首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To screen candidate methylation markers for early detection of breast cancer and to explore the relationship between methylation and gene expression, we performed methylated-CpG island recovery assay (MIRA) combined with CpG island array on 61982 CpG sites across 4162 genes in 10 cancerous and 10 non-cancerous breast tissues. Direct bisulfite sequencing and combined bisulfite restriction analysis (COBRA) were carried out in independent cancerous and non-cancerous samples. Gene expression was analyzed by microarrays and validated using RT-PCR. We detected 70 significantly hypermethylated genes in breast cancer tissues, including many novel hypermethylated genes such as ITGA4, NFIX, OTX2 and FGF12. Direct bisulfite sequencing showed widespread methylation occurring in intragenic regions of the WT1, PAX6 and ITGA4 genes and in the promoter region of the OTX2 gene in breast cancer tissues. COBRA assay confirmed that the WT1, OTX2 and PAX6 genes were hypermethylated in breast cancer tissues. Clustering analysis of the gene expression of 70 significantly hypermethylated genes revealed that most hypermethylated genes in breast cancer were not expressed in breast tissues. RT-PCR assay confirmed that WT1 and PITX2 were only weakly expressed in the breast cancer tissues and were not expressed in most non-cancerous breast tissues. OTX2 and PAX6 were not expressed in either breast cancer or non-cancerous tissues. In conclusion, these results will expand our knowledge of hypermethylated genes and methylation sites for early detection of breast cancer and deepen our understanding of the relationship between methylation and gene expression. The MIRA approach can screen candidate methylated genes for further clinical validation more effectively than gene expression microarray-based strategy.  相似文献   

2.
3.

Background

Colorectal cancer (CRC) arises as a consequence of genetic events such as gene mutation and epigenetic alteration. The aim of this study was to identify new hypermethylated candidate genes and methylation-based therapeutic targets using vincristine in CRC.

Methods

We analyzed the methylation status of 27,578 CpG sites spanning more than 14,000 genes in CRC tissues compared with adjacent normal tissues and normal colon tissues using Illumina bead chip array. Twenty-one hypermethylated genes and 18 CpG island methylator phenotype markers were selected as candidate genes. The methylation status of 39 genes was validated by quantitative methylation-specific polymerase chain reaction in CRC tissues, adjacent normal tissues, normal colon cells, and three CRC cell lines. Of these, 29 hypermethylated candidate genes were investigated using the demethylating effects of 5-aza-2′-deoxycytidine (5-aza-dC) and vincristine in CRC cells.

Results

Thirty-two out of 39 genes were hypermethylated in CRC tissues compared with adjacent normal tissues. Vincristine induced demethylation of methylated genes in CRC cells to the same extent as 5-aza-dC. The mRNA expression of AKR1B1, CHST10, ELOVL4, FLI1, SOX5, STK33, and ZNF304 was restored by treatment with 5-aza-dC and vincristine.

Conclusion

These results suggest that these novel hypermethylated genes AKR1B1, CHST10, ELOVL4, SOX5, STK33, and ZNF304 may be potential methylation biomarkers and therapeutic targets of vincristine in CRC.  相似文献   

4.
5.
DNA methylation is an epigenetic event that plays a role in gene expression regulation. Alterations in DNA methylation contribute to cancer development and progression. The aim of this study was to identify gene promoters aberrantly methylated in colorectal tumor tissue in comparison to normal colonic mucosa. Analyses were performed on two pooled DNA samples: from normal and cancerous tissue obtained from CRC patients. DNA was fractionated according to methylation degree with the use of affinity column containing methyl-CpG binding domain. To identify novel hypermethylated gene promoters, methylated DNA from normal and from cancerous tissues were analyzed with the use of promoter microarrays. We identified nine novel genes hypermethylated in colorectal cancer. The frequency of their promoter methylation was assessed in the larger group of patients (n = 77): KCNK12 (methylated in 41% of CRC patients), GPR101 (40%), CDH2 (45%), BARX1 (56%), CNTFR (22%), SYT6 (64%), SMO (21%), EPHA5 (43%), and GSPT2 (21%). The results of gene expression level analysis suggest the role of promoter methylation in downregulation of six out of nine genes examined. We did not find correlation between gene methylation and age, gender, tumor grade or stage. Importantly, in stage IV CRC methylation of GPR101 correlated with longer time to progression (P = 0.0042; HR = 2.5468; 95% CI 1.5391-10.0708).  相似文献   

6.
A genome-wide screening study for identification of hypermethylated genes in invasive cervical cancer (ICC) was carried out to augment our previously discovered panel of three genes found to be useful for detection of ICC and its precursor neoplasia. Putatively hypermethylated and silenced genes were reactivated in four ICC cell lines by treatment with 5-aza-2'-deoxycytidine and trichostatin A and identified on expression microarrays. Thirty-nine of the 235 genes up-regulated in multiple ICC cell lines were further examined to determine the methylation status of associated CpG islands. The diagnostic use of 23 genes that were aberrantly methylated in multiple ICC cell lines were then analyzed in DNA from exfoliated cells obtained from patients with or without ICC. We show, for the first time, that aberrant methylation of six genes (SPARC, TFPI2, RRAD, SFRP1, MT1G, and NMES1) is present in a high proportion of ICC clinical samples but not in normal samples. Of these genes, SPARC and TFPI2 showed the highest frequency of aberrant methylation in ICC specimens (86.4% for either) and together were hypermethylated in all but one ICC cases examined. We conclude that expression profiling of epigenetically reactivated genes followed by methylation analysis in clinical samples is a powerful tool for comprehensive identification of methylation markers. Several novel genes identified in our study may be clinically useful for detection or stratification of ICC and/or of its precursor lesions and provide a basis for better understanding of mechanisms involved in development of ICC.  相似文献   

7.
8.
9.
10.
11.
This study aimed to understand the exact function and potential mechanism of miR-4500 in colorectal cancer (CRC). In this study, the expression of miR-4500 was decreased in both CRC cells and tissues, and downregulated miR-4500 indicated advanced tumor stage and poor survival. By bisulfite sequencing analysis, we found that the CpG island in the promoter region of miR-4500 was hypermethylated in CRC cells and tissues compared with normal control cells and non-tumor tissues, respectively. Functionally, gain- and loss-of-function analyses indicated the tumor suppressor role of miR-4500: it suppressed cell proliferation, cell cycle progression, migration, and invasion. Predictive algorithms and experimental analyses identified HMGA2 as a direct target of miR-4500. Reintroducing HMGA2 impaired the inhibitory effects of miR-4500 on cell growth and motility. Clinically, higher HMGA2 protein expression in CRC tissues was associated with advanced tumor stage and poor survival. An inverse correlation was found between miR-4500 levels and HMGA2 protein expression. Taken together, this study provides the first evidence that miR-4500 functions as a novel tumor suppressor in the miR-4500/HMGA2 axis in colorectal carcinogenesis, and restoring miR-4500 expression might represent a promising therapeutic strategy for CRC.  相似文献   

12.
13.
14.
BACKGROUND: Microsatellite instability (MSI) has been reported in endometrial carcinoma (EC) and in colorectal carcinoma (CRC), primarily as a result of defective DNA mismatch repair (MMR). The MMR gene hMLH1 commonly is inactivated in both EC and CRC. In the current study, epigenetic mechanisms involved in hMLH1 inactivation have been investigated to further elucidate the role of these mechanisms in the pathogenesis of EC and CRC. METHODS: Polymerase chain reaction (PCR)-based microsatellite analysis performed on paraffin-embedded tissues was used to select 42 sporadic carcinomas (21 ECs and 21 CRCs) with MSI. Immunohistochemistry (IHC), using the anti-hMLH1 antibody, and mutation analysis, using denaturing high-performance liquid chromatography and automated sequencing, were performed on unstable carcinoma samples. Methylation analysis, using modified protocols for bisulfite treatment and methylation-specific PCR (MSP), was performed on DNA from archival tissue samples. RESULTS: No MSI-positive tumor samples with normal hMLH1 immunostaining (n = 7) exhibited hMLH1 promoter methylation, whereas 8 of 35 unstable cases with loss of hMLH1 expression (23%) exhibited MSP amplification. Among analyzed cases, germ-line mutations of hMLH1 were found in 4 of 20 unmethylated samples (20%) and in 0 of 8 methylated samples. Bisulfite sequencing of amplification products from methylated samples demonstrated that almost all CpG dinucleotides within the hMLH1 promoter elements underwent methylation. CONCLUSIONS: Although an MMR gene other than hMLH1 may be responsible for genetic instability in MSI-positive/IHC-positive tumors, the presence of MSP amplification and allelic deletions within the hMLH1 locus in subsets of MSI-positive/IHC-negative cases strongly suggests that hMLH1 promoter methylation may contribute to the inactivation of both hMLH1 alleles. Bisulfite analysis suggests that the mechanisms of hMLH1 silencing may depend on CpG density rather than site-specific methylation. Cancer 2003;98:1540-6.  相似文献   

15.
16.
Discovery of novel epigenetic markers in non-Hodgkin's lymphoma   总被引:2,自引:0,他引:2  
Non-Hodgkin's lymphoma (NHL) is a group of malignancies with heterogeneous genetic and epigenetic alterations. Discovery of molecular markers that better define NHL should improve diagnosis, prognosis and understanding of the biology. We developed a CpG island DNA microarray for discovery of aberrant methylation targets in cancer, and now apply this method to examine NHL cell lines and primary tumors. This methylation profiling revealed differential patterns in six cell lines originating from different subtypes of NHL. We identified 30 hypermethylated genes in these cell lines and independently confirmed 10 of them. Methylation of 6 of these genes was then further examined in 75 primary NHL specimens composed of four subtypes representing different stages of maturation. Each gene (DLC-1, PCDHGB7, CYP27B1, EFNA5, CCND1 and RARbeta2) was frequently hypermethylated in these NHLs (87, 78, 61, 53, 40 and 38%, respectively), but not in benign follicular hyperplasia. Although some genes such as DLC-1 and PCDHGB7 were methylated in the vast majority of NHLs, others were differentially methylated in specific subtypes. The methylation of the candidate tumor suppressor gene DLC-1 was detected in a high proportion of primary tumor and plasma DNA samples by using quantitative methylation-specific PCR analysis. This promoter hypermethylation inversely correlated with DLC-1 gene expression in primary NHL samples. Thus, this CpG island microarray is a powerful discovery tool to identify novel methylated genes for further studies of their relevant molecular pathways in NHLs and identification of potential epigenetic biomarkers of disease.  相似文献   

17.
Aberrant methylation of CpG islands in the promoter region of genes is a common epigenetic phenomenon found in early cancers. Therefore conducting genome-scale methylation studies will enhance our understanding of the epigenetic etiology behind carcinogenesis by providing reliable biomarkers for early detection of cancer. To discover novel hypermethylated genes in colorectal cancer by genome-wide search, we first defined a subset of genes epigenetically reactivated in colon cancer cells after treatment with a demethylating agent. Next, we identified another subset of genes with relatively down-regulated expression patterns in colorectal primary tumors when compared with normal appearing-adjacent regions. Among 29?genes obtained by cross-comparison of the two gene-sets, we subsequently selected, through stepwise subtraction processes, two novel genes, GABRA1 and LAMA2, as methylation targets in colorectal cancer. For clinical validation pyrosequencing was used to assess methylation in 134 matched tissue samples from CRC patients. Aberrant methylation at target CpG sites in GABRA1 and LAMA2 was observed with high frequency in tumor tissues (92.5% and 80.6%, respectively), while less frequently in matched tumor-adjacent normal tissues (33.6% for GABRA1 and 13.4% for LAMA2). Methylation levels in primary tumors were not significantly correlated with clinico-pathological features including age, sex, survival and TNM stage. Additionally, we found that ectopic overexpression of GABRA1 in colon cancer cell lines resulted in strong inhibition of cell growth. These results suggest that two novel hypermethylated genes in colorectal cancer, GABRA1 and LAMA2, may have roles in colorectal tumorigenesis and could be potential biomarkers for the screening and the detection of colorectal cancer in clinical practice.  相似文献   

18.
Epigenetic change such as DNA methylation is one important mechanism for regulating gene expression as genetic change, such as mutation or loss of heterozygosity. Methylation of cancer-related genes has been shown to play an important role in carcinogenesis and tumor progression. Using methylated CpG island amplification (MCA)/representational difference analysis (RDA), we identified four CpG islands in neurotrophin tyrosine kinase receptor type 2 (NTRK2), Protocadherine Flamingo1 and MFPC (Methylated Fragments in Prostate Cancer) 7 and 8. Bisulfite sequencing revealed that 2 regions of NTRK2 as well as MFPC7 and MFPC8 were aberrantly methylated in prostate cancer cell lines, and COBRA showed that 48 (76.24%), 37 (58.7%) and 14 (22.2%) of 63 prostate cancer tissues were methylated, respectively, for these sites. On the other hand, none of 13 benign prostate samples were methylated, except for 1 (7.7%) with NTRK2. For NTRK2, mRNA expression was negative in prostate cancer cell lines (LNCaP and DU145) but was recovered on a methyltransferase inhibitor (5-Aza-CdR) treatment. The role of NTRK2 within NTRK remains unclear. Our results suggest that these 3 hypermethylated DNA fragments also may be markers of prostate cancer detection.  相似文献   

19.
20.
Kim MS  Lee J  Oh T  Moon Y  Chang E  Seo KS  Hoehn BD  An S  Lee JH 《Oncology reports》2012,27(5):1681-1688
Aberrant DNA methylation occurs early and frequently in tumorigenesis. Identification of DNA methylation biomarkers is a field that provides potential for improving the clinical process of breast cancer diagnosis. We utilized a genome-wide technique, methylated DNA isolation assay (MeDIA), in combination with high-resolution CpG microarray analysis to identify hypermethylated genes in breast cancer. Among differentially methylated genes between tumor and adjacent normal tissues, 3 candidate genes (LHX2, WT1 and OTP) were finally selected through a step-wise filtering process and examined for methylation status in normal tissues, primary tumor, and paired adjacent normal-appearing tissues from 39 breast cancer patients. Based on the calculated cut-off values, all genes showed significantly higher frequencies of aberrant hypermethylation in primary tumors (43.6% for LHX2, 89.7% for WT1 and 100% for OTP, p<0.05) while frequencies were intermediate in paired adjacent normal tissues and absent in normal tissues. On further analysis, the methylation level in primary tumors was not significantly correlated with clinicopathological features. Interestingly, DNA methylation of a novel gene OTP was detected in adjacent normal tissues even 6?cm away from primary tumors, suggesting that OTP methylation may qualify as a biomarker for the early detection of breast cancer. In conclusion, we successfully identified a novel gene OTP frequently methylated in breast cancer by genome-wide screening. Our results suggest that the OTP gene may play a crucial role in breast carcinogenesis, although further clinical validation will be needed to evaluate the potential application of OTP in the early detection of breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号