increased compared to the nontarget region (cerebellum) 60-120 min after administration. No metabolism of MLA by human liver S9 fraction was detected. Our results suggest that [125I]iodoMLA will be a useful radioligand to study the alpha7 nAChR in vitro and in vivo.  相似文献   

7.
Reductions in the number of neuronal nicotinic acetylcholine receptors (nAChRs) have been shown to occur in connection with Parkinson's disease (PD), but it is still unclear which subtype of this receptor is affected. In the present study we examined various nAChR subtypes employing ligand binding, as well as levels of subunit protein and mRNA in the brains of PD patients and age-matched controls. Binding of [3H]epibatidine and levels of alpha3 mRNA in the caudate nucleus and temporal cortex, but not in the hippocampus were significantly decreased in the PD brain. The level of the alpha3 protein subunit was significantly reduced in all these brain regions but there was no change in the level of alpha4. The level of the beta2 protein subunit in the temporal cortex and hippocampus and the beta2 mRNA in the temporal cortex was lowered. Both the levels of the alpha7 subunit protein and [125I]alpha-bungarotoxin binding were significantly increased in the temporal cortex of PD patients whereas the alpha7 mRNA level was unchanged. These findings reveal selective losses of the alpha3- and beta2-containing nAChRs and an increase in the alpha7 nAChRs that might be related to the pathogenesis of PD.  相似文献   

8.
[3H]-Methyllycaconitine ([3H]-MLA) is a new radioligand with selectivity for alpha7-type neuronal nicotinic acetylcholine receptors (nAChRs). In our previous study [Davies, A.R.L., Hardick, D.J., Blagbrough, I.S., Potter, B.V.L., Wolstenholme, A.J. & Wonnacott, S. (1999) Neuropharmacology, 38, 679-690], this radioligand labelled a single class of site in rat brain membranes; its pharmacology and distribution in crudely dissected brain regions closely paralleled that of the well-established alpha7-ligand [125I]-alpha-bungarotoxin. However, a small population of [3H]-MLA binding sites was apparently insensitive to alpha-bungarotoxin. Here we have extended the study to mouse brain, using autoradiography to examine the distribution of [3H]-MLA and [125I]-alpha-bungarotoxin binding sites. [3H]-MLA labelled a single class of site in mouse brain membranes with a KD of 2.2 nM and a Bmax of 45.6 fmol/mg protein. Specific binding, defined by unlabelled MLA (Ki = 0.69 nM), was completely inhibited by (-)-nicotine (Ki = 1.62 microM), whereas alpha-bungarotoxin inhibited only 85% of specific binding (Ki = 3.5 nM). The distributions of [125I]-alpha-bungarotoxin and [3H]-MLA binding sites were compared by autoradiography, and binding was quantitated in 72 brain regions. Binding of both radioligands was highly correlated, with highest densities in the dorsal tegmental nucleus of the pons, colliculi and hippocampus. Serial sections labelled with [3H]-MLA in the absence or presence of unlabelled MLA or alpha-bungarotoxin provided no evidence for any alpha-bungarotoxin-resistant binding. The results are discussed in terms of binding sites that are inaccessible to alpha-bungarotoxin in membrane preparations. This study demonstrates the utility of [3H]-MLA for characterization of alpha7-type nicotinic receptors in mammalian brain, and suggests that it labels a population identical to that defined by [125I]-alpha-bungarotoxin.  相似文献   

9.
Sur C  Fresu L  Howell O  McKernan RM  Atack JR 《Brain research》1999,822(1-2):265-270
Multiple subtypes of GABAA receptors are expressed in the rat central nervous system (CNS). To determine the distribution and proportion of alpha5 subunit containing receptors, quantitative autoradiographic analyses were performed with both [3H]L-655,708 and [3H]Ro15-1788, an alpha5 selective and a non selective benzodiazepine binding site ligand, respectively. High densities of [3H]L-655,708 binding sites were observed in hippocampus and olfactory bulb, where alpha5 receptors accounted for 20-35% of total [3H]Ro15-1788 binding sites. Low levels of [3H]L-655,708 sites were associated with the cortex as well as amygdala, thalamic, hypothalamic and midbrain nuclei. These observations indicate that although [3H]L-655,708 binding sites have an overall low expression in rat CNS, they may contribute significantly to GABAergic inhibition in specific brain regions.  相似文献   

10.
Binding assays of [3H]dihydroalprenolol ([3H]DHA), [3H]prazosin and [3H]clonidine have been performed on whole brain (minus cerebellum) homogenates of the convulsive mutant mice quaking (qk) and the controls of the same strain (C57BL/6J:B6). In 70-day-old mutants (which fully exhibit the qk convulsive phenotype), the binding of [3H]DHA to beta-adrenoceptor binding sites was not different from the controls, whereas the binding capacities of [3H]prazosin and [3H]clonidine to alpha 1-and alpha 2-adrenoceptor sites, respectively, were greatly enhanced. The biphasic ontogenic pattern of alpha 2-adrenoceptors had a greater amplitude in the brain of 30- to 90-day-old mutants than in the corresponding B6 controls. In mutants younger than 30 days or older than 90 days, the number of alpha 2-adrenoceptor sites was not modified. The number of alpha 1-adrenoceptor binding sites was increased in the brain of the mutants, only in animals older than 70 days. In younger mice, the postnatal modulation of alpha 1-adrenoceptor sites was identical to the controls. Regional studies were performed in 70-day-old mice. [3H]clonidine binding was increased in the brainstem of the mutants, and to a lesser extent in the cerebral cortex, while it was slightly diminished in the hypothalamic area. [3H]prazosin binding was also increased in the brainstem of the mutants, and decreased in the olfactory bulbs. Our results suggest that the convulsions of the qk mutants are selectively associated with modifications of alpha- and not beta-adrenoceptor binding sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
Presynaptic nicotinic acetylcholine receptors (nAChR) on glutamatergic as well as GABAergic synaptic terminals are considered to play a major role in mediating nicotinic effects on neurons in many parts of the brain. However, to what extent the excitatory effect of nicotine on the dopamine (DA) neurons in the ventral tegmental area (VTA) is mediated via their glutamatergic input remains unclear. The excitatory effect of nicotine on these cells was therefore studied by means of intracellular recordings from a midbrain slice preparation in the presence of antagonists to NMDA and non-NMDA receptors and compared to the effect of nicotine alone. Our results show that the excitatory effect of nicotine is markedly reduced both in the presence of 2-amino-5-phosphonopentanoic acid (AP5) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), i.e., from 115 +/- 14.3% to 63.4 +/- 11.0% and 63.2 +/- 13.6%, respectively. The coapplication of both antagonists did not have an additional effect in reducing the nicotine-induced increase in firing frequency. These findings clearly indicate that ionotropic glutamate receptor activation partly, but not entirely, mediates the excitatory effect of nicotine on DA neurons in VTA. In addition, we have pharmacologically characterized the nicotinic effect by the use of different nAChR antagonists, i.e., dihydro-beta-erythroidine (DHBE), mecamylamine, and methyllycaconitine (MLA). DHBE and mecamylamine but not MLA completely blocked the effect of nicotine, indicating that nAChRs other than alpha(7)-subtype are involved in the nicotine-induced excitation of the dopamine neurons in the brain slice preparation.  相似文献   

13.
Previous studies in humans have demonstrated a high co-morbidity between alcoholism and smoking. This co-morbidity between alcohol and nicotine dependence can be attributed, in part, to common genetic factors. In rodents, behavioral and physiological responses to alcohol and nicotine also appear to share common genetic influences. In this report, the genetic correlation between free-choice oral nicotine and oral alcohol consumption was evaluated using an ascending two-bottle choice paradigm in C57BL/6xC3H/HeJ F2 intercross mice. For all concentrations of nicotine (25, 50, and 100 microg/ml) and alcohol (3, 6, and 10%) tested, nicotine consumption was significantly correlated with alcohol consumption. Nicotine consumption at the highest nicotine concentration tested (100 microg/ml) showed low, but significant, correlations with the number of [3H]-cytisine binding sites in the hippocampus (r=0.307) and the number of [125I]-alpha-bungarotoxin binding sites in the cortex (r=-0.328). No significant correlations between alcohol consumption and the number of either [3H]-cytisine or [125I]-alpha-bungarotoxin binding sites was observed. A polymorphism in the nicotinic receptor alpha4 subunit gene, Chrna4, showed a trend with nicotine consumption and a significant association with alcohol consumption in female but not male mice. These results indicate that common genetic factors influence nicotine and alcohol consumption in mice. However, neither individual differences in the expression of [3H]-cytisine or [125I]-alpha-bungarotoxin binding nicotinic receptors nor the polymorphism in Chrna4 likely contribute to the genetic overlap that influences the consumption of both of these drugs of abuse in C57BL/6xC3H/HeJ F2 mice.  相似文献   

14.
Children of women who smoked during pregnancy are at increased risk of dependence when smoking is initiated during adolescence. We previously reported that gestational nicotine exposure attenuated dopamine release induced by nicotine delivered during adolescence. In this study, we determined the effects of gestational nicotine exposure on nicotinic cholinergic receptor (nAChR) expression. Timed pregnant rats received nicotine (2 mg/kg/day) or vehicle via mini-osmotic pumps during gestation. Treatments continued in pups via maternal nursing during postnatal days (PN) 2-14 (equivalent to the human in utero third trimester). On PN35, 125I-epibatidine binding to nAChR was measured. The Bmax values (fmol/mg) in prefrontal cortex (PFC), nucleus accumbens (NAcc), substantia nigra (SN) and ventral tegmental area (VTA) were reduced by 26.6% (P<0.05), 32.6% (P<0.01), 23.0% (P<0.01) and 27.6% (P<0.05), respectively. In addition, gender differences were found in vehicle-treated groups; in SN and VTA, females were 79.3% (P<0.005) and 82.9% (P=0.08) of males, respectively. The expression of nAChR subunit mRNAs was measured using real-time RT-PCR on laser-capture microdissected tissues. In adolescent VTA, gestational nicotine exposure reduced (P<0.05) nAChR subunit mRNAs encoding alpha3 (53.0%), alpha4 (23.9%), alpha5 (46.7%) and beta4 (61.4%). In NAcc core, the treatment increased alpha3 mRNA (75.8%). In addition, the number of neurons in VTA was reduced by 15.0% (P<0.001). These studies indicate that gestational exposure to nicotine induces long-lasting changes in nAChR expression that may underlie the vulnerability of adolescents to dependence on nicotine.  相似文献   

15.
We investigated the effect of chronic nicotine administration on high voltage-gated calcium channels (HVCCs) in the mouse cerebral cortex. The treatment significantly increased expression of alpha1C, alpha1D, alpha1F, and alpha2/delta1 subunits with no changes of beta4 subunit of L-type HVCCs. [(3)H]Diltiazem binding to the particulate fractions increased with increased Bmax value. These results indicate that chronic nicotine treatment up-regulates L-type HVCCs, which is due to increased expression of alpha1 and alpha2/delta1 subunits.  相似文献   

16.
Adrenergic and muscarinic binding sites in 4 brain regions (cerebral cortex, corpus striatum, hypothalamus/thalamus and brainstem) and in heart ventricles were measured in rats chronically treated with nicotine added to the drinking water in doses ranging from 6 to 8 mg/kg/day, for 4 weeks. Control rats received only tap water. The nicotine treatment led to increases in the specific binding of both [3H]prazosin and [3H]clonidine in the cerebral cortex. An increase in [3H]prazosin binding was also observed in the hypothalamus/thalamus of nicotine-treated rats. These changes were all due to an increase of about 23% in Bmax. In the brainstem and heart left ventricle, respectively, an increase and a decrease in the affinity of [3H]quinuclidinyl benzilate binding were observed. There were no changes of the binding parameters for the 3 radioligands in other regions tested, and no alteration of [3H]dihydroalprenolol binding was detected in any region examined. These results indicate that chronic administration of nicotine causes an increase in the density of α1-and α2-binding sites in some brain regions and reciprocal changes of the affinity of muscarinic binding sites in the brain and in the heart.  相似文献   

17.
In this study, we determined the activity of midbrain dopamine (DA) neurons in male albino rats following the intracerebroventricular (i.c.v.) administration of antisense oligodeoxynucleotide (aODN) against the mRNA for the NR1 subunit of the NMDA receptor. In addition, the effect of aODN on the specific binding of the NMDA receptor ligand [(3)H]MK-801 was also examined in various brain areas, including the midbrain. Antisense ODN against the NR1 mRNA, the corresponding sense ODN (sODN) or saline was continuously administered into the right ventricle of rats by osmotic minipumps for 7 days (20 nmol/day). Autoradiographic binding studies indicated that aODN significantly reduced the density of [(3)H]MK-801 binding by an average of 20-30% in several forebrain regions, including the anterior cingulate cortex, caudate putamen, and nucleus accumbens. However, [(3)H]MK-801 binding was not significantly altered in the ventral tegmental area (VTA) or substantia nigra pars compacta (SNC). Subsequently, using the technique of extracellular single-unit recording, the number, as well as the firing pattern, of spontaneously active DA neurons was determined in the VTA and SNC. The administration of aODN did not significantly alter the number of spontaneously active VTA and SNC DA neurons compared to saline- of sODN-treated animals. Furthermore, the firing pattern of spontaneously active SNC DA neurons was not significantly altered. However, for spontaneously active VTA DA neurons, the administration of aODN significantly decreased the percent events in bursts, number of bursts, and percentage of DA neurons exhibiting a bursting pattern compared to saline- and sODN-treated animals, i.e., neurons show less bursting activity. The present results suggest that subchronic aODN treatment against the mRNA for the NR1 subunit of the NMDA receptors can reduce NMDA receptor number and can result in an altered activity of spontaneously active VTA DA neurons in anesthetized rats.  相似文献   

18.
Binding activities specific for each of [3H]prostaglandin (PG) D2, E2 and F2 alpha were detected in the P2 fraction of the human brain homogenates. The bindings were time-dependent, saturable and of high affinity; Kd values were 30 nM for all the PG bindings. Regional distribution of these binding activities was determined by measuring specific bindings with 10 nM [3H]PG-D2, [3H]PG-E2 and [3H]PG-F2 alpha in the P2 fractions from 17 brain regions. The PG-D2 binding activity was high in the hypothalamus, amygdala and hippocampus followed by cerebellar nuclei, thalamus, nucleus accumbens and cerebral cortex. The PG-E2 binding sites were similarly concentrated in the hypothalamus and the limbic system, but, unlike the PG-D2 binding, no significant binding of [3H]PG-E2 was observed in cerebellar nuclei, cerebellar cortex and putamen. Compared with these two PG bindings, PG-F2 alpha binding activity was low in many areas, but significant binding was detected in the amygdala, cingulate cortex, cerebellar medulla, hippocampus, nucleus accumbens, midbrain and hypothalamus. These results suggest the presence and specific distribution of three distinct types of PG binding activities, i.e. specific binding of PG-D2, PG-E2 and PG-F2 alpha, in the human brain.  相似文献   

19.
BACKGROUND: The etiology of dementia that occurs in patients with schizophrenia is not well understood. Nicotinic acetylcholine receptors have been implicated in cognitive function, and deficits in these receptors have been reported in schizophrenia. METHODS: The present study investigates possible associations of nicotinic receptor subunit expression in the dorsal lateral prefrontal cortex, an area known to be affected in schizophrenia, and dementia rating. RESULTS: alpha7 immunoreactivity was reduced by 20% to 28% and [(3)H]epibatidine binding was increased twofold in groups of patients with schizophrenia compared to normal control subjects matched for age, postmortem delay, and low levels of brain nicotine and cotinine. In contrast, no significant differences in alpha4, alpha3, or beta2 immunoreactivity or alpha7 messenger RNA expression were observed in schizophrenia patients compared with control subject values. Clinical dementia ratings in patients with schizophrenia were correlated with neither [(3)H]epibatidine binding nor nicotinic receptor subunit expression. CONCLUSIONS:These data indicate no relationship between the trend for reduced neocortical alpha7 subunit protein expression in schizophrenia and dementia. Further investigations are required to establish whether the reduction in alpha7 protein in the dorsal lateral prefrontal cortex is associated with clinical features other than dementia in schizophrenia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号